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Abstract: Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a new coronavirus in
the Coronaviridae family. The COVID-19 pandemic, caused by SARS-CoV-2, has undoubtedly been the
largest crisis of the twenty-first century, resulting in over 6.8 million deaths and 686 million confirmed
cases, creating a global public health issue. Hundreds of notable articles have been published since
the onset of this pandemic to justify the cause of viral spread, viable preventive measures, and
future therapeutic approaches. As a result, this review was developed to provide a summary of the
current anti-COVID-19 drugs, as well as their timeline, molecular mode of action, and efficacy. It also
sheds light on potential future treatment options. Several medications, notably hydroxychloroquine
and lopinavir/ritonavir, were initially claimed to be effective in the treatment of SARS-CoV-2 but
eventually demonstrated inadequate activity, and the Food and Drug Administration (FDA) withdrew
hydroxychloroquine. Clinical trials and investigations, on the other hand, have demonstrated the
efficacy of remdesivir, convalescent plasma, and monoclonal antibodies, 6-Thioguanine, hepatitis C
protease inhibitors, and molnupiravir. Other therapeutics, including inhaled medicines, flavonoids,
and aptamers, could pave the way for the creation of novel anti-COVID-19 therapies. As future
pandemics are unavoidable, this article urges immediate action and extensive research efforts to
develop potent specialized anti-COVID-19 medications.

Keywords: SARS-CoV-2; COVID-19; anti-COVID-19; viral inhibitors; anti-COVID-19 mechanism of
action; monoclonal antibodies

1. Introduction

SARS-CoV-2, which is responsible for the COVID-19 outbreak, is not the first coron-
avirus to pose a significant public health risk. During the previous 20 years, the severe acute
respiratory syndrome coronavirus (SARS-CoV) in 2002, H1N1 influenza in 2009, and the
Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 have emerged [1]. The
World Health Organization (WHO) was notified about an outbreak of the novel SARS-CoV-
2 virus in Wuhan, China, in December 2019 [2]. It was initially termed “2019-nCoV”, but the
International Committee on Taxonomy of Viruses renamed it SARS-CoV-2 on 11 February
2020 due to its similarities to SARS-CoV [3]. Because of the rapid and uncontrolled spread
of the virus, the WHO proclaimed it a global pandemic on 11 March 2020 [4]. The mortality
rate of SARS-CoV-2 is lower than that of SARS-CoV, with 6.76% and 9.6%, respectively [5];
meanwhile, the rate of transmission of SARS-CoV-2 is higher than that of SARS-CoV. The
WHO has reported more than 772.8 million cases of SARS-CoV-2 infection worldwide as of
17 December 2023, including more than 6.9 million deaths “https://covid19.who.int/ (ac-
cessed on 22 December 2023)”. Furthermore, the outbreak was linked to massive economic
losses all across the world. According to a recent estimate, a 20% COVID-19 infection rate in
the United States based on a Monte Carlo simulation resulted in a total direct medical cost
of $163.4 billion throughout the course of the pandemic [6]. The primary causes of higher
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costs were consistent across countries and included intensive care unit (ICU) admission
and in-hospital resource utilization such as mechanical ventilation, which resulted in cost
increases ranging from $2082.65 ± 345.04 to $2990.76 ± 545.98 [6]. Since it was declared
a public health danger, the initial main hurdle has been creating diagnostic methods to
correctly identify the existence of the virus and generating effective treatments to combat
SARS-CoV-2. This however was not the case, as clinical trials and studies demonstrated
most of these medications have failed to show any or limited efficacies. Fortunately, some
were approved by the FDA due to their effectiveness and are a part of the treatment plan
against SARS-CoV-2. Needless to say, the search for effective antivirals for SARS-CoV-2 con-
tinues to this day. Therefore, the present review was developed to discuss the development
and progress of SARS-CoV-2 antivirals. Furthermore, we discussed in depth the molecular
mechanism of action of generally approved anti-COVID-19 drugs in this review, as well as
some potential therapeutic options that may involve a breakthrough in the development of
anti-COVID-19 therapy.

