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Abstract: Since its initial discovery in 1994, the adipokine leptin has received extensive interest as
an important satiety factor and regulator of energy expenditure. Although produced primarily by
white adipocytes, leptin can be synthesized by numerous tissues including those comprising the
cardiovascular system. Cardiovascular function can thus be affected by locally produced leptin
via an autocrine or paracrine manner but also by circulating leptin. Leptin exerts its effects by
binding to and activating specific receptors, termed ObRs or LepRs, belonging to the Class I cytokine
family of receptors of which six isoforms have been identified. Although all ObRs have identical
intracellular domains, they differ substantially in length in terms of their extracellular domains, which
determine their ability to activate cell signalling pathways. The most important of these receptors in
terms of biological effects of leptin is the so-called long form (ObRb), which possesses the complete
intracellular domain linked to full cell signalling processes. The heart has been shown to express
ObRb as well as to produce leptin. Leptin exerts numerous cardiac effects including the development
of hypertrophy likely through a number of cell signaling processes as well as mitochondrial dynamics,
thus demonstrating substantial complex underlying mechanisms. Here, we discuss mechanisms that
potentially mediate leptin-induced cardiac pathological hypertrophy, which may contribute to the
development of heart failure.

Keywords: leptin; cardiac hypertrophy and remodelling; heart failure; intracellular signalling;
autophagy; mitochondrial dynamics

1. Introduction

An adipocyte-derived satiety factor was identified by the Jeffrey Friedman research
group using obese (ob/ob) mice in which the obesity is caused by a mutation in the leptin
gene, resulting in complete leptin deficiency. This finding in 1994 [1] heralded a new era
of research now generally referred to as adipobiology. This factor, named leptin (from
the Greek word leptos, meaning thin), is a 16 kDa protein synthesized primarily, but not
exclusively, by white adipocytes and possesses a principal function to supress appetite by its
direct actions on the hypothalamus [2,3]. Thus, leptin was initially considered as a potential
effective treatment for obesity via its satiety effects. Clinical trials aimed at reducing
obesity with leptin administration have proven to be disappointing overall, however,
likely owing to the fact that obese individuals demonstrate elevated circulating leptin
levels (hyperleptinemia) due to increased adiposity and the presence of leptin resistance in
these individuals [3]. Indeed, plasma leptin concentrations have been shown to be closely
correlated to the degree of adiposity [4]. Since the discovery of leptin, a large number of
other adipocyte-derived proteins have been identified, generally referred to as adipokines,
possessing a myriad of biological effects [5,6]. These are summarized in Table 1, although
prominent among these is adiponectin, which, in a general sense, exerts effects opposite
to those seen with leptin [5,7]. Although leptin unquestionably plays important roles in a
number of cardiac pathologies such as myocardial ischemia/infarction, in this review, we
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will restrict our discussion to leptin, the most studied member of the adipokine family, and
its effects on the heart, which are likely of particular importance to our understanding of
pathological cardiac hypertrophy and remodelling per se.

Table 1. List of various major and minor adipokines secreted by adipose and other tissues.

Adipokine Selected Sites of Synthesis

Leptin Adipocytes, cardiomyocyte, vascular endothelial cells
Adiponectin Adipocytes, skeletal muscle, cardiomyocytes
Apelin Adipocytes, cardiomyocyte, pancreas, stomach
Chemerin Adipocytes, liver, lung, placenta
Resistin Adipocytes, blood monocytes, liver
Visfatin Adipocytes, lymphocytes, macrophages
Omentin Adipocytes (primarily visceral)
Vaspin Adipocytes, hypothalamus, stomach, liver, pancreas
Progranulin Adipocytes, CNS
Interleukin-6 Adipocytes, t cells, macrophages, fibroblasts
MCP-1 Adipocytes, macrophages, epithelial cells, endothelial cells
PAI-1 Adipocytes, vascular endothelium, macrophages, cardiomyocyte
RBP-4 Adipocytes, macrophages, liver
TNFα Adipocytes, macrophages, endothelial cells, cardiomyocytes
CTRP-4 Adipocytes, brain, skeletal muscle

Table summarizes adipokines thus far identified and summarizes selected sites of synthesis although numerous
additional sources for individual adipokines have been reported. CNS is the central nervous system; MCP-1 is
monocyte chemotactic protein-1; PAI-1 is plasminogen activator inhibitor-1; RBP-4 is retinol binding protein-4;
TNFα is tumor necrosis factor-alpha; CTRP-4 is C1q/TNF-related protein-4.

Cardiac hypertrophy is generally considered as an adaptive process in response to
various forms of myocardial stressors such as ischemia/infarction, pressure overload, as
well as chemical-induced stress by hormones, pathogens, and many other factors [8]. The
cardiac hypertrophic response to these stressors is referred to as pathological hypertrophy,
resulting in myocardial remodelling associated with cardiomyocyte hypertrophy and car-
diac fibrosis that can eventually evolve into heart failure [8,9]. Pathological cardiomyocyte
hypertrophy represents the result of a complex series of events including alterations in sig-
nal transduction mechanisms as well as upregulation of pro-hypertrophic genes in response
to diverse stimuli [8]. While some overlap between the two types of hypertrophy exists, in
general, pathological hypertrophy is distinct from physiological hypertrophy, which, as
the term implies, is the result of physiological stimuli such as chronic exercise, does not
include extracellular remodelling such as fibrosis, and can be associated with improved
cardiac function [9,10]. The possible contribution of leptin to pathological hypertrophy is
the main focus of this review.

