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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder affecting about 10 million people
worldwide with a prevalence of about 2% in the over-80 population. The disease brings in also a
huge annual economic burden, recently estimated by the Michael J Fox Foundation for Parkinson’s
Research to be USD 52 billion in the United States alone. Currently, no effective cure exists, but
available PD medical treatments are based on symptomatic prescriptions that include drugs, surgical
approaches and rehabilitation treatment. Due to the complex biology of a PD brain, the design of
clinical trials and the personalization of treatment strategies require the identification of accessible
and measurable biomarkers to monitor the events induced by treatment and disease progression and
to predict patients’ responsiveness. In the present review, we strive to briefly summarize current
knowledge about PD biomarkers, focusing on the role of extracellular vesicles as active or involuntary
carriers of disease-associated proteins, with particular attention to those research works that envision
possible clinical applications.
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1. Parkinson Disease

First described by James Parkinson in 1817, Parkinson’s disease (PD) is today the
most common neurodegenerative disease after Alzheimer’s disease [1]. According to
the World Health Organization (WHO) definition, PD is “a degenerative condition of the
brain associated with motor symptoms (slow movement, tremor, rigidity, walking and
imbalance) and a wide variety of non-motor complications (cognitive impairment, mental
health disorders, sleep disorders and pain and other sensory disturbances)”. Disability
and death due to PD in recent years are increasing faster than they are for any other
neurological condition, and the Global Burden of Disease Study 2015 estimates that there
may be nearly 13 million people with PD (pwPD) by 2040 [2], suggesting an increasing
social and economic burden on modern societies that has to be faced.

1.1. PD Etiology and Subtypes

The causes of PD are still largely unknown; if previously the disease was believed to be
caused mainly by environmental factors, nowadays research reveals that the pathology is
caused by a complex interplay of genetic factors and environmental triggers. Histologically,
PD is characterized by the prominent death of dopaminergic neurons, especially in the
substantia nigra pars compacta (SNpc) area of the brain, and by the presence of Lewy
bodies and Lewy neurites, which are inclusions of abnormal aggregates of α-synuclein
(α-syn) in neuronal cell bodies and neuronal cell processes, respectively [3]. The study of
familial PD has led to the identification of rare mutations in different genes responsible
for the monogenic forms of PD, which account for <10% of total PD cases [4]. These
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genes are SNCA (α-syn), LRRK2 (leucine-rich repeat kinase 2), PARK2 (parkin), PINK1
(PTEN-induced putative kinase 1), VPS-35 (vacuolar protein sorting-associated protein
35), PARK7 (DJ1) and GBA (glucocerebrosidase) [5]. The remaining 90% of patients are
considered to suffer from “idiopathic” PD. These cases are sporadic and for them a mono-
genic inheritance pattern cannot be identified; these cases of PD are considered the result
of the interaction between environmental and genetic factors. The genetic background of
idiopathic PD is complex, similar to many other common multifactorial conditions, and is
characterized by the presence of variants that include single-nucleotide polymorphisms
(SNP) and structural variants (microsatellites, minisatellites, insertions, and deletions) that
together determine an individual’s susceptibility to disease. Meta-analyses of several differ-
ent genome-wide association studies (GWAS) have identified 41 PD risk loci [6,7] that are
common genetic variants conferring an increased risk of developing the disease. Among
environmental triggers, the following deserve to be mentioned: exposure to the heroin side
product 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [8] or to pesticides such as
rotenone, paraquat, organophosphates, and pyrethroids [9], head trauma [10], and central
nervous system (CNS) infections [11]. Notably, moderate nicotine and caffeine consump-
tion, and use the of non-steroid anti-inflammatory drugs have been reported to be protective
against PD [12].

1.2. PD Diagnosis

The clinical diagnosis of PD, especially in the early phases, is still challenging because
of the unavailability of specific diagnostic tests. Diagnosis primarily depends on clinical
symptoms, along with detecting SNpc neurodegeneration and observing Lewy pathology.
Typically, a confirmation of these findings takes place during a post-mortem pathological
examination [13]. Studies report that in only 80–90% of PD cases is the diagnosis confirmed
at autopsy [14]. The first step of diagnosis is the clinical establishment that the patient is
affected by “parkinsonism”. This relies on the three key elements, bradykinesia, tremor
and rigidity, with bradykinesia being the essential element, accompanied by the presence
of at least one of the other two [15]. Besides these evaluations, of critical importance
are also exclusion criteria including the absence of a response to high-dose levodopa
despite moderate disease severity, normal “DAT scan” functional imaging, and cerebellar
abnormalities. Supportive criteria are a clear beneficial response to dopaminergic therapy,
levodopa-induced dyskinesia, rest tremor of a limb, and the presence of olfactory loss [16].
Non-motor features present in the prodromal phase of the pathology also contribute
to the diagnosis; these are depression, anosmia, constipation, and REM sleep behavior
disorder [17]. Several disorders mimic idiopathic PD, in particular dementia with Lewy
bodies (DLB), multiple-system atrophy (MSA), progressive supranuclear palsy (PSP), and
corticobasal degeneration (CBD). Moreover, secondary causes can lead to parkinsonism, like
drug-induced parkinsonism, as in the case of antipsychotics, toxins, and normal-pressure
hydrocephalus, and vascular parkinsonism.