2. The Origin of COVID-19

Coronaviruses have been known to exist for nearly a century. The first coronavirus
discovered was avian infectious bronchitis virus (IBV) in 1937, followed by the discovery
of murine hepatitis virus 10 years later [7]. In contrast, the first case of human coronavirus
(HCoV-229E) was found in 1965 by virologists Tyrrell and Bynoe [8]. This was accomplished
by collecting nose swabs from medical students who displayed symptoms of a typical
cold with nasal discharge during a respiratory illness investigation in which one sample
contained the virus [7]. The virus had morphological similarities to the IBV, which was
discovered a while ago when inoculated in an organ culture. Their research concluded that
common colds can be transmitted via nasal secretions. Coronaviruses have a reputation
for rapidly evolving. As a result, they risk infecting many species and possibly causing
zoonosis. SARS-CoV-2 is the ninth coronavirus shown to be capable of infecting humans. It
is also the seventh coronavirus discovered in the last 20 years [9]. Despite this, coronaviruses
have been identified as a high-risk infection capable of causing a pandemic due to their
great transmission capabilities. All previous human coronaviruses were linked back to
animal origins, giving an understanding of where SARS-CoV-2 originated. SARS-CoV-2
was first identified in Wuhan, central China. The first cases in Wuhan, China, are thought
to have been caused by a zoonotic source, notably the Huanan market, which is known to
sell dogs, bats, snakes, poultry, and fish [10]. Two of the first three COVID-19 cases were
directly linked to the Huanan market. Furthermore, 28% of COVID-19 cases identified in
December 2019 were traced back to the same market [9]. Despite the fact that the early cases
were tied to the Huanan market, subsequent cases had ties to other markets, and some had
no ties to any market at all. As a result, no definitive conclusion could be drawn about
the Huanan market, whether it was an amplifier or the source of SARS-CoV-2. Extensive
molecular and genetic testing was performed on viruses gathered from various animals,
and it was discovered that coronaviruses very similar to SARS-CoV-2 were isolated in bats
and pangolins [11]. This could imply that bats and pangolins are reservoir hosts for the
virus that gave rise to SARS-CoV-2. It should be noted that none of the viruses obtained
from bats or pangolins are sufficiently similar to SARS-CoV-2 and hence cannot be its
source [11].

3. Viral Structure

The Coronaviridae family is divided into two subfamilies: the Coronavirinae and the
Torovirinae. Coronaviruses are members of the order Nidovirales and the subfamily Coro-
navirinae. Coronaviruses are classified into four genera: alpha, beta, gamma, and delta.
SARS-CoV-2, like SARS-CoV and MERS-CoV, is classified as a beta-coronavirus [12]. SARS-
CoV-2’s genome is a single-stranded positive-sense RNA virus (~29.9 kb), which is larger
than any previous RNA virus [12]. Transmission electron microscopy and scanning electron
microscopy were used to determine the structural identity of SARS-CoV-2 [13]. The electron
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microscope scans revealed a crown-shaped structure, hence the name “Corona”. The viral
particle measured 60–140 nm in size [13]. SARS-CoV-2 is made up of four structural proteins
(S, M, E, N) and sixteen non-structural proteins (nsp1–16), each having its own particular
function. Having said that, SARS-CoV-2, a beta-coronavirus, has three essential envelope
proteins. The first envelope protein is the spike protein (S), which aids in attachment to cell
membrane receptors, membrane fusion, and finally, entrance into the host cell. As a result,
it is an appealing target for antivirals. S1 and S2 are the two components of the (S) protein.
The S1 subunit’s function is to attach to the host cell’s receptor. Meanwhile, S2 is in charge
of the viral and host cell fusion. The structure of the coronavirus membrane is determined
by the second envelope protein, the membrane protein (M), and the third protein, the
envelope protein (E). Another protein that is not an envelope protein but is nevertheless
very important is the nucleocapsid protein (N), which is a structural protein that forms
complexes with genomic RNA and contributes to virus transcription and assembly [14].

4. SARS-CoV-2 Replication
4.1. Attachment and Entry

It all starts when a person inhales an airborne viral particle (SARS-CoV-2). The viral
particle will move through the airway, where it will interact with the epithelial cells. As
previously stated, the spike protein of SARS-CoV-2 plays a key role in cell attachment,
fusion, and, finally, entry into the host’s cell [15]. As a result, the host-pathogen interaction
begins with spike protein binding to the angiotensin-converting enzyme-2 (ACE2) receptor
(the cellular receptor of SARS-CoV-2). Although ACE2 receptors can be found on the
surfaces of many organs, including the lung, endothelium, kidney (proximal convoluted
tubules), heart, testis, bladder, and intestines, alveolar epithelial type II cells are the most
prevalent (83%) [13,15]. Because alveolar epithelial type II cells contain the bulk of ACE2
receptor-presenting cells, this could explain SARS-CoV-2’s predilection for the lungs. After
binding to the ACE2 receptor, the S protein becomes locked in, allowing another protein
expressed on the cell’s surface to cleave the spike protein at certain places. This is achieved
by the enzyme transmembrane serine protease 2 (TMPRSS2), which is required for the spike
protein to be activated, resulting in viral membrane fusion or endosomal entry [13,15].

4.2. Replication

After fusional entrance or receptor-mediated endocytosis, the viral genome (RNA) is
released into the host’s cytoplasm. Once the positive sense RNA penetrates the host cell’s
cytoplasm, translation begins. It is translated into viral polyproteins by the ribosome of
the host cell. The viral polyproteins are broken down by 3CLpro (3C-like protease) and
PLpro (papain-like protease) into non-structural proteins (nsp) that form the transcription
complex [16]. The RNA-dependent RNA polymerase (RdRp) active site is held by nsp12,
which requires the accessory components nsp7 and nsp8 to be enzymatically active [17].
During replication, RdRp, a large protein complex and a critical enzyme, catalyzes the
creation of new viral RNA. Translation happens once again, producing S, M, E, and N
proteins as well as a number of auxiliary proteins [18]. The N protein will bind to the
genomic RNA, unlike the S, M, and E proteins. The three latter proteins will bind to
the endoplasmic reticulum membrane (ER), forming the endoplasmic reticulum-Golgi
intermediate compartment (ERGIC), also known as the vesicular-tubular cluster. Finally,
the viral genome encased in its nucleocapsid is brought to the lumen of the ER and
encapsulated, and the new virus (daughter virus) is transferred by the ERGIC to the host
cell’s plasma membrane and discharged via exocytosis [19].