2. Leptin Receptors and Underlying Cell Signalling Processes: General Perspectives

From a general perspective, leptin exerts its biological effects through binding to
the leptin receptor or ObR (also referred to as LepR although the ObR designation will
be used throughout this text as a matter of consistency), a Type I cytokine receptor of
which there are six isoforms produced by alternative splicing [11–13]. As illustrated in
Figure 1, all ObRs have identical extracellular domains but differ substantially in terms
of intracellular domains, which account for cell signalling activation. Thus, the most
important of these receptors in terms of biological effects of leptin is the long form (ObRb),
which possesses the complete intracellular domain of 302 amino acids, which is linked
to full cell signalling processes. In contrast, the function of the short form of the receptor
(ObRa) is likely to facilitate the transport of leptin across the blood–brain barrier although
this is not known with certainty. Other short forms of ObR (ObRc, ObRd, ObRf) possess
intracellular domains of various lengths ranging from 32 to 40 amino acids, thus exerting
limited biological responses. A soluble ObR (ObRe) has also been identified, which lacks
an intracellular domain, is not anchored to the cell membrane, and is secreted into the
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circulation. ObRe likely participates in leptin transport and thus can regulate plasma
leptin concentrations [14]. ObRs are expressed ubiquitously in a variety of tissues, which
accounts for the multifaceted nature of the protein. The architecture of ObRs has recently
been reported and suggests a complex two-step mechanism for ObR activation in which
leptin first binds to the receptor via the high affinity site cytokine-binding homology
region 2, thus forming a 1:1 complex followed by interaction between leptin and the ObR
Ig domain, which results in the formation of the site 3 interface, thereby dimerizing to form
a 2:2 complex, resulting in cell signalling activation [15].
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intracellular N-terminal domain expresses a BOX-1 motif, which is critical for JAK-2 binding. The 
OBRb receptor is the only long isoform to also express a BOX-2 motif, which facilitates the activation 
of the JAK2/STAT transduction pathway. Moreover, ObRb contains 3 tyrosine residues (Tyr986, 
Tyr1076, and Tyr1141) whose phosphorylation enables STAT3/STAT5 activation. The short isoforms 
ObRa,c,d,f have only one intracellular domain (Box 1) and therefore limited signalling capacity. 
Created with PowerPoint software (Microsoft Office 365). 
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of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway, 
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Figure 1. Leptin receptor subtypes. Six different isoforms of ObR have been identified, denoted as
ObRa, ObRb, ObRc, ObRd, ObRe, and ObRf. Each receptor subtype shares two cytokine-binding
homology regions (CHR1 and CHR2) with CHR2 representing the main binding site for leptin, an
IgG-like domain, and two fibronectin type 3 domains (FN3) within its C-terminal. All isoforms
have transmembrane regions except the ObRe receptor, which functions as a soluble leptin binding
receptor not anchored to the cell membrane and which binds circulating leptin, thereby regulating
leptin bioavailability and functionality but is unable to transduce any downstream signalling. The
intracellular N-terminal domain expresses a BOX-1 motif, which is critical for JAK-2 binding. The
OBRb receptor is the only long isoform to also express a BOX-2 motif, which facilitates the activation
of the JAK2/STAT transduction pathway. Moreover, ObRb contains 3 tyrosine residues (Tyr986,
Tyr1076, and Tyr1141) whose phosphorylation enables STAT3/STAT5 activation. The short isoforms
ObRa,c,d,f have only one intracellular domain (Box 1) and therefore limited signalling capacity.
Created with PowerPoint software (Microsoft Office 365).

From a general perspective, binding of leptin to ObRb, and to a lesser degree some
short forms of the ObR, results in the activation of various intracellular signalling processes,
producing a myriad of biological responses in a variety of tissues including the heart, as
discussed below. Among the most recognized of these responses is the activation of the
Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway, which
is well established as an important mediator of the biological effects of numerous cytokines
and growth factors [16]. Four JAK isoforms have been identified whereas seven STAT
isoforms exist, which act as transcriptional regulators. Thus, JAK/STAT activation and the
resultant effects on gene expression may be important determinants of cardiac patholo-
gies, particularly those involving hypertrophic responses such as myocardial remodelling
and heart failure (see below). A summary of leptin-dependent JAK/STAT activation is
illustrated in Figure 2.
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Figure 2. Activation of the JAK/STAT pathway by leptin. Binding of leptin to ObRb on target cells
results in receptor dimerization, which results in the ability of associated JAKs to phosphorylate one
another. These trans-phosphorylated JAKs can now phosphorylate a number of targets including
STATs, which can now enter the nucleus and regulate the transcription of target genes. Created with
BioRender.com.

Other leptin-activated cell signalling processes have also been identified in various
tissues and cell types [13]. Among these are various protein kinases including phospho-
inositide 3-kinase (PI3K), protein kinase B and C (PKB, PKC), extracellular-signal-regulated
kinase (ERK), mitogen-activated protein kinases (MAPKs), as well as the p115Rho guanine
nucleotide exchange factor-RhoA/Rho-associated, coiled-coil-containing protein kinase-
dependent mitogen-activated protein kinase (RhoA/ROCK) pathway. Those pathways,
which have been shown to mediate cardiac actions of leptin, will be discussed in greater
detail below.