1.3. PD Therapeutic Strategies

Currently, disease-modifying treatments for PD are not available, and the drugs focus
on controlling the motor symptoms and not on altering the course of the disease. The
selective loss of dopaminergic neurons of the SNpc results in dopamine depletion in the
striatum [18], hence the mainstay of PD pharmacological treatment is dopaminergic drugs
that replace the action of dopamine by activating dopamine receptors, the provision of
a precursor that is metabolized to dopamine (e.g., levodopa), or the prevention of the
breakdown of endogenous dopamine (e.g., monoamine oxidase-B (MAO-B) inhibitors
and catechol-O-methyl transferase inhibitors (COMT) [19,20]. Treatments are tailored to
each patient considering the benefits and the side effects, mostly relying on the personal
expertise of the neurologist and a trial and error process.

Some novel and promising approaches are currently under investigation including
stem cell-based treatments [21], gene therapy [22] and therapies with the aim of contrasting
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α-syn toxic effects by inhibiting α-syn production, increasing the degradation of α-syn ag-
gregates, and reducing the uptake of extracellular α-syn by neighboring cells [23]. Targeted
rehabilitative programs for motor function, swallowing difficulty, and speech disorders are
assuming an important role in improving the quality of life of pwPD [24].

As previously explained, there are still many challenges to be overcome regarding
PD from the fine understanding of the biological processes and molecular pathways at
the basis of the disease, and the discovery of solid and reliable diagnostic and prognostic
biomarkers—to be used especially in the prodromal and early phases of the disease—to
the development of disease-modifying treatments. We will now review the attractive role
of extracellular vesicles (EVs), the state of the art, the need to define laboratory technique
guidelines, and future opportunities and perspectives.

2. Extracellular Vesicles

EVs is a general term that refers to a complex multitude of “particles that are released
from cells, are delimited by a lipid bilayer, and cannot replicate on their own” [25] that
can be detected in the interstitial fluid as well as in all biofluids, including blood, saliva,
urine, milk, and intraperitoneal fluids [26]. EVs were first described in the 1960s and since
their discovery, they have undergone a transformation in the definitions of their structure
and role. Initially, they were assumed to be the result of membrane turnover and a waste
removal pathway. Later, their release mechanisms were investigated, shedding new light on
their function and role with the description of the formation of intraluminal vesicles (ILVs)
in late endosomes by the inward budding of the endosomal limiting membrane, followed
by the fusion of so-called multivesicular bodies (MVBs). In 1996, Raposo et al. reported the
immune-modulating activity of B cell-derived EVs, suggesting new biological implications
of these vesicles, far beyond a mere recycling circle [27]. Since then, the investigation
of the mechanisms underlying EV release, their classification and nomenclature, as well
as their involvement in physiological and pathological cell functions has dramatically
increased. The technological evolution that has been accompanying the study of EVs has
progressively increased our knowledge about EV heterogeneity in size, structure, and
functions in physiological and pathological conditions [28]. This led to an exponential
increase in EV-related scientific publications, patents, and clinical trials in the first two
decades of this century (Figure 1) as well as to the appearance of EV-focused journals and
scientific communities of national and international interest.
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In the current review, our aim is to emphasize the evidence concerning EVs in PD
research. For this reason, we will broadly refer to EVs as a wide family, without going
deeply into the numerous distinctions related to their biogenesis. However, it is important
to acknowledge that while this overarching term encompasses a diverse range of vesicles,
it might obscure variations in their origins, physical and chemical properties, and functions.
These distinctions, unraveled over time thanks to innovation and technological advance-
ments, could also underlie certain controversies and conflicting evidence that will be
later described.

3. Extracellular Vesicles in Parkinson’s Disease
3.1. Pathophysiology: Spread of Pathology

As mentioned, one of the hallmarks of PD is the aggregation and spread of cytotoxic
forms of α-syn. Starting from this premise, several studies have tried to understand if
EVs might have a role in either the sequestration and removal or in the transport across
the body of misfolded and aggregated α-syn. The reasons for the toxicity of α-syn in PD
are complex and involve multiple mechanisms, including the loss of function of aggre-
gated proteins, mitochondrial dysfunction, interference with axonal transport, proteasomal
inhibition, synaptic toxicity, and endoplasmic reticulum stress. Mounting evidence sug-
gests that EVs have a role in the propagation of aggregated proteins, in particular in the
prion-like propagation of aggregated α-syn, and predominantly in the intercellular spread
of aggregates.

One of the first observations proposing EV-mediated transport as one (but not a
unique) form of transport for α-syn was made by Emmanouilidou and colleagues [29], who
observed that in vitro-cultured α-syn-expressing cells could release the α-syn monomeric
and oligomeric forms both when free in the medium and within exosomes, in a calcium-
dependent manner. Subsequently, it was shown that lysosomal dysfunction—a PD relevant
stress condition—increases the release of α-syn-containing vesicles that cause toxicity in the
recipient cells [30,31]. Further investigations on the mechanisms of the vesicle-mediated
release of α-syn in the extracellular space proposed ubiquitination [32] and sumoylation [33]
as possible mechanisms involved in the inclusion of α-syn into multivesicular bodies and,
thus, in exosomes. It was also found that cells take advantage of the exosomal secretion
of α-syn to discard α-syn in specific conditions, i.e., when autophagy is impaired [34].
Nonetheless, criticisms were raised about the impact of EV transport on α-syn release
as some in vitro works hypothesized that less than 2% of α-syn is found in association
with exosomes [35]. Indeed, even though the percentage of α-syn released by brain and
non-brain cells might be small, the specific composition of EVs seems to have a critical role
in the pathogenic mechanisms underlying PD.