5. Anti-COVID-19 Drug Development
5.1. Solidarity Trial

The WHO classified SARS-CoV-2 as a Public Health Emergency of International Con-
cern on 30 January 2020 [20]. This was ongoing, with thousands of new cases reported
daily in Wuhan, China, and tens of thousands more reported from countries around the
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world, including Thailand, Japan, South Korea, the United States, France, Germany, the
United Arab Emirates, India, Italy, Russia, the United Kingdom, Malaysia, and Canada.
After about 6 weeks, the WHO launched the “Solidarity Trial”, a global clinical trial, in
March [21]. It is an initiative to identify effective SARS-CoV-2 therapies. A new medicine
typically takes 1–2 decades to produce due to safety standards and efficacy criteria. When
dealing with a highly contagious disease or a pandemic, a better method would be to repur-
pose a previously available medicine on the market that shares similar mechanisms (same
targets) as the virus. Remdesivir, lopinavir/ritonavir, lopinavir/ritonavir plus interferon
beta, and chloroquine were the four most promising medicines at the commencement of
the “Solidarity Trial” [21]. The trial aimed to test the efficacy of these four most promising
treatments versus the global standard of care against SARS-CoV-2. To acquire the most
precise numerical data, it was critical that the selected patients be from all age groups,
nationalities, and health statuses. The goal was to determine which of the four medications
could halt the advancement of the disease or, better yet, enhance the patient’s survivabil-
ity rate. More medications can be added to the “Solidarity Trial” for testing based on
developing fresh findings. The trial included countries from all around the world, with
approximately 90 countries taking part.

5.2. Timeline of Drug Development

When it comes to combating a pandemic or disease, the first step is to study the
pathogen’s genetic and structural properties. This is extremely important for generating
an accurate diagnostic tool, researching the virus, and producing new treatments and
vaccines. On 5 January 2020, a team of researchers from the Shanghai Public Health Clinical
Center and Fudan University’s School of Public Health performed genome sequencing of
SARS-CoV-2 (Figure 1) [22]. To accomplish this, a technique known as shotgun sequencing
was used, which involves breaking the viral genome into smaller fragments, sequencing
each fragment individually, and then combining the separated fragments into a complete
genome sequence using computer algorithms [23]. The Solidarity Trial began in March 2020,
immediately after the genome sequence of SARS-CoV-2 was shared.

Because of its antiviral and anti-inflammatory effects, hydroxychloroquine, an anti-
malarial medication, was being studied and explored as a therapy option for SARS-CoV-2
by March 2020. Hydroxychloroquine was previously intended to treat systemic lupus
erythematosus and rheumatoid arthritis [24], and it is speculated to be able to reduce
SARS-CoV-2 replication, according to several in vitro investigations. Clinical trials were
conducted as a result, although the outcomes were inconsistent. In a French research,
80 patients with an average age of 52.5 years tested positive for COVID-19. They were
administered 600 mg of hydroxychloroquine for 10 days, as well as 500 mg of azithromycin
on the first day, followed by 250 mg the next four days. Only two patients out of the
80 exhibited no improvement (an 86-year-old patient who died and a 74-year-old patient
who was still in ICU at the time of the report). On day five, viral cultures were created
from respiratory samples, and 97.5% of them were negative. Furthermore, a day seven PCR
demonstrated that 83% of the patients had a reduced viral load when the nasopharyngeal
swab was obtained, and 93% had a lower viral load on day eight [25]. Another French
trial, on the other hand, had 11 consecutive patients with a mean age of 58.7 years who
were treated with the same exact drug combination (600 mg of hydroxychloroquine for
10 days, 500 mg of azithromycin for the first day, then 250 mg for the next four days).
The combination appeared to be ineffectual since one patient died, two were brought to
the ICU, and the remaining eight were still positive for COVID-19 by nasal swab [26]. In
fact, most studies demonstrate that hydroxychloroquine is ineffective, and as a result, the
FDA revoked its approval for emergency use on 15 June 2020 due to a lack of efficacy and
potential hazards [27] (Figure 1).
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Remdesivir, a broad-spectrum antiviral medication used to treat Ebola and other RNA
viruses, was the second medicine approved for emergency use. Remdesivir was granted
emergency use authorization by the FDA in April 2020 to treat hospitalized COVID-19 cases.
Meanwhile, additional research (in vitro and in vivo) was being conducted. Remdesivir,
for example, has been proven in vitro to impede the replication of SARS-CoV-1 and MERS-
CoV. In vivo investigations on SARS-CoV-1 mice models revealed that early Remdesivir
administration has a direct influence on viral load and related lung pathologies [28]. The
FDA approved remdesivir as the first medicine in the United States of America to treat
hospitalized COVID-19 cases in October of the same year [28] (Figure 1).