3. ObR Antagonists

The elucidation of molecular structures of ObRs and mechanisms of ObR activation
has led to the development of relatively specific receptor antagonists, which have aided
in the development of our understanding of the role of leptin in physiological and patho-
physiological processes. Various forms of ObR antagonists have been developed including
leptin mutants as well as short-chain peptides, which consist of parts of the original leptin
sequence. In general, both the leptin mutants as well as short-chain peptides can bind
to ObR but do not have the ability to activate the receptor. Pegylated forms of these an-
tagonists have also been developed, which improve in vivo pharmacokinetic properties,
resulting in increased efficacy compared to non-pegylated antagonists. In addition, anti-
bodies to ObR have also been developed but these possess some limitations particularly
as potential therapeutic agents due to poor in vivo absorption following administration.
Thus, substantial progress has been achieved in developing effective ObR antagonists with
extensive ongoing research in this field. For more detailed discussion of the development
of ObR antagonists, and modulators in general, various reviews can be recommended for
interested readers [17–19].

BioRender.com
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4. Leptin and Cardiovascular Disease in General

Leptin likely participates in the development of cardiovascular diseases through both
indirect and direct processes. With respect to the former, the metabolic effects of leptin
are well established and include proinflammatory and atherogenic effects [20]. Although
hyperleptinemia is a close indicator of increased adiposity and obesity, which are risk
factors for the development of cardiovascular disease, there still exists some uncertainty as
to a cause-and-effect relationship between leptin and the development of cardiovascular
pathologies. This includes the potential direct effect of leptin on cardiac pathology, as
discussed below. Nonetheless, leptin has been proposed as a potential link between obesity
and the development of cardiovascular disease by modulating a number of components
of the cardiovascular system such as the heart and vasculature [21,22]. With respect
to the latter, a number of studies have shown that hyperleptinemia is associated with
endothelial dysfunction, particularly under conditions of obesity [23,24]. ObRb- and
leptin-induced endothelial dysfunction have also been identified in the coronary arteries
of various species particularly at high concentrations of the protein synonymous with
hyperleptinemia [25]. Despite the ability of leptin to produce endothelial dysfunction, this
study failed to demonstrate a vasoconstricting effect of the peptide [25]. Of particular
relevance to this review, a number of clinical studies have shown a close relationship
between hyperleptinemia and the magnitude of left ventricular hypertrophy, as well as
being discussed in Section 5.1.

5. Leptin and Cardiac Function and Dysfunction

The direct effects of leptin on cardiac function can be categorized into two specific
areas. The first involves acute effects of leptin possibly representing physiological responses
but which can also contribute to cardiac pathology, as noted below. The second represents
chronic responses to leptin exposure resulting in pathological changes such as cardiomy-
ocyte hypertrophy, thus contributing to the development of cardiac pathology including
heart failure. The ability of leptin to directly affect cardiac performance is supported in
theory by the fact that both leptin and its receptors are present in cardiac tissue [26] as
well as the fact that 60 min exposure to leptin can directly depress contractile function
in isolated mouse ventricular myocytes through a mechanism involving the endothelin-1
receptor and NADPH oxidase activation [27]. Moreover, as will be discussed in greater
detail in Section 6, many of the cell signalling components noted above and others that are
linked to ObR activation are expressed in cardiac cells.

Leptin has been shown to acutely modulate energy metabolism in the heart, particu-
larly that related to glucose and fatty acid oxidation. For example, 60 min treatment with
leptin at a concentration of 60 ng/mL increased fatty acid oxidation in isolated working
rat hearts by approximately 60% although glucose oxidation rates were unaffected [28].
Importantly, the increased fatty acid oxidation rates were not associated with increased
cardiac work although oxygen consumption increased by 30% whereas cardiac efficiency
was decreased by 42%. The underlying mechanism was found to be unrelated to AMP
activated protein kinase (AMPK) activation as that seen in skeletal muscle, highlighting
the fact that the metabolic effects of leptin may be governed to a large degree by tissue
specificity as well as other factors [29]. Using a similar isolated working heart model, other
investigators demonstrated that leptin-induced increased fatty acid oxidation was depen-
dent on STAT3-nitric oxide-p38 MAPK activation and was also associated with depressed
cardiac function [30]. Studies using an HL-1 cardiomyocyte line similarly demonstrated
increased fatty acid oxidation and uptake although the former effect only occurred with
short-term, i.e., one-hour, exposure to leptin whereas fatty acid uptake by these cells was
maintained for the 24 h maximum treatment period [31]. In contrast to increased cardiac
fatty acid oxidation induced by direct effects of leptin, glucose oxidation was found to be
unaffected following leptin administration in isolated working rat hearts [28]. The stimula-
tion in cardiac fatty acid oxidation by leptin was suggested to be dependent on enhanced
fatty acid translocase (FAT/CD36)-mediated fatty acid uptake, resulting in increased fatty
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acid oxidation [32]. Taken together, these findings suggest that leptin may contribute to
reduce cardiac lipotoxicity via its ability to stimulate fatty acid oxidation. Indeed, enhanced
cardiac accumulation in db/db ObR-deficient mice was prevented in these mice in which
cardiac ObR was specifically re-expressed in cardiomyocytes [33]. This result is similar
to that seen in a mouse model of lipotoxic cardiomyopathy produced by cardiomyocyte-
specific overexpression of the acyl CoA synthase gene in which hyperleptinemic conditions
reduced the degree of lipotoxicity [34]. Overall, it appears that leptin may be an important
regulator of cardiac energy metabolism particularly through its ability to regulate fatty acid
oxidation and thus potentially functions as an endogenous lipotoxicity inhibitory factor.