Although the mechanisms of EV α-syn loading remain to be elucidated, it was reported
that the α-syn–membrane interaction has a role in the conformational changes of α-syn that
might alter the protein function and/or drive aggregation in PD development. At the same
time, the targeting of α-syn in its different conformations (especially the most neurotoxic
ones, i.e., oligomers) at the membrane surface can alter lipid composition because of its
ability to disrupt biological membranes [36]. Studies focusing on the chemo-physical
interaction of α-syn and membrane components demonstrated that the protein adopts an
α-helix conformation when interacting with the cell membrane, in particular with some
phospholipids, including phosphatidylserine and phosphatidyl inositol [37]. The α-helix
remains entirely buried within the depth of the membrane, whereas the rest of the protein
segments present lower membrane penetration and higher flexibility [36], influencing
α-syn’s role in vesicle biogenesis and recycling. Data suggest that monomer binding
to the membrane is accompanied by the further clustering of α-syn, which can perturb
lipid membranes, in particular nanosized vesicles like EVs [38]. The aggregated and toxic
form of the protein, oligomeric α-syn, was found to interact with lipids causing structural
changes in lipid membranes, leading to membrane disruption, membrane thinning, pore
formation, and lipid clustering. Membrane-associated oxidative stress further promotes
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α-syn aggregation inside the cells, with the consequent release of toxic α-syn species in
EVs, both inside and on the surface of the vesicles, propagating the neurodegenerative
process to adjacent neurons [39].

EVs derived from pwPD were proven to be enriched in α-syn and to be able to induce
the oligomerization of α-syn in a dose-dependent manner [40]. Exogenous α-syn strains
can also seed the assembly of endogenous α-syn and its propagation, leading to long-term
functional effects [40]. Furthermore, α-syn strains display differential seeding capacities
and elongation processes and induce a strain-specific pathology and specific neurotoxic
phenotypes, possibly explaining the heterogeneity in the spread and in the symptoms of
the pathology [40].

What is of particular interest in the investigation of the role of EVs in PD progression
is the observation that α-syn assemblies cross the blood–brain barrier (BBB); intravenous
α-syn injection results in its dissemination in the CNS [38]. This can be mediated by EV
transport, which is facilitated by the leakage of the BBB, as seen in pwPD [41]. Microglia
are also known to play a major role in the neuroinflammation that accompanies the neu-
rodegenerative process. In pwPD, microglia were shown to fail to clear and/or to promote
the release of EVs that contained toxic forms of α-syn or other pathogenic factors, possibly
potentiating neurodegeneration [42].

Although α-syn is the most studied player in the pathogenic mechanisms of PD, other
genes are mutated in familial PD, and other proteins were found to be associated with
EVs in pwPD. For example, mutant LRRK2 acts at multiple points within the endosomal
pathway and thus has the potential to modulate exosome biogenesis. It was shown that
LRRK2 is released within EVs and regulates their biogenesis [43], with LRRK2-loaded
EVs being also found in the urine of pwPD [44]. Similarly, the microtubule-stabilizing
protein Tau is known to become hyperphosphorylated and aggregation-prone in so-called
taupathies, including PD. Different mechanisms, including EV transport, allow brain tau to
cross the BBB and circulate in the bloodstream, where it can associate to exosomes, and in
particular with neuron-derived exosomes expressing the L1CAM protein marker [45].

Finally, the oxidative stress of neurons is crucial in PD progression, contributing to the
cellular dysfunction of neurons. In this regard, studies performed on preclinical models of
PD have demonstrated that EV-associated microRNAs have an impact on brain tissue. In
particular, the inhibition of exosomal miR-137 relieved oxidative stress, promoted neuron
viability, and inhibited the apoptosis of neurons by up-regulating oxidation resistance 1
(OXR1), which inhibits oxidative DNA damage [46].

3.2. Biomarkers for Diagnosis and Prognosis

Over the years, accumulating evidence has demonstrated that EVs are crucial for
intercellular communication within the brain, and it is commonly accepted that EVs can
move from the bloodstream to the CNS crossing the BBB, even though the mechanisms
of this transfer are largely unclear. The possibility to monitor and observe the processes
occurring within the brain taking advantage of complex multifaceted nanovesicles, i.e., EVs,
has inspired a huge body of literature about brain disorders including neurodegenerative
diseases where the disruption of the BBB facilitates the transfer of EVs from the systemic
circulation to the brain and vice versa [47]. EVs and their constituents, either proteins,
nucleic acids, lipids or small metabolites, have been the object of several studies that over
the years have tried to identify molecular biomarkers for the diagnosis of PD.