Lopinavir/ritonavir, a fixed-dose combination antiretroviral medicine for the treat-
ment of HIV, was one of the medications that showed promise in the treatment of COVID-19
cases. In China, lopinavir/ritonavir and umifenovir were initially indicated for COVID-19
treatment [29]. Observational and randomized controlled trials with Lopinavir/ritonavir,
on the other hand, failed to detect a benefit with treatment [30]. Subsequent findings
from two randomized controlled trials, RECOVERY [31] and DISCOVERY [32], provided
considerable evidence against the use of lopinavir/ritonavir for COVID-19, with no bene-
fits from starting lopinavir/ritonavir treatment early. In another randomized controlled
platform study, 199 patients (positive for COVID-19) were randomly assigned to one of two
groups. Group A had 99 patients who were given lopinavir/ritonavir (400 mg and 100 mg,
respectively) in addition to conventional therapy, and group B consisted of 100 patients
who received only conventional care. Group A had a death rate of 19.2% compared to
Group B, which had a mortality rate of 25.0% [33]. Indeed, another study reported that
lopinavir/ritonavir treatment resulted in worse results when compared to no antiviral
treatment [34]. Thus, early lopinavir/ritonavir dosing or lopinavir/ritonavir use in pa-
tients with non-severe/non-critical disease revealed little therapeutic benefit and may
be hazardous.

In June 2020, dexamethasone was reported to be helpful in lowering the mortality
rate of hospitalized COVID-19 patients and was approved to be included in the treatment
plan [35] (Figure 1). Many investigations and clinical trials have also validated this con-
clusion, highlighting that dexamethasone given in addition to standard care (rather than
standard care alone) results in a much higher number of days alive and off mechanical
ventilation within the first 28 days [36]. Due to a paucity of effective medical interventions
and therapies, the FDA approved convalescent plasma EUA as a COVID-19 treatment in
August 2020. [37]. It entails using the blood plasma of a recovered patient (in this case,
COVID-19) to treat patients with a current infection. It is most effective and promising
when taken as a preventative measure or soon after the onset of symptoms [38]. It’s worth
noting that it’s currently considered an experimental medicine; therefore, it’s generally
utilized in clinical trials. COVID-19 numbers reached a phenomenal 160 million cases in
May of the following year (2021). Thus, the FDA granted EUA to the monoclonal antibody
therapy: bamlanivimab and etesevimab, casirivimab and imdevimab, and sotrovimab
for the treatment of mild to moderate COVID-19 [39]. Further research has shown that
monoclonal antibodies such as bamlanivimab, bamlanivimab-etesevimab, casirivimab-
imdevimab, and sotrovimab reduced hospitalization rates by 61%, 87%, 72%, and 86%,
respectively [40]. As a result, the FDA approved the use of monoclonal antibody combi-
nations as a therapy for COVID-19 patients at high risk. Furthermore, the FDA granted
emergency use authorization for two novel oral antiviral agents, nirmatrelvir/ritonavir
and molnupiravir, in December 2021 for the treatment of early symptomatic patients with
mild to moderate COVID-19 at high risk of progression to severe disease [41]. While early
clinical trials showed an improvement in clinical outcomes, the effect was not consistent
and was not felt by all demographic and clinical subgroups.

In addition to the previously FDA-authorized medications, the FDA has issued an
EUA to different replacement therapies such as multiFiltrate/multiBic/multiPlus and
Regiocit replacement solution between April to August 2020, as well as immune modulator
drugs such as tocilizumab, baricitinib, and anakinra between June 2021 to November 2022
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(Figure 1) [42]. In February 2022, for has issued an EUA to Bebtelovimab (highly potent
SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody) for
the treatment of mild-to-moderate COVID-19 in adults and pediatric patients (12 years
of age and older weighing at least 40 kg) [43]. In April 2023, the FDA issued an EUA
for vilobelimab (chimeric monoclonal immunoglobulin G4 antibody) for the treatment of
COVID-19 in hospitalized adults requiring mechanical ventilation or artificial life support
(Figure 1) [44]. Recently, in November 2023, the FDA also issued EUA for molnupiravir, the
orally administered antiviral prodrug that inhibits the replication of RNA viruses via viral
error induction, for the treatment of mild-to-moderate coronavirus illness 2019 (COVID-19)
(Figure 1) [45].

6. Molecular Mechanisms of Action of Anti-COVID-19 Medications
6.1. Inhibitors of Viral Entry into the Human Cell
6.1.1. S Protein Inhibitors: Convalescent Plasma and Monoclonal Antibodies