5.1. Leptin and Cardiac Hypertrophy

Evidence from both clinical and experimental studies strongly suggests a link between
the development of left ventricular hypertrophy and leptin. Thus, a number of clinical stud-
ies reported a close positive relationship between left ventricular hypertrophy and plasma
leptin levels [35,36], although such studies do not prove a cause-and-effect relationship.
Moreover, high plasma leptin concentrations have been used as predictors of increased
severity of heart disease including heart failure [37]; however, other reports showed an
inverse relationship between plasma leptin levels and left ventricular mass [38–40].

More convincing results supporting a role of leptin come from experimental stud-
ies. In this regard, the majority of studies have shown a hypertrophic or cardiomyocyte
hyperplasia response following leptin administration, thus demonstrating a direct hyper-
trophic effect of leptin [41–49]. Induction of myocardial overexpression during ischemia
and reperfusion has been shown to enhance myocardial remodelling, resulting in increased
myocardial dysfunction [50]. Moreover, leptin has been shown to contribute to myocardial
remodelling by stimulating myocardial fibrosis, thus further contributing to the develop-
ment of heart failure [50,51].

Interestingly, leptin has also been proposed to function as an autocrine factor via its
ability to mediate the pro-hypertrophic effect of both angiotensin II and endothelin-1 [52].
Supporting this concept, at least with respect to angiotensin II, a recent study showed that
the antihypertrophic effect of the angiotensin receptor blocker telmisartan in hypertensive
rats was due to inhibition of the autocrine function of leptin [53]. As leptin is produced
by adipocytes as well as by cardiac tissue, it therefore serves as both an autocrine and
paracrine modulator of cardiac function, contributing to the complexity of its underlying
actions. Indeed, as recently reviewed, autocrine regulation of cardiac remodelling reflects
the contribution of a plethora of cellular processes [54]. Thus, as summarized in Figure 3,
leptin-induced cardiac changes can reflect locally derived leptin synthesized within the
heart in either a paracrine or autocrine process or circulating adipocyte-derived leptin.

5.2. Proposed Cardiac Beneficial Effects of Leptin

Although the major focus of the present review involves the underlying mechanisms
contributing to the pro-hypertrophic and pro-remodelling effects of leptin, it should be
noted that various reports suggest a beneficial effect of the protein in terms of reducing
myocardial hypertrophy and remodelling. These studies generally involved genetic mouse
models expressing either leptin (ob/ob mouse) or leptin receptor (db/db mouse) deletions.
Indeed, studies using these animal models as well as animals with cardiac-specific ObR
deletions have generally demonstrated enhanced remodelling and left ventricular dysfunc-
tion, thus suggesting a beneficial effect of endogenous leptin [55–57]. The reasons for such
discrepancies are uncertain but may involve multiple factors including an experimental
model, chronic versus acute experimentation, animal species, as well as other factors. It is
possible that an intact leptin system may serve as a cardioprotective mechanism, which
would account for the deleterious responses seen in ob/ob or db/db mice. However, exces-
sive leptin production such as that seen in severe obesity conditions would contribute to
the cardiac hypertrophic and remodelling processes. Clearly, further work is required to
delineate the precise effect and role of leptin in myocardial hypertrophy in various exper-
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imental models including those in which leptin or leptin signalling is modified through
genetic manipulation.
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6. Intracellular Signalling Pathways Underlying the Pro-Hypertrophic Effects of Leptin

Based on a survey of existing literature, there is substantial evidence that the cardiac
hypertrophic effects of leptin are mediated through a multiplicity of potential cellular
mechanisms involving alterations in cell signalling, induction of autophagy, as well as
changes in mitochondrial dynamics, as illustrated in Figure 4. This diversity of effects may
reflect the mechanistic nature underlying hypertrophy produced by leptin or it may be
determined using an experimental model, animal species, or leptin concentration and dose
used in a particular study.
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6.1. MAPK Activation

The first demonstration of a hypertrophic effect of leptin originated from the authors’
laboratory and showed that 50 ng/mL of leptin induced a potent hypertrophic response
when added to cultured neonatal rat ventricular myocytes [41]. We initially focused
on the potential role of the MAPK system in view of extensive evidence from various
laboratories showing that MAPK, particularly p38 MAPK, activation represents a major cell
signalling pathway for induction of cardiac hypertrophy [58–60] and it has been proposed
that p38 MAPK inhibition represents a potentially effective approach towards mitigating
heart failure [61]. We showed that both phospho-p38 and phospho-p44/p42 MAPKs were
rapidly, although transiently, increased following leptin addition with maximum effects
seen 5 and 10 min after leptin addition. Although both phospho-p38 and phospho-p44/p42
MAPKs were elevated, only the p38 MAPK inhibitor SB203580 completely abrogated the
hypertrophic response whereas the p44/42 MAPK inhibitor PD98059 was without an
effect [41]. This finding is in agreement with our report of leptin-induced RhoA/ROCK
resulting in p38 nuclear translocation as discussed in Section 6.3.