One of the first studies performed on the blood of pwPD to verify the actual potential
of EVs as biomarkers of PD was attempted by Shi and colleagues, who demonstrated that
both plasma exosomal α-syn [48] and tau [45] correlated with PD severity, performing
even better than the quantification of free α-syn or tau in cerebrospinal fluid (CSF). First,
a large cohort of 267 PD and 215 age- and sex-matched healthy controls were considered
and α-syn concentration was assessed in plasma L1CAM-containing (L1CAM+) exosomes
(using Luminex assays). No significant difference in the total plasma α-syn concentrations
was observed in PD versus controls, but the α-syn concentration in plasma L1CAM+
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exosomes was significantly higher in pwPD compared to that in healthy controls, with the
plasma exosomal α-syn/total α-syn ratio being also significantly higher in pwPD than in
controls [48]. The ROC curve revealed moderate diagnostic performance for α-syn within
L1CAM+ EVs (area under the curve/AUC = 0.654) as well as for the exosomal α-syn/total
α-syn ratio (AUC = 0.657). Interestingly, significant correlations were found between
plasma α-syn in L1CAM+ exosomes and the plasma exosomal α-syn/total α-syn ratio with
UPDRS motor scores (UPDRS III) [48]. These data were confirmed by the observation that
neuronal (L1CAM+) EVs can predict and differentiate pwPD from atypical parkinsonisms.
Using a combined protocol of immunoprecipitation and electrochemiluminescence assays,
it was established that an α-synuclein level in L1CAM-immunocaptured exosomes of
above 14 pg/mL is a robust biomarker for the differential diagnosis of PD and atypical
parkinsonisms (ROC AUC = 0.98) [49]. Similarly, it was reported by Cerri and coauthors [50]
that the quantification of plasma exosomal α-syn (not only L1CAM+) normalized for total
α-syn (whole plasma) via ELISA was significantly increased in pwPD (39 pwPD and 33
healthy controls) compared to that in controls. The results were also correlated with the
measures of disease severity, indexed by the UPDRS III and Hoehn and Yahr (H&Y) scores,
as well as with the Glucocerebrosidase (GCase) activity measured in lymphocytes [50].
This study is in line with other data that demonstrated the abundance of α-syn not only
in neuronal circulating EVs, but also in non-brain EVs [51]. In particular, it was reported
that the quantification of plasma EV-associated α-syn (without prior enrichment for brain-
derived EVs) was effective in distinguishing pwPD (n = 94) from people with DLB (n = 48)
and PSP (n = 49). ROC analysis showed an AUC of 0.804 for PD and DLB and an AUC
of 0.815 between PD and PSP, whereas the ROC AUC was 0.769, comparing pwPD and
control subjects. A significant inverse correlation was also observed with UPDRS III and
H&Y scores [51].

Interestingly, EVs from non-brain cells were found to be loaded with α-syn in pwPD,
as were brain-derived EVs, for example those from red blood cells [52] and peripheral
lymphocytes [53]. This observation can partially explain the better performance of the
quantification of α-syn in the entire population of blood-derived EVs compared to that of
its quantification in specific neuronal populations. Moreover, L1CAM is known to identify
vesicles released by neurons, although its specificity is controversial and not all of the
neuronal EVs will be loaded with L1CAM. It was also shown that the blood concentration
of EVs derived from neurons (SNAP-25), astrocytes (EAAT1), and oligodendrocytes (OMG)
is significantly augmented in pwPD compared to those in other forms of parkinsonisms,
with good diagnostic potential reported for these EV subfamilies (AUCs of the ROC curve
for plasma neuron-, astrocyte- and oligodendrocyte-derived EVs were 0.82, 0.75, and 0.78,
respectively) [54].

A comprehensive analysis of neuron-derived EVs (L1CAM+) in pwPD (n = 32) showed
that the toxic oligomeric form of α-syn is significantly increased in L1CAM+ EVs, whereas
total α-syn, STX-1A, and VAMP-2, proteins that are known to be involved in synap-
tic function, are decreased [55]. The analysis of the diagnostic performance of the pro-
posed biomarkers in L1CAM+ EVs showed good performance for oligomeric α-syn (ROC
curve AUC = 0.824); the results were even better when two biomarkers were consid-
ered in L1CAM+ EVs: the oligomeric α-syn/STX-1A ratio (AUC = 0.871) and oligomeric
α-Syn/VAMP-2 ratio (AUC 0.876). Importantly, also in this study, the amount of the
oligomeric form of α-syn in L1CAM+ EVs correlated with disease duration and clinical
severity (UPDRS III and H&Y Scales) [55]. The same protocol was also applied for the
combined quantification of oligomeric α-syn and aggregated tau in L1CAM+ EVs compar-
ing pwPD (n = 70) and atypical parkinsonisms. Even though in this case the diagnostic
performance did not include control subjects, the diagnostic performance of the combi-
nation between the two biomarkers (oligomeric α-syn/Tau aggregates ratio) showed far
better diagnostic performance than did that of the single biomarker, with ROC analysis
obtaining AUC = 0.902 for pwPD compared to CBD and AUC = 0.908 for pwPD compared
to PSP [56].
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Following a similar approach of exosomal quantitation [48] but using a different tech-
nology, single-molecule array (SiMoA) assays, Shi and colleagues evaluated the possibility
of using tau as a PD biomarker, measuring its concentration both in whole plasma and
L1CAM+ plasma exosomes in pwPD, Alzheimer’s disease (AD), and healthy controls [45].
Plasma exosomal tau was significantly higher in PD than in healthy controls, but was not
significantly different in AD patients; importantly, exosomal tau correlated with CSF tau
concentration [45]. The diagnostic performance, as evaluated via ROC analysis, showed
that L1CAM+ exosome-associated tau was modestly predictive in distinguishing between
PD and healthy controls (AUC = 0.607), and was associated with disease duration but not
with other clinical scales in pwPD [45].