As previously stated, SARS-CoV-2 entrance is dependent on the spike protein bind-
ing to the host’s ACE2. Monoclonal antibodies mimic the immunological response of
the host to a viral infection. As a result, they bind to the virus’s S protein, rendering it
unable to bind to host cells, preventing future infection and lowering the severity of the
symptoms. Convalescent plasma also contains antibodies from a recovered COVID-19
patient, which bind to the S protein of SARS-CoV-2 [46] (Table 1). COVID-19 convalescent
plasma (CCP) may help COVID-19 through a variety of methods. The administration
of neutralizing antibodies (Nabs) against the SARS-CoV-2 virus provides a technique of
providing passive and rapid antibody-mediated immunity (AMI) [47]. Opsonization, toxin
and viral neutralization, antibody-dependent cellular cytotoxicity (ADCC), complement
activation, phagocytosis, and direct antimicrobial actions via oxidant generation have all
been associated with AMI [47,48]. Nabs bind to spike1-receptor binding protein (S1-RBD),
S1-N-terminal domain, and S2, preventing viral entry and decreasing viral multiplication
in SARS-CoV and MERS [49]. Furthermore, other antibody-mediated processes such as
complement activation, antibody-dependent cellular cytotoxicity, and/or phagocytosis may
contribute to the therapeutic effect of convalescent plasma. Recently, Tian et al. [50] used
ELISA and Biolayer Interferometry Binding to demonstrate that one SARS-CoV-specific
antibody, CR3022, binds with COVID-19 RBD and, more crucially, that this antibody does
not compete with ACE-2 for binding to COVID-19 RBD. COVID-19’s RBD differs signifi-
cantly from that of SARS-CoV at the C-terminus residues. Although this distinction does
not allow COVID-19 to bind the ACE-2 receptor, it does impact NAb cross-reactivity [50].
In addition to NAbs, other protective antibodies found in plasma include immunoglobulin
G (IgG) and immunoglobulin M (IgM). Two years after SARS infection, 89% of recovered
patients had IgG-specific and NAbs [51]. Furthermore, the maximum concentration of IgM
was seen on the ninth day after disease onset, with class change to IgG occurring in the
second week [52]. Non-NAbs that bind to the virus but have no effect on its replication
capabilities may aid prevention and/or recovery [53].

6.1.2. Inhibitors of Fusional Entry: TMPRSS2 Inhibitors

TMPRSS2 is a protein (enzyme) that is usually present on the surface of respiratory
tract cells. Cleaving the spike protein (proteolysis) enables viral penetration. After the
cleavage, the virus can fuse into the cell membrane and achieve access. Inhibitors of TM-
PRSS2 bind to the active site of this enzyme, preventing cleavage of the spike protein and,
consequently, virus entry [54] (Table 1). Processing of the TMPRSS2 protein is one of the
crucial steps in activating the membrane activity of the SARS-Corona virus-2 S protein [55].
Subsequently, medications that inhibit its proteolytic activity are required to prevent SARS-
Corona Virus-2 membrane fusion. Notably, TMPRSS2 is a human protease that, unlike viral
protein targets, does not result in drug resistance when used as a therapeutic target [56].
As a result, TMPRSS2 is one of the most promising anti-SARS-CoV-2 treatment targets. TM-
PRSS2 inhibitor, like many other protease inhibitors, has been reported and demonstrated
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to prevent virus entry into host cells [57,58]. A recent study used in silico fragment-based
drug design to create new compounds for the catalytic site of TMPRSS2 of SARS-CoV-2.
Over 500,000 fragments from the enamine database were tested, and ten newly synthesized
compounds outperformed reference medications nafamostat and ambroxol in terms of
predicted binding scores and free binding energies with the catalytic binding site [59]. A
recent group also discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2
inhibitors, which are structurally distinct from and have significantly improved activity
over the existing known inhibitors camostat and nafamostat by utilizing rational structure-
based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2 [60].
The lead compound MM3122 demonstrated great success in blocking host cell entry of a
newly developed VSV-SARS-CoV-2 chimeric virus into Calu-3 human lung epithelial cells,
inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells, and locking
MERS-CoV cell entry [60].

6.2. Inhibitors of Endosomal Entry: Hydroxychloroquine

Chloroquine (CQ) and hydroxychloroquine (HCQ) have shown promising effective-
ness against SARS-CoV-2. Different mechanisms of action have been proposed for CQ and
HCQ involving endocytic pathway interference, sialic acid receptor blockage, restriction
of pH-mediated spike (S) protein cleavage at the ACE2 binding site, and cytokine storm
prevention (Table 1) [61]. Regarding endocytic pathway interference, CQ accumulates
in endosomes and lysosomes and causes pH neutralization, which inhibits the activities
of proteases, inhibiting S protein cleavage and, eventually, the process of viral entrance
into a host organism [62]. HCQ also blocks SARS-CoV-2 from moving from early endo-
somes to early lysosomes, which is essential for the release of the viral genome [63]. The
increase in pH of lysosomes and endosomes caused by HCQ leads to the production of
autophagosomes, which break the S protein and impede membrane fusion [61]. In terms
of sialic acid receptor inhibition, both CQ/HCQ were effective in inhibiting sialic acids
(particularly the 9-O-SIA variant), which is required to promote SARS-CoV-2 entrance in
the upper respiratory route in addition to the previously recognized ACE2 receptor [64].
Regarding the prevention of pH-mediated S protein cleavage at the ACE2 binding site, it
was established that CQ/HCQ plays an important role in inhibiting glycosylation of ACE2
receptors, hence reducing SARS-CoV-2 entry into host organisms [65]. Finally, in terms of
its action through the prevention of cytokine storm, HCQ inhibits the antigen processing
in the antigen-presenting cells (APC) and the presentation of autoantigen mediated by
the major histocompatibility complex (MHC) class II to T cells. Due to this, the levels of
activated T cells decline, causing a reduction in the production of cytokines generated by T
cells and the B cells [61]. Finally, in terms of cytokine storm prevention, HCQ suppresses
antigen processing in APC and autoantigen presentation to T cells via the major MHC
class II. As a result, the number of activated T cells decreases, resulting in a decrease in the
production of cytokines by T and B cells [61].