6.2. Endothelin/ROS Pathway Upregulation

Another potential pathway underlying the hypertrophic effects of leptin and using
a similar experimental model as described above stem from a study by Xu et al. [42]
who proposed that the hypertrophic effect of leptin was due to upregulation of reactive
oxygen species (ROS) and ET-1 levels in myocytes exposed to leptin. In that study, the
hypertrophic effects of leptin (1 to 1000 ng/mL) administered for four hours to neonatal
rat ventricular myocytes were attenuated by the endothelin receptor A (ETA) antagonist
ABT-627 as well as the antioxidant catalase [42]. As the ETA antagonist attenuated both the
hypertrophic response as well as the increased ROS production following leptin addition,
the authors proposed that the hypertrophic response to leptin was dependent on ETA
receptor activation secondary to ET-1 upregulation resulting in increased ROS production
producing the subsequent hypertrophic response [42].

6.3. RhoA/ROCK Pathway

The RhoA/ROCK pathway is important in the regulation of a large number of cellular
functions related to both physiology and pathophysiology of numerous organs including
constituents of the cardiovascular system. RhoA is a key member of the Rho GTPase
family, which in turn activates its downstream effector ROCK (either ROCK1 or ROCK2)
belonging to the family of serine/threonine kinases, which can phosphorylate a large
number of substrates that may contribute to the myocardial remodelling process. Thus, the
RhoA/ROCK system plays an important role in blood pressure regulation as well as having
a direct influence on various forms of cardiac pathologies including myocardial remodelling,
which can contribute to heart failure [62,63]. As recently reviewed, pharmacological
inhibition of ROCK or genetic deletion attenuates the degree of myocardial remodelling in
various experimental models, thus adding credence to the concept of RhoA/ROCK activity
as a contributor to the cardiac hypertrophic and remodelling processes [63].

Our laboratory has used a number of experimental approaches to clearly demonstrate
a key role of the RhoA/ROCK pathway in mediating the hypertrophic effects of leptin. For
example, we have shown using neonatal rat ventricular myocytes that leptin produced
a marked activation of RhoA in these cells, which was blocked by an OBR antibody [64].
Moreover, the hypertrophic effect was similarly blocked by the RhoA and ROCK inhibitors
C3 exoenzyme and Y-27632, respectively [64]. We attributed the ROCK-dependent hyper-
trophic effect of leptin to increased polymerization of actin, as reflected by a decrease in the
G/F-actin ratio, which occurs as a result of LIM kinase-dependent cofilin phosphorylation,
as illustrated in Figure 5 [64]. Our studies also suggested that intact caveolae, which are
a subset of lipid rafts and characterized by flask-shaped invaginations and are rich in
sphingolipids, cholesterol, and various caveolin proteins, are critical for RhoA/ROCK-
dependent leptin-induced cardiomyocyte hypertrophy [65]. Leptin profoundly increased
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caveolae expression in cardiomyocytes as determined using molecular analyses and elec-
tron microscopy [65]. Importantly, it appears that OBR is co-localized with caveolae
whereas caveolae disruption with the cholesterol-chelating agent methyl-β-cyclodextrin
(MβCD) completely prevented the pro-hypertrophic effect of leptin [65]. Furthermore,
and of relevance to the previous section, the pro-hypertrophic effects of leptin in NRVMs
were associated with a selective translocation of p38 MAPK into nuclei, which was RhoA-
and caveolae-dependent as evidenced by significant attenuation of p38 MAPK nuclear
translocation by MβCD as well as pharmacological inhibition of RhoA and ROCK [65].
It is also important to note that MAPK involvement in leptin-induced hypertrophy was
found to be restricted to p38-dependent effects. Thus, although the ERK1/2 import into
nuclei was also increased following leptin addition, this was unaffected by either caveolae
disruption or RhoA or ROCK inhibition, suggesting a dissociation between leptin-induced
hypertrophy and ERK1/2 activation [65]. A similar observation was observed in a study
showing that the vascular hypertrophic effect of leptin was inhibited only by a p38 inhibitor
but not by other MAPK inhibitors, reinforcing the concept of p38 MAPK involvement in
the hypertrophic response to leptin [66].
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Although the precise downstream mechanism for RhoA/ROCK-dependent leptin-
induced cardiomyocyte hypertrophy is not fully understood, it appears that this may occur
via a multiplicity of mechanisms. Among these is activation of the kinase mammalian target
of rapamycin or mTOR and the phosphorylation of its major target p70(S6K), which in
turn would result in the activation of GATA4, a major transcriptional factor involved in the
hypertrophic program [46]. Related to this finding of GATA4 activation is the observation of
a RhoA/ROCK-dependent stimulation of the calcineurin pro-hypertrophic factor following
leptin administration. Calcineurin is a serine/threonine protein phosphatase, which plays
a key role in the hypertrophic program. It is activated by increased intracellular calcium
levels and the formation of a calcium–calmodulin complex, which results in the dephospho-
rylation of the transcriptional factor Nuclear Factor of Activated T cells (NFAT), resulting
in NFAT, and more specifically the NFAT3 isoform, translocation to the nucleus where it
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interacts with various transcriptional factors including GATA4 to promote the hypertrophic
response [67]. We have reported that leptin-induced Rhoa/ROCK activation results in cal-
cineurin activation and the resultant NFAT translocation into nuclei in cultured neonatal rat
ventricular myocytes [68]. Surprisingly, the RhoA/ROCK-dependent calcineurin activation
occurred via both calcium-dependent and calcium-independent mechanisms.