Taken together, these data suggest variations in the subpopulations of vesicles circu-
lating in the blood of pwPD that might relate not only to a single protein variation, but
possibly to multiple factors associated with EVs. In line with this observation, Tomlinson
and colleagues performed a proteomic analysis of serum EVs and found that, despite the
absence of significant differences in EV numbers or sizes, 23 EV-associated proteins were
differentially abundant in PD [57]. Subpopulations of vesicles that are either differentially
regulated or enriched for certain proteins (including but not limited to α-syn) in response to
the disease process could explain this observation. An overall biochemical characterization
of EVs was proposed as a potential biomarker for PD in 2019 [58]. Taking advantage of the
Raman spectroscopy approach, serum-derived EVs from a small cohort of pwPD (n = 22)
and healthy controls (n = 18) were analyzed; the results identified a specific biochemical
fingerprint for pwPD [58]. Although the complexity of the Raman spectrum did not allow
the complete definition of the molecules responsible for the observed differences, the ROC
curve demonstrated moderate diagnostic accuracy (AUC = 0.71) and a correlation between
the biochemical features of serum EVs and the clinical scales used to profile pwPD (UPDRS
III and H&Y scores) [58].

Of course, EVs are carriers of multiple bioactive compounds—other than proteins—
that can play a role as PD biomarkers, and among them miRNAs have received increasing
attention. The first observation in this topic focused on EV-associated miRNAs isolated from
CSF. Gui and colleagues demonstrated that five miRNAs that circulate in CSF in association
with EVs could discriminate PD from healthy controls with an accuracy calculated by
the ROC curve of higher than 90%, with the highest performance being achieved with
miR-409-3p. Notably, the combination of miR-153 and miR-409-3p in CSF-derived EVs
could enhance the performance of discrimination significantly (AUC = 0.99) [59]. In blood,
miR-331-5p and miR-505 were found to have optimal diagnostic performance (AUC > 0.85)
between pwPD and healthy subjects [60]. In a different cohort, the downregulation of
miR-19b and upregulation of miR-195 and miR-24 were found to have consistent diagnostic
potential with variable accuracy ranging from 70 to 90% compared to that in healthy
subjects (n = 40) [61].

Recently, the search for PD biomarkers has expanded towards organic fluids other
than blood and CSF. Urine and saliva are intriguing sources of biomarkers for chronic
pathologies like PD, and measurements performed in accessible biofluid would allow
clinicians to periodically monitor disease progression and therapy effectiveness, without
the need for blood and CSF collection. Studies performed on urinary samples of pwPD
showed that EVs loaded with elevated levels of autophosphorylated Ser(P)-1292 LRRK2
could be detected in people with idiopathic PD [44,62]. SNAP23 and calbindin were found
to be elevated as well in urinary EVs from pwPD compared to healthy subjects, with both
markers having moderate diagnostic accuracy after ROC curve calculation (AUC = 0.68 for
SNAP23 and AUC = 0.75 for calbindin; AUC = 0.76 for the combination of calbindin and
SNAP23 in the same logistic model) [63] (Table 1).
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Table 1. Summary of the study on PD biomarkers with reported data on clinical samples. Only studies with reported clinical power calculations are included.
Abbreviations: AD: Alzheimer’s disease; AUC: area under the curve after ROC curve calculation; CBD: corticobasal degeneration; CSF: cerebrospinal fluid; DLB:
dementia with Lewy bodies; ECL: electrochemi-luminescence; HC: healthy control; MSA: multiple-system atrophy; PD: Parkinson’s disease; PSP: progressive
supranuclear palsy; SEC: size exclusion chromatography.

Biomarker Source EV
Subtype

Isolation
Method Considered Population Detection

Method
Diagnostic

Performance Ref.

Blood

α-syn serum L1CAM+ Immunoaffinity

PD = 290
MSA = 50
PSP = 116
CBD = 88
HC = 191

ECL

AUC = 0.86
(PD vs. HC);
AUC = 0.98

(PD vs. MSA);
AUC = 0.94

(PD vs. PSP + CBD)

[49]

plasma L1CAM+ Immunoaffinity PD = 267
HC = 215

Luminex®

(fluorimetric)
AUC = 0.654 [48]

plasma Total EVs SEC

PD = 96
DLB = 50
PSP = 50
HC = 42

ECL

AUC = 0.804
(PD vs. DLB);
AUC = 0.815
(PD vs. PSP);
AUC = 0.769
(PD vs. HC)

[51]

Oligomeric
α-syn;

STX-1A;
VAMP2

serum L1CAM+ Immunoaffinity PD = 32
HC = 40 ELISA

oligomeric α-syn: AUC = 0.820;
oligomeric α-syn/STX1: AUC = 0.871;

oligomeric α-syn/VAMP2: AUC = 0.876
[55]

Oligomeric α-syn;
Tau aggregates serum L1CAM+ Immunoaffinity

PD = 70
PSP = 21
CBD = 19

ELISA

oligomeric α-syn/Tau aggregates: AUC = 0.902
(PD vs. CBD)

Tau aggregates: AUC = 0.908
(PSP vs. PD)

[56]
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Table 1. Cont.

Biomarker Source EV
Subtype

Isolation
Method Considered Population Detection

Method
Diagnostic

Performance Ref.