6.3. Inhibitors of Viral Proteases
6.3.1. Inhibitors of Viral Main Protease (Mpro): Rupintrivir, Lopinavir/Ritonavir
and Nirmatrelvir

The mechanism of action of Mpro inhibitors is performed in a series of phases. First,
the Mpro inhibitors attach to the protease’s active site. They then prevent the protease from
carrying out its enzymatic activity by interfering with the enzyme’s catalytic mechanism.
This, in turn, prevents viral reproduction and spread throughout the body (Table 1) [66].
Rupintrivir is a 3C-protease inhibitor with a lactone molecule in the P1 position that plays
an essential role in binding to the active site. Rupintrivir displayed modest inhibition
against SARS-CoV-2 Mpro, with an IC50 value of 68 µM [67]. Lockbaum et al. [68] identify
an intriguing rupintrivir binding conformation that shows an alternate mechanism of
inhibition. In complexes with other proteases, its fluorophenylalanine group moves to the
S1′ subsite, acting as an obstruction between the two catalytic residues. However, due to
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its relatively high IC50 and observed side effects in clinical trials, several studies classify
rupintrivir as a non-potent antiviral [69]. The combination of two HIV-1 protease inhibitors,
lopinavir, and ritonavir, was recently reported to be effective against SARS-CoV, and both
medications bind well to the SARS-CoV 3C-like protease (SARS-CoV 3CLpro) [70]. Using
the identified crystal structure of Mpro and the Hex program to dock the ligands to the
SARS-CoV main proteinase, in silico binding studies revealed that lopinavir and ritonavir
could essentially bind to the active site of SARS main proteinase, but their efficacy was
predicted to be poor [71]. Nirmatrelvir/ritonavir is another combination of two drugs that
have a similar mechanism. The first component, nirmatrelvir, is a peptidomimetic inhibitor
of Mpro, the primary protease of SARS-CoV-2. By inhibiting Mpro, the virus is prevented
from processing the polyprotein precursors required for viral replication [72]. Nirmatrelvir
coadministration with ritonavir is essential to raise nirmatrelvir plasma concentrations to
therapeutic levels [72] (Table 1).

6.3.2. Inhibitors of Viral Papain-like Protease (PLpro)

The Mpro and the PLpro are crucial for viral replication and, hence, constitute promising
targets for antiviral therapy. PLpro inhibitors work in the same way as Mpro inhibitors;
however, they target the PLpro enzyme rather than the Mpro enzyme [73,74]. 6-Thioguanine
(6-TG) is an anti-leukemia and immunosuppressive drug that was recently shown to
reduce viral replication of SARS-CoV-2 with an EC50 of 2.13 µM, similar to remdesivir [66].
Although 6-TG decreased PLpro activity directly, it is important to remember that 6-TG’s
mode of action as a chemotherapeutic and immunosuppressant is that it is transformed into
6-Thioguanine ribonucleotides and deoxynucleotides and integrated into RNA and DNA.
The incorporation of 6-TG-containing ribonucleotides into SARS-CoV-2 RNA could thus
represent a secondary antiviral action of 6-TG [75]. Simeprevir, vaniprevir, paritaprevir,
and grazoprevir, four clinically authorized hepatitis C protease inhibitors, have recently
been found to suppress SARS-CoV-2 PLpro in vitro and viral replication in Vero-E6 cells [74]
(Table 1). These HCV medicines can potentially bind into the Mpro substrate-binding
cleft, according to virtual docking tests [74]. Another study confirmed Grazoprevir and
voxilaprevir, two widely used HCV PIs, showed efficacy against SARS-CoV-2 in lung cells.
Furthermore, the authors confirmed that the production of HCV PIs with higher potency
and plasma concentrations, such as simeprevir, would need to be reinitiated for clinical
use, as was the case with remdesivir [76]. In addition to the above-described compounds,
three previously discovered naphthalene-based inhibitors, rac3j, rac3k, and rac5c (racemic
versions of 3j, 3k, and 5c, respectively), exhibit promising inhibitory efficacy against SARS-
CoV-2 PLpro. With an in vitro IC50 value of 0.81 µM, Rac5c is the best [77]; at a dosage of
11 µM, rac5c could protect SARS-CoV-2 infected Vero cells from cytopathic impact without
inducing cell toxicity in the antiviral assay, suggesting the strong antiviral properties.