It is interesting to also note that ginseng, a Traditional Chinese Medication demon-
strating excellent antihypertrophic effects as well as an ability to attenuate heart failure in
animal models [69], can effectively inhibit leptin-induced hypertrophy in neonatal cultured
rat ventricular myocytes [45]. This appears to reflect the ability of ginseng to prevent the
leptin-induced activation of Rho guanine nucleotide exchange factor 1 (p115RhoGEF), a
GTPase activating protein, resulting in reduced ROCK activation and p38 MAPK translo-
cation into nuclei [45]. A summary of leptin-induced RhoA/ROCK-dependent processes
potentially contributing to the pro-hypertrophic effect of leptin is illustrated in Figure 5.

It is also of relevance to point out as a corollary that leptin has been shown to produce
cytoskeleton remodelling in nucleus pulposus cells as well as in chondrocytes through the
RhoA/ROCK pathway [70,71]. Although unrelated directly to the cardiovascular system,
these findings may be of importance in understanding the mechanisms underlying obesity-
associated lumbar disc degeneration as well as the development of osteoarthritis [70,71].
Moreover, it suggests that leptin-induced RhoA/ROCK activation likely represents a
multiorgan and multitissue phenomenon.

6.4. Upregulation of Cardiomyocyte Leptin Production by ET-1 and Angiotensin II May Mediate
the Pro-Hypertrophic Effects of Both Factors through Activation of NF-κB and p38 MAPK

As already alluded to, both angiotensin II and ET-1 can significantly increase cardiac
leptin production. This increase in leptin production likely contributes, at least in part,
to the hypertrophic effects of both angiotensin II and ET-1 in an autocrine manner and
paracrine manner. The ultimate hypertrophic response is likely dependent on the activa-
tion of the transcriptional factor kappa-light-chain-enhancer of activated B cells (NF-κB),
which in turn activates p38 MAPK. This concept is based on various lines of evidence.
First, the hypertrophic effects of both angiotensin II and endothelin-1 were associated
with increased leptin secretion and gene expression in neonatal rat ventricular myocytes
concomitant with significantly increased NF-κB phosphorylation, increased translocation
of NF-κB into nuclei, as well as increased NF-κB-DNA binding activity following addition
of angiotensin II or endothelin-1 [72]. Secondly, inhibition of NF-κB significantly blunted
both the angiotensin II- and endothelin-1-induced p38 MAPK activation whereas, thirdly,
inhibition of p38 MAPK blocked both angiotensin II- and endothelin-1-induced elevation
in leptin production.

6.5. Leptin and FTO

Another possible mechanism by which leptin could stimulate the hypertrophy pro-
gram is through the activation of the fat mass and obesity-associated (FTO) gene, which has
been shown to be closely related to obesity in experimental animals. Specifically, upregula-
tion of the FTO protein, which functions as an N6-methyladenosine (m6A) demethylase, in
mice is associated with body weight gain whereas its deletion produces weight loss [73,74].
While the precise mechanisms underlying the ability of FTO to modulate body weight are
not known, a substantial contribution likely reflects the ability of FTO to regulate energy
expenditure via the hypothalamus [75].

Although the initial primary role identified for FTO is related to energy expenditure
and adiposity, recent evidence suggests that FTO is likely involved in various cardiovascu-
lar pathologies most likely secondary to changes in m6A methylation, the primary target of
FTO in the nucleus and an important contributor to cardiac biology [76,77]. With respect to
myocardial remodelling, current evidence obtained from both animal and clinical studies
suggests that FTO is downregulated in the failing heart (as well as hypoxic cardiomyocytes)
whereas upregulating FTO levels improves contractile function [78,79]. On the other hand,
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inhibition of FTO has been shown to reduce cardiomyopathy associated with a four-week
high-fat-diet-induced hyperlipidemia in rats [80]. Thus, FTO appears to function as an en-
dogenous cardioprotective or cardiodeleterious factor during myocardial hypertrophy and
remodelling, which may be dependent on the mode of insult and potentially other factors.
While there is a paucity of data documenting the potential role of FTO in leptin-induced
cardiomyocyte hypertrophy, work from our laboratory suggests that FTO may function
as a contributing factor to leptin-induced hypertrophy, at least in cultured ventricular
myocytes. In these studies, leptin addition to neonatal rat ventricular myocytes resulted
in a cardiomyocyte hypertrophic response, which was associated with FTO upregulation
in terms of both gene and protein expression [48]. Importantly, the hypertrophic response
to leptin was abrogated when FTO was knocked down using small interfering RNA [48].
Also interesting was the finding that FTO upregulation was seen only with leptin as the
pro-hypertrophic factor with no effect on FTO seen when endothelin-1 or angiotensin II
were used as the pro-hypertrophic factors, suggesting that any contribution of FTO in the
hypertrophic process is selective for leptin as the hypertrophic stimulus. It remains to be
determined whether FTO regulates in any way the hypertrophic and remodelling processes
using in vivo models of heart failure.

6.6. Potential Role of the JAK/STAT Pathway

As noted earlier in this review, the JAK/STAT pathway contributes to biological re-
sponses in numerous cell types and is a primary cell signalling response following cytokine
receptor activation [16]. This is illustrated in Figure 2 and demonstrates the ability of leptin
in particular to modify gene expression, which would be of relevance to the development
of cardiac hypertrophy. With respect to this, it is unclear as to whether JAK/STAT activity
contributes to or limits hypertrophic responses to stimuli. Indeed, it has been shown
that the hypertrophic response to doxorubicin is enhanced in STAT3-overexpressing mice
whereas cardiotoxicity is attenuated with improved survival rates in these animals [81]. A
number of studies have shown that inhibition of cardiac hypertrophy and remodelling in
different experimental models is associated with inhibition of JAK2/STAT3 activity [82–84].
Conversely, cardiac-specific genetic deletion of JAK2 in mice produces severe hypertrophy
and dilated cardiomyopathy, which were associated with left ventricular dysfunction [85],
a finding in agreement with an earlier study showing a remodelling and heart failure
phenotype in mice with cardiac-specific STAT3 knockout [86]. Moreover, cardiac-specific
deletion of the myocardial suppressor of cytokine signaling-3 (SOCS-3), the endogenous
feedback inhibitor of STAT3, results in reduced myocardial remodelling and severity of
heart failure in the 14-day post-infarcted mouse heart [87].