Tau plasma L1CAM+ Immunoaffinity
PD = 91

AD = 106
HC = 106

SiMoA AUC = 0.607
(PD vs. HC) [45]

EV count plasma
SNAP25+
EAAT1+
OMG+

Immunoaffinity

PD = 15
MSA = 15

PSP = 7
HC = 15

ELISA

SNAP25+ EVs: AUC = 0.82 (PD vs. HC);
EAAT1+ EVs: AUC = 0.75 (PD vs. HC)

OMG+ EVs: AUC = 0.78
(PD vs. HC)

[54]

Raman spectrum serum Total EVs
SEC and

ultracentrifu-
gation

PD = 22
HC = 19

Raman
spec-

troscopy
AUC = 0.71 [58]

miR-331-5p
miR-505 plasma Total EVs

Polymer
based

precipitation
and Targeted

filtration

PD = 52
HC = 48

RT-
qPCR

miR-331-5p: AUC = 0.849;
miR-505: AUC = 0.898 [60]

miR-19b
miR-24

miR-195
serum Total EVs

Polymer
based

precipitation

PD = 109
HC = 40

RT-
qPCR

miR-19b: AUC = 0.753;
miR-24: AUC = 0.908;
miR-195: AUC = 0.697

[61]

Other biofluids

miR-409-3p
miR-153 CSF Total EVs Ultracentrif-

ugation
PD = 47
HC = 27

RT-
qPCR

miR-409-3p: AUC = 0.90;
miR-153 and miR-409-3p: AUC = 0.99 [59]

SNAP23
calbindin

urine Total EVs Ultracentrif-
ugation

Discovery cohort
PD = 28
HC = 22

Mass
spec-

trome-
try

Discovery Cohort
SNAP23: AUC = 0.80

Calbindin: AUC = 0.75
[63]

Replication cohort
PD = 57
HC = 51

Replication cohort
SNAP23: AUC = 0.68

Calbindin: AUC = 0.75
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Saliva has received attention in the field of neurodegenerative disease diagnostics as it
shares multiple components with plasma, is collected in non-invasive ways, and has the
advantage of a reduced interference of lipoproteins. A pilot study performed on pwPD
showed an increased level of L1CAM and phosphorylated α-syn in salivary EVs compared
to those in healthy controls, suggesting salivary EVs as a source of PD biomarkers [64].

3.3. Therapy

As mentioned above, current therapies for PD are far from optimal, treating the
symptoms of the disease but being unable to alter the undergoing neuronal damage. One of
the main problems with OD drugs is that they must cross the BBB, a natural dynamic barrier
composed of specialized epithelial cells that together with pericytes and astrocytes form
a tight barrier that regulates the flow of substances into the brain, including therapeutic
agents. Different strategies have been designed in an attempt to bypass this obstacle [65],
including the use of nanocarriers that may be of synthetic or biological origin.

EVs, due to their properties, are emerging as a new class of nanocarriers of drugs
and therapeutic molecules (proteins—including growth factors—lipids, various DNA and
RNA species, etc.) that could be used in neurodegenerative diseases including PD [66].
EVs-based drug design could be divided into two main groups: the first takes advantage of
the paracrine effect of EVs as part of the “secretome” of cell therapies (e.g., mesenchymal
stem cell (MSC), and the second involves the use of EVs as drug delivery systems to deliver
biomolecules and drugs to recipient cells.

In the first case, the intrinsic therapeutic effect of stem cell-derived EVs is exploited:
the therapeutic effect of MSCs is mainly mediated by soluble factors, among which EVs
play a crucial role [67]. Moreover, the use of MSC-derived EVs is safer than that of MSCs
themselves, which presents the risk of malignant transformation [68]. Several promising
in vitro and in vivo experiments were carried out: neural stem cell (NSC) EVs attenuated
the ROS-induced apoptotic pathway and neuroinflammation in cultured dopaminergic
neuroblastoma neurons [69]. The incubation of dopaminergic neuroblastoma neurons
exposed to 6-OHDA neurotoxin and umbilical cord MSC-EVs increased cell viability and
proliferation, and inhibited apoptosis by inducing autophagy. Furthermore, in vivo, these
EVs reduced the loss of dopaminergic neurons in the substantia nigra and upregulated
dopamine in the striatum in a 6-OHDA-induced PD rat model [70]. EVs derived from
human exfoliated deciduous teeth (SHED) were also shown to suppress 6-OHDA-induced
dopaminergic neurons apoptosis [71]; the same EVs administrated intranasally in a PD rat
model increased tyrosine hydroxylase expression in the substantia nigra and improved gait
parameters [72].

Biological EVs also represent a potential avenue for drug delivery systems; notably,
they can also overcome the drawbacks of synthetic nanovectors: allergic reactions and
off-target accumulation in the liver and spleen. In addition, biological EVs can bypass
the macrophagic system due to the presence of CD47 surface molecule [73,74], are highly
biocompatible and stable, and are less immunogenic than are synthetic nanovectors. Thera-
peutic molecules can be loaded in EVs, both modifying the parent cells before isolation and
altering EVs after isolation. In addition, EVs’ protein surface composition can be modified
to enhance their ability to cross the BBB [48]. Rabies virus glycoprotein (RVG)-modified EVs
loaded with α-syn siRNA were administered into the brain of PD mice; this reduced total
and aggregated α-syn in sustantia nigra dopaminergic neurons [75]. Izco et al. improved the
system by increasing the efficacy of siRNA treatment using short hairpin RNA microcircles,
and obtained a decrease in α-syn aggregation, a reduced loss of dopaminergic neurons, and
an improvement in clinical symptoms in an α-syn PFF intrastriatally injected PD mouse
model [76]. Several small molecules have also been encapsulated into EVs; EVs loaded with
curcumin, an anti-inflammatory compound, were administered intranasally in different
neurological disease models. The results showed an inhibition of inflammation and an
increased apoptosis of IL1β+ microglia [77]. Finally, dopamine, which cannot cross the
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BBB when administered intravenously [78], improved functional recovery in a murine PD
mouse model without any toxicity when loaded in blood EVs [79].