6.4. Inhibitors of Viral RNA
6.4.1. Inhibitors of RNA Dependent RNA Polymerase (Rdrp): Remdesivir

Remdesivir, which was initially created to treat the Ebola virus, was later revealed
to be effective against other RNA viruses, including SARS-CoV-2 because it is a broad-
spectrum antiviral medication [28,74]. The drug inhibits the replication of endemic human
CoV-229E and CoV-OC43, which cause upper respiratory infection in children but can cause
more severe lower respiratory infection in adults with underlying respiratory conditions
(i.e., asthma, COPD) and the elderly, as well as PDCoV, a member of the delta coronavirus
genus with the most divergent RdRp of any known CoV when compared to SARS- and
MERS-CoV [78]. It is a prodrug, which means it is converted into its active form within
the body. When it reaches the cell, it converts to remdesivir triphosphate (RTP), which
is an ATP analog. RTP subsequently becomes a component of the RNA chain that is
developing as a result of RdRp. As illustrated, the RTP stops the developing chain by
targeting the RdRp, preventing continued replication [28,74]. An in silico test of the COVID-
19 RdRp model revealed that remdesivir was a powerful medication [79]. SARS-CoV and
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SARS-CoV-2 are both B lineage betacoronaviruses with 96% identical RdRp amino acid
sequences, whereas MERS-CoV is a C lineage betacoronavirus with just 71% identity to
SARS-CoV-2 [80] (Table 1).

6.4.2. Replication Inhibitor: Molnupiravir

Molnupiravir is a prodrug that is initially degraded by host cell esterase into N4-
hydroxy cytidine [81]. The active N4-hydroxycytidine triphosphate (EIDD-1931 triphos-
phate) is obtained by phosphorylating the resultant alcohol analogue [82]. This phos-
phorylated counterpart is structurally similar to the native RdRp substrate cytidine or
uridine triphosphate. As a result, EIDD-1931 triphosphate suppresses RdRp and, thus,
viral replication [83,84]. Because the molnupiravir′s structure is similar to the nitrogenous
base of nucleic acids, the amino form may create hydrogen bonds with G (M:G), and
the imino form can make hydrogen bonds with A (M:A) [85]. As a result, molnupiravir
serves as a template for protein production [81]. The goal is to prevent viral proteins from
being produced, which would result in viral cell death [86]. It has been shown to inhibit
SARS-CoV-2 replication in human lung tissue, impede SARS-CoV-2 transmission in ferrets,
and diminish SARS-CoV-2 RNA in patients. In animal models and people, molnupiravir
increases the incidence of viral RNA mutations and affects SARS-CoV-2 replication [87].
This disrupts the replication process because the viral RNA is copied incorrectly, preventing
continued infection and propagation of the virus (Table 1).

Table 1. General back of the commonly approved anti-COVID-19 drugs.

Drug Application Route of
Administration Target MOA vs. SARS-CoV-2 References

Convalescent plasma - Intravenous S Protein Binds to the S protein, which
prevents viral attachment. [47,53]

Monoclonal
antibodies -

Intravenous,
subcutaneous,
intramuscular

S protein Binds to the S protein, which
prevents viral attachment. [46,48–52]

Camostat Chronic
pancreatitis Oral TMPRSS2

A protease inhibitor that
prevents SARS-CoV-2 lung cell

infection by inhibiting the
virus-activating host cell

protease TMPRSS2.

[60]

Hydroxychloroquine Malarial
infections Oral Multiple

Different mechanisms of action
have been proposed involving

endocytic pathway interference,
sialic acid receptor blockage,
restriction of pH-mediated

spike (S) protein cleavage at the
angiotensin-converting enzyme

2 (ACE2) binding site, and
cytokine storm prevention

[61–65]

Rupintrivir
Human

rhinoviral (HRV)
infections

Nasal Mpro Inhibitors of Viral Main
protease (Mpro). [67–69]

Lopinavir/ritonavir HIV infections Oral Mpro Inhibitors of Viral Main
protease (Mpro). [70,71]

Nirmatrelvir/ritonavir - Oral Mpro Inhibitors of Viral Main
protease (Mpro). [71,72]

6-Thioguanine Leukaemia Oral PLpro Inhibitors of viral papain-like
protease (PLpro). [73,75]
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Table 1. Cont.

Drug Application Route of
Administration Target MOA vs. SARS-CoV-2 References

Simeprevir,
vaniprevir,

paritaprevir,
and grazoprevir

Chronic HCV
infection Oral PLpro Inhibitors of viral papain-like

protease (PLpro). [76]

Remdesivir Ebola virus Intravenous Rdrp Inhibitors of RNA Dependent
RNA Polymerase (Rdrp) [78–80]

Molnupiravir Influenza Oral viral RNA
Disrupts the replication process

because the viral RNA is
copied incorrectly

[81–83,85–87]