Based on the preceding discussion, it is apparent that the precise role of the JAK/STAT
pathway in the myocardial remodelling and hypertrophic process deserves further studies
but it appears the nature of its contribution may reflect the nature of the hypertrophic
stimulus. With respect to leptin, however, there is a paucity of data linking leptin-induced
cardiac hypertrophy to JAK/STAT activation. In an earlier study, the ability to induce the
hypertrophic response in cultured neonatal rat ventricular myocytes exposed to a 48 h leptin
administration was associated with STAT3 activation as demonstrated by increased STAT3
phosphorylation and its increased nuclear translocation [85]. Moreover, the hypertrophic
response to leptin in these cells was abrogated by the JAK2 inhibitor AG-490 [88]. A
dissociation between ObR activation and cardiac hypertrophy as a result of high-fat-diet-
induced obesity in mice or in db/db obese mice has also previously been shown. In
that report, hypertrophy was evident in obese mice including those with ObR mutations
although STAT3 activation was reduced [89]. The ability to demonstrate hypertrophy in
mice with inactivated ObR despite reduced ObR-dependent signalling suggested other
underlying mechanisms of hypertrophy unrelated to leptin or STAT3, at least in these
obesity models [89].
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7. Autophagy as a Target for Leptin-Induced Cardiac Hypertrophy

An area of research that has received substantial attention in the past few years is
the role of autophagy, also referred to as self-digestion, as a mediator of cardiac hypertro-
phy and remodelling. The catabolic function of autophagy can be either physiological or
adaptive as well as pathological or maladaptive, the latter being activated by cardiotoxic
pro-hypertrophic factors such as oxidative stressors and cytokines. The regulation of au-
tophagy is exceedingly complex but the system is under substantial regulation by a host
of intracellular signalling factors [90,91]. By removing unnecessary cellular degradation
products, autophagy is considered essential for cell and organism survival and has been
shown to protect mitochondria during the development of heart failure [92]. However,
maladaptive autophagy has been shown to be associated with various forms of cardiac
pathologies including the development of myocardial remodelling and heart failure and
therefore modulation of autophagy has been proposed as a potential approach towards
mitigating cardiac hypertrophy [93,94]. How autophagy or inhibition of autophagy con-
tributes to the hypertrophic program remains poorly understood and indeed, somewhat
controversial. While it is beyond the scope of this review to discuss this issue in detail,
various excellent reviews can be recommended for the interested reader [93–95]. Briefly,
inhibition of autophagy can be initiated by pro-hypertrophic factors such as angiotensin
II [96] although angiotensin II has also been shown to stimulate autophagy in neonatal
rat ventricular myocytes, which was associated with reduced apoptosis in angiotensin
II-treated cells [97]. Autophagy inducers such as rapamycin have been shown to reduce
myocardial hypertrophy [98]. Thus, autophagy appears to play a dual role in the regu-
lation of the hypertrophy program, which is dictated by numerous factors such as the
nature/severity or the type of stimuli of the hypertrophic or remodelling response.

Is there evidence for leptin involvement in the autophagic process? Generally speak-
ing, adipokines have been proposed as regulators of autophagy in both a stimulatory and
inhibitory manner [99]. There is emerging evidence that leptin can induce autophagy
in cultured HeLa as well as in various tissues including the heart following parenteral
administration in mice [100]. However, the relevance to cardiac pathology, particularly as
pertaining to myocardial remodelling, is uncertain since evidence derived from studies
using cardiovascular tissues is less robust with only a few reports of leptin-induced reg-
ulation of the autophagic pathway particularly as this pertains to cardiac pathology and
myocardial remodelling. Interestingly, however, in vivo infusion of leptin in mice resulted
in the stimulation of autophagy in the heart of these animals as well as in other tissues
when compared to basal values [100]. In mice subjected to heart failure produced by tho-
racic aortic banding, deletion of the endothelial leptin receptor produced an improvement
in cardiac function as assessed using echocardiography after eight or twenty weeks of
aortic banding [101]. These findings were associated with reduced cardiac fibrosis and
enhanced angiogenesis, which were related to decreased production of pro-hypertrophic
cell signalling and increased endothelial autophagy in ObR KO animals. This study is of
particular interest as it demonstrates an important cross talk between vascular endothelial
cells and cardiomyocyte hypertrophy mediated by leptin signalling and further shows
that leptin signalling in endothelial cells contributes to cardiac dysfunction after a chronic
pressure overload by reducing cardiac angiogenesis and contributing to various aspects of
maladaptive hypertrophy, which are reduced by endothelial ObR deletion [101].