EV-based therapies, in general, have drawn a lot of interest; however, this field is still in
its infancy and many problems have yet to be solved, including the large-scale production
of highly purified EVs, standardized methods of purification and characterization, the
efficiency of drug encapsulation, and knowledge of their mechanisms of action [80].

4. Clinical Translation and Future Perspective

From the above-mentioned results, it is apparent that EVs are valuable candidates
for the identification of biomarkers to allow the early diagnosis of PD and to differentiate
between different tauopathies, as well as having possible usefulness as therapeutics. How-
ever, it must be noted that the huge body of evidence that emerged from the literature of
the last decades has not led to a clinical translation of the proposed biomarkers, with only a
few clinical trials registered (Table 2).

The reasons for the discrepancy between research findings and clinical trials can
possibly be found in the lack of standard procedures related to the laboratory activities
of EV isolation, characterization, and storage that limit the reproducibility and clinical
translation of the procedures. Indeed, several variables are known to impact the down-
stream results of EV analysis, including, for example, storage conditions that can affect
EVs concentration, physical properties, and functionality [81]. The EV scientific commu-
nity, represented by the International Society for Extracellular Vesicles (ISEV), is active in
monitoring the current literature, creating dedicated task forces, and releasing guidelines
and recommendations [25,82–85]. No consensus, though, has been reached on standard
operating procedures in the isolation and characterization of EVs from liquid biopsies,
because of a number of problems including the heterogeneity of EV themselves, the variable
EV sources, and the plethora of techniques used to detect EV related molecules like protein
markers and nucleic acids [86]. Moreover, the increasing knowledge of EV biogenesis and
function led to changes in the design of EV analyses, which can now focus on studying
single vesicles and pure preparations, or can even concentrate on the biomolecular corona
that can be co-isolated with EVs. Technical limitations and a small sample size, together
with a lack of replicates and standard operating procedures, are often the basis of the lack
of translation of the research results to clinics.

From a methodological point of view, difficulties in the quantification of biomarkers
like α-syn in EVs can be encountered in several steps of the analytical procedure. As an
example, some concerns were raised on the specificity of one of the most widely used
neuronal biomarkers, L1CAM [87], although several studies could successfully enrich brain
EVs using this protein, confirming its specificity [88]. In the future it will be essential to
identify and standardize robust biomarkers and methods to identify the exact cellular
origin of EVs. Similarly, criticisms were made for some commercial kits for the preparation
of EV suspensions that might lead to the co-isolation of non-specific molecules [89]. Indeed,
the standardization of isolation and characterization methods will be crucial to improving
the reproducibility of the results and their actual translation to clinics.

Clinically, little information is available on EVs, including their half-life in biological
fluids and whether or not biological fluids can contain levels of disease-associated EVs that
are suitable for the detection range of current technologies [90].
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Table 2. List of the current clinical trials registered on clinicaltrial.gov on the use of EVs as a biomarker or as a treatment for PD.

NCT Number Study Title/Funding Study Type Intervention Single (S) or
Multicenter (M) Locations Link

NCT05320250
Saliva and Extracellular Vesicles

for Parkinson’s
Disease (RaSPiD)

Observational PROCEDURE: Saliva collection M Italy
https:

//clinicaltrials.gov/
study/NCT05320250 *

NCT05871359
Transcranial Direct Current

Stimulation and
Dual Tasks (Tdcs&DT)

Interventional
DEVICE: Transcranial Direct

Current Stimulation
PROCEDURE: Dual task

S Italy
https:

//clinicaltrials.gov/
study/NCT05871359 *

NCT05452655
Intensive Multidisciplinary

Rehabilitation and Biomarkers
in Parkinson’s Disease

Interventional

BEHAVIORAL:
Multidisciplinary Intensive

Rehabilitation vs.
Muscle-stretching and active

mobilization exercises

S Italy
https:

//clinicaltrials.gov/
study/NCT05452655 *

NCT03775447 Fox BioNet Project: ECV-003 Observational PROCEDURE:
Lumbar Puncture M

Canada,
United States of

America

https:
//clinicaltrials.gov/

study/NCT03775447 *

NCT05902065
Effect of a Progressive Treadmill

Training Protocol for
Parkinson’s Disease

Interventional

DEVICE: AVR Treadmill
training with C-Mill vs.