7. Future Directions and Areas of Research
7.1. Flavonoids

Flavonoids are secondary metabolites and compounds generated by plants (fruits,
vegetables, cereals, and so on). Flavonoids have been extensively studied for potential
health benefits [88–92]. They have anti-inflammatory and antioxidant properties that have
been linked to a decreased risk of chronic diseases such as cancer, cardiovascular disease,
and neurological disorders [90,92]. Isoquercetin and quercetin are two flavonoids with
antioxidant, immune-modulatory, and anti-inflammatory properties [93,94]. Isoquercetin
is a monoglycoclated derivative of quercetin that accumulates more in the intestines and
thus reaches circulation at higher concentrations than quercetin. Both have broad-spectrum
antiviral activities and have reduced cell infection from the Ebola virus, Zika virus, and
other viruses [93,94]. An in vitro test revealed that quercetin can inhibit recombinant
SARS-CoV PLpro with an IC50 of 8.6 µM [95], leading to further investigation of it as a
potential anti-COVID-19 drug. According to a recent study, several flavonoids (including
quercetin) have a higher binding affinity (up to −10.60 kcal/mol) than remdesivir (up
to 9.50 kcal/mol) [96]. Another study looked at the interaction of flavonoids with ACE2
receptors overexpressed in HEK293 cells and found that the flavonoids are exclusively
bound to the ACE2 receptors [97]. Isoquercetin (115 µM) and quercetin (26.3 µM) both
inhibited the host endo/lysosomal cysteine protease cathepsins L (CatL), with IC50 values
of 26.3 µM and 115 µM, respectively [98]. During phase one clinical studies, no drug-related
serious side effects were recorded with the usage of quercetin up to 5 g/d and isoquercetin
up to 1 g/d [93]. These flavonoids should be studied further in clinical trials as a potential
treatment for SARS-CoV-2.

7.2. Inhaled Drugs

Several inhalation treatments have shown promise in laboratory investigations, al-
though they are still in clinical trials. One major cause is that medications taken orally or
intravenously do not reach the lungs in sufficient amounts. As a result, inhaled treatments
are being investigated as a potentially viable method of COVID-19 treatment [99,100]. This
enables for reduced drug dose with fewer side effects [99] while simultaneously increasing
concentrations of the desired drug in the lung. Other benefits include a non-invasive
delivery method, high membrane permeability, and skipping first-pass metabolism. In-
haled hydroxychloroquine has been demonstrated to be successful in the treatment of
COVID-19 while having fewer side effects than oral hydroxychloroquine [100]. Recently,
multiple published findings on a small group of patients demonstrated the potential bene-
fits of inhalation treatment, implying that large-scale clinical trials should be conducted.
In phase II randomized, double-blind, placebo-controlled studies, for example, inhaled
interferon beta-1a produced better results with fewer side effects (44% vs. 22%) [101]. A
multicenter, noninterventional cohort analysis of 954 critically ill COVID-19 patients found
that inhaled corticosteroids reduced mortality by a statistically meaningful amount [102].
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In a multicenter, open-label, multi-arm, randomized, controlled, adaptive platform trial
including about 4700 people, it was discovered that inhaled budesonide could shorten
recovery time and reduce the chance of death [103]. In a randomized and open-label phase
2 study of 61 COVID-19 patients with mild to severe disease, it was discovered that inhaled
ciclesonide eradicated SARS-CoV-2 more effectively than usual therapy [104]. All these
trials confirm the potential role of inhalant medications as potent anti-COVID-19 therapies.

7.3. Aptamers

Aptamers are nucleic acid-based binding reagents with the same pathogen affinity
and specificity as antibodies [105,106]. Researchers recently developed long-lasting and
biologically active aptamers that block SARS-CoV-2 infection with high affinity and potency
by interrupting the interaction of the S protein RBD-ACE2 receptor. Beyond antibodies,
these aptamer-blocking techniques offer a fresh approach to COVID-19 treatment [105,106].
Heterodimerization of modified aptamers targeting nonoverlapping epitopes is a promising
technique for increasing potency and minimizing the influence of mutations on medication
efficacy. Aptamers have various advantages for treating COVID-19, including cheaper
production costs than antibodies, the lack of a cold chain, and the potential to be admin-
istered via inhalation [105]. As a result, they are seen to be strong candidates for future
anti-COVID-19 medication development. Notable aptamers in the early stages of devel-
opment are BC 007 and AS1411. Both aptamers passed phase 1 clinical tests [107], and
they are now in or have finished phase 2 tests [108]. Both have great safety profiles, as well
as good safety and tolerability in very ill patients, who would be the target patients for
COVID-19 disease [107,108]. AS1411 has previously gained FDA approval to conduct an
efficacy trial for COVID-19 disease [109].

8. Conclusions

The COVID-19 pandemic produced by SARS-CoV-2 has put a strain on the global
society not seen since World War II. This epidemic put the world’s healthcare infrastructure
under strain, creating economic hardship and posing significant challenges in the discovery
of treatments. Hundreds of notable articles have been published since the onset of this
pandemic to justify the cause of viral spread, viable preventive measures, and future
approaches to be used. This review has been created to save our readers’ time and effort by
discussing advances in the development of anti-COVID-19 medications. This evaluation
includes a wide spectrum of currently used and approved therapies. Furthermore, we
went over the molecular mechanisms of action of these medicines in depth. Potential
compounds, such as flavonoids and aptamers that could lead to a breakthrough in the
creation of new anti-COVID-19 pharmaceuticals have also been identified, and a new
route of drug delivery (inhaled medications) appears intriguing but warrants further
investigation. Future pandemic threats cannot be avoided, necessitating a more targeted
response; biological information must be transferred into specific treatment concepts for
testing. Targeting the repurposing of existing drugs is a simple and accessible means of
combating such emerging dangers, which is crucial in the early response, but potentially
innovative therapies require extensive study and a stable trial setting.
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