In addition to the study just discussed, leptin-induced dysfunction in cardiomyocyte
shortening was reported to be dependent on the presence of autophagy as evidenced
by inhibition of the leptin response by the autophagy inhibitor 3-methyladenine [102].
Moreover, leptin was found to promote autophagy as evidenced by enhanced levels of the
autophagosomal marker LC3-II and the pro-autophagic factors Beclin and Atg 5 [102]. In
contrast, the effects of leptin in reducing shortening and calcium regulation of cultured adult
rat ventricular myocytes were found to be associated with an attenuation of autophagy as
assessed using decreased LC3-II and Beclin-1 levels [103]. All of the abnormalities were
significantly attenuated by the antioxidant apocynin, tempol, or rapamycin.
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8. Mitochondrial Function and Dynamics in the Development of Cardiac Hypertrophy

A related process to autophagy is mitophagy, which represents the removal of dam-
aged mitochondria, thus contributing to the maintenance of cellular homeostasis [104]. As
for autophagy, mitochondrial mitophagy also represents a complex phenomenon, which is
dependent on various cell signalling pathways. Among the most important is mitochon-
drial PTEN-induced kinase 1 (PINK1), a serine/threonine-protein kinase which causes
mitophagy via the Parkin protein, which binds to damaged mitochondria, resulting in
the mitophagic process [105]. There is some evidence from studies using cultured cancer
cells that leptin can regulate the mitophagy process [106]. It has been proposed that the
intracellular ObRB domain binds to mitochondria and thus limits the mitophagy in a
variety of cultured cells [107]. However, there is no clear evidence that leptin can regulate
mitophagy in the cardiac cell, either in an inhibitory or stimulatory manner. However,
as will be discussed below, leptin can directly modulate cardiac mitochondrial function
and structure, including enhancing mitochondrial fission, which can contribute to the
stimulation of mitophagy as well as the hypertrophic program.

Although mitochondrial injury and dysfunction are well-established consequences
of cardiac pathology including heart failure, increased evidence points to the contribu-
tion of damaged mitochondria as an important contributor to the cardiac hypertrophic
response and myocardial remodelling [108–110]. While mitochondrial contribution to
the hypertrophic process may involve multiple mechanisms, here, we focus primarily on
mitochondrial dynamics, which may be particularly relevant as a target for leptin-induced
modulation. As recently reviewed, two particularly important aspects of mitochondrial
dynamics involve mitochondrial fusion and fission, which contribute to various aspects
of cardiac pathology [111]. As illustrated in Figure 6, mitochondrial fission and fusion
represent dynamic processes by which two mitochondria merge into one or one mitochon-
drion separates into two, respectively [112]. Fusion is coordinated primarily by the proteins
mitofusin (MFN) 1 and 2 located on the outer mitochondrial membrane and optic atrophy
(OPA) 1 located on the inner mitochondrial membrane whereas mitochondrial fission is
mediated primarily by dynamin-related protein1 (Drp1), a pro-fission protein that opposes
Mfn2 and is also of importance in the mitophagic process. Prevention of mitochondrial
fusion or fission has been shown to enhance cardiac hypertrophy and overall pathology,
strongly suggesting that an imbalance between mitochondrial fission and fusion leads to a
cardiac pathological response [113–116].

In theory, leptin may participate in the modulation of mitochondrial function and
structure via two processes, first by stimulating cell signalling, which targets mitochondria,
and secondly by directly targeting mitochondria, which can occur through intracellularly
derived leptin. The ability of leptin to target mitochondria has been known for some time
particularly as this relates to adipose tissue where leptin has been shown to target uncou-
pling proteins, resulting in an enhanced proton leak and altered energy metabolism [117].
The identification of functional leptin receptors in cardiac mitochondria adds credence to
implicating mitochondria as direct targets for intracellularly produced leptin [118]. Interest-
ingly, however, leptin had no effect on mitochondrial structure or function under normal
conditions but significantly enhanced the ability of calcium to produce mitochondrial
swelling in cultured neonatal rat ventricular myocytes, an effect attenuated by a leptin
receptor antagonist [118]. Leptin has been shown to stimulate apoptosis in cultured neona-
tal rat ventricular myocytes secondary to a calcium-dependent increase in mitochondrial
permeability transition pore opening stimulated by leptin in these cells [47], thus poten-
tially contributing to apoptosis-dependent cardiac remodelling via this process. Various
parameters of mitochondrial dysfunction have also been reported in studies using isolated
perfused rat hearts treated with leptin for up to four hours as manifested via uncoupling of
oxidative phosphorylation and loss of membrane potential [119].
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9. Conclusions

Since its initial discovery in 1994, research interest in leptin has increased dramatically
not only with respect to its function as a satiety factor but also in relation to its ability
to modulate physiology and pathophysiology of various organ systems. This is clearly
evident with respect to the heart, which has been shown to be a source of leptin production
and to function as a target for leptin’s effects. Substantial evidence has been presented in
the literature that leptin functions as a cardiac hypertrophic factor and thus can contribute
to heart disease, particularly heart failure, under conditions of hyperleptinemia such as
that seen in obesity. As discussed in this review, it appears that the pro-hypertrophic
effect of leptin is likely mediated by multifaceted mechanisms involving molecular and
intracellular changes as evidenced by modulation of cell signalling pathways as well as
such cellular processes as autophagy and mitochondrial dynamics. Substantial future
work is necessary to more precisely delineate the molecular and cellular mechanism(s)
underlying the hypertrophic effects of leptin using physiologically relevant experimental
models. Based on expanding knowledge of ObR structure, regulation, and activation, this
work could be assisted by the continuing development of highly specific ObR antagonists
used to probe leptin-induced cardiac effects as well as enhancing the possibility of their
future development as pharmacological agents.
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