Conventional Treadmill training
with C-Mill

S Italy
https:

//clinicaltrials.gov/
study/NCT05902065 *

NCT04603326 FoxBioNet: ECV (Extracellular
Vesicle) 004 Observational PROCEDURE:

Lumbar Puncture M Canada, United
States of America

https:
//clinicaltrials.gov/

study/NCT04603326 *

NCT05807581

Clinical, Molecular and
Electrophysiological Profiling of
Parkinson’s Disease: the Role of
Non-pharmacological Therapies

Interventional OTHER: physical
activity vs. iTBS M Italy

https:
//clinicaltrials.gov/

study/NCT05807581 *

https://clinicaltrials.gov/study/NCT05320250
https://clinicaltrials.gov/study/NCT05320250
https://clinicaltrials.gov/study/NCT05320250
https://clinicaltrials.gov/study/NCT05871359
https://clinicaltrials.gov/study/NCT05871359
https://clinicaltrials.gov/study/NCT05871359
https://clinicaltrials.gov/study/NCT05452655
https://clinicaltrials.gov/study/NCT05452655
https://clinicaltrials.gov/study/NCT05452655
https://clinicaltrials.gov/study/NCT03775447
https://clinicaltrials.gov/study/NCT03775447
https://clinicaltrials.gov/study/NCT03775447
https://clinicaltrials.gov/study/NCT05902065
https://clinicaltrials.gov/study/NCT05902065
https://clinicaltrials.gov/study/NCT05902065
https://clinicaltrials.gov/study/NCT04603326
https://clinicaltrials.gov/study/NCT04603326
https://clinicaltrials.gov/study/NCT04603326
https://clinicaltrials.gov/study/NCT05807581
https://clinicaltrials.gov/study/NCT05807581
https://clinicaltrials.gov/study/NCT05807581
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Table 2. Cont.

NCT Number Study Title/Funding Study Type Intervention Single (S) or
Multicenter (M) Locations Link

NCT04350177

A Study to Assess Single and
Multiple Doses of IkT-148009 in

Healthy Elderly Participants
and Parkinson’s Patients

Interventional DRUG: IkT-148009
vs. Placebo M United States

of America

https:
//clinicaltrials.gov/

study/NCT04350177 *

NCT01860118
LRRK2 and Other Novel

Exosome Proteins in
Parkinson’s Disease

Observational S United States
of America

https:
//clinicaltrials.gov/

study/NCT01860118 *

NCT03415984

Prevalence of Age Related
Macular Degeneration (ARMD)

in Parkinson’s Patients and
Assesment of the Role of
L-DOPA (AMD-PARK)

Observational

DIAGNOSTIC_TEST: Color
retinograph;

Optical coherence
tomograph;

Fundus autofluorescence
imaging

S France
https:

//clinicaltrials.gov/
study/NCT03415984 *

NCT05815524

Physical Activity in Patients
With Parkinson’s Disease: a

“Disease Modifying”
Intervention?

Interventional OTHER: Physical activity
training S Italy

https:
//clinicaltrials.gov/

study/NCT05815524 *

NCT05109364 Terazosin and Parkinson’s
Disease Extension Study Interventional DRUG: Terazosin S United States

of America

https:
//clinicaltrials.gov/

study/NCT05109364 *

* accessed on 30 October 2023.

https://clinicaltrials.gov/study/NCT04350177
https://clinicaltrials.gov/study/NCT04350177
https://clinicaltrials.gov/study/NCT04350177
https://clinicaltrials.gov/study/NCT01860118
https://clinicaltrials.gov/study/NCT01860118
https://clinicaltrials.gov/study/NCT01860118
https://clinicaltrials.gov/study/NCT03415984
https://clinicaltrials.gov/study/NCT03415984
https://clinicaltrials.gov/study/NCT03415984
https://clinicaltrials.gov/study/NCT05815524
https://clinicaltrials.gov/study/NCT05815524
https://clinicaltrials.gov/study/NCT05815524
https://clinicaltrials.gov/study/NCT05109364
https://clinicaltrials.gov/study/NCT05109364
https://clinicaltrials.gov/study/NCT05109364
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Among the obstacles to the validation of specific PD biomarkers, the selection of the
analyzed cohort of subjects and improvements in clinical study design could significantly
improve the translational ability of the studies in this field. As highlighted in Table 1, most
works cited in the present review were performed in very small groups of subjects, which is
reasonable for pilot studies demonstrating a proof of concept, but were not further validated
on larger cohorts. Studies performed in larger groups of patients in different disease
stages will nevertheless be needed to validate the findings and to better evaluate potential
correlations with motor impairment and disease progression [51], avoiding misleading
conclusions. Additionally, authors developing new techniques and assays should be alerted
about the need for different control groups in their studies when designing a trial. Indeed,
pilot studies are usually performed on disease cohorts, PD in this case, which are compared
to healthy sex- and age-matched groups, but ROC results can be an overestimate of the real
potential of the diagnostic assay due to the lack of an experimental group that shares the
comorbidities of pwPD.

Finally, it has to be noted that the tremendous potential of new techniques and methods
should be always cautiously assessed in single-center studies. The lack of EV standardiza-
tion for isolation and characterization methods limits the reproducibility of results, as was
recently reported [84]. For this reason, data should be validated with multicenter studies or
studies that take advantage of biobanking procedures as they rely on standard operating
procedures, whereas single-center studies mainly rely on a few operators and one single
laboratory.

5. Conclusions

Taken together, the data summarized in the present review lead us to two main
conclusions: (i) EVs have remarkable potential in PD diagnosis, prognosis and treatment,
specifically because of their multifaceted nature and their ability to co-transport multiple
biomarkers providing a snapshot of PD progression; (ii) the path towards clinical validation
is still tortuous as some pieces of the puzzle (representing a knowledge gap) as well as
standardized highly sensitive techniques (representing a technological gap) are still missing.
Although both knowledge and technological gaps might require quite a lot of time and
efforts to be fulfilled, in our opinion, three main solutions could significantly impact the
field in the near future: the accurate selection of a cohort; the design of multicenter studies;
the standardization of methods. If the latter cannot be achieved, detailed reporting could
be significantly beneficial for translation to clinics.
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