
Citation: Choi, J.-W.; Kim, S.-W.; Kim,

H.-S.; Kang, M.-J.; Kim, S.-A.; Han,

J.-Y.; Kim, H.; Ku, S.-Y. Effects of

Melatonin, GM-CSF, IGF-1, and LIF

in Culture Media on Embryonic

Development: Potential Benefits of

Individualization. Int. J. Mol. Sci.

2024, 25, 751. https://doi.org/

10.3390/ijms25020751

Academic Editor: Jacek Z. Kubiak

Received: 21 November 2023

Revised: 2 January 2024

Accepted: 3 January 2024

Published: 6 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Effects of Melatonin, GM-CSF, IGF-1, and LIF in Culture Media
on Embryonic Development: Potential Benefits
of Individualization
Jung-Won Choi 1,†, Sung-Woo Kim 2,3,†, Hee-Sun Kim 1, Moon-Joo Kang 1, Sung-Ah Kim 1, Ji-Yeon Han 2,3 ,
Hoon Kim 2,3 and Seung-Yup Ku 2,3,4,*

1 Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University
Hospital, Seoul 03080, Republic of Korea; cjungwon0702@gmail.com (J.-W.C.); 20555@snuh.org (H.-S.K.);
20717@snuh.org (M.-J.K.); 21358@snuh.org (S.-A.K.)

2 Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea;
sungwookim@snu.ac.kr (S.-W.K.); garda747@gmail.com (J.-Y.H.); obgyhoon@gmail.com (H.K.)

3 Department of Obstetrics and Gynecology, Seoul National University College of Medicine,
Seoul 03080, Republic of Korea

4 Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University,
Seoul 03080, Republic of Korea

* Correspondence: jyhsyk@snu.ac.kr; Tel.: +82-2-2072-2388
† These authors contributed equally to this work.

Abstract: The implantation of good-quality embryos to the receptive endometrium is essential for
successful live birth through in vitro fertilization (IVF). The higher the quality of embryos, the higher
the live birth rate per cycle, and so efforts have been made to obtain as many high-quality embryos
as possible after fertilization. In addition to an effective controlled ovarian stimulation process to
obtain high-quality embryos, the composition of the embryo culture medium in direct contact with
embryos in vitro is also important. During embryonic development, under the control of female
sex hormones, the fallopian tubes and endometrium create a microenvironment that supplies the
nutrients and substances necessary for embryos at each stage. During this process, the development
of the embryo is finely regulated by signaling molecules, such as growth factors and cytokines
secreted from the epithelial cells of the fallopian tube and uterine endometrium. The development
of embryo culture media has continued since the first successful human birth through IVF in 1978.
However, there are still limitations to mimicking a microenvironment similar to the reproductive
organs of women suitable for embryo development in vitro. Efforts have been made to overcome the
harsh in vitro culture environment and obtain high-quality embryos by adding various supplements,
such as antioxidants and growth factors, to the embryo culture medium. Recently, there has been an
increase in the number of studies on the effect of supplementation in different clinical situations such
as old age, recurrent implantation failure (RIF), and unexplained infertility; in addition, anticipation
of the potential benefits from individuation is rising. This article reviews the effects of representative
supplements in culture media on embryo development.

Keywords: supplements; culture media; embryonic development; individualization; in vitro fertilization

1. Introduction

Since the birth of the first baby conceived through in vitro fertilization (IVF) in the
late 1970s, IVF has continuously developed as an important field of assisted reproductive
technology (ART), providing numerous infertile couples with the opportunity to bear
children. Among its pivotal components of IVF, the quality of embryos plays a crucial role
in determining the success of IVF procedures. The transfer of good-quality embryos has
been shown to result in higher rates of clinical pregnancy and live birth [1]. The transfer
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of poor-quality embryos was associated with an increase in the miscarriage rate, which
ultimately led to a decrease in the live birth rate [2,3].

Embryo culture media constitute a vital aspect of the IVF process, providing a con-
trolled environment for embryo development outside the maternal uterus [4]. In vitro
cultured embryos often show delayed or abnormal development during the cell division
phase, suggesting a lack of essential factors that are naturally present within the female re-
productive tract. Researchers have investigated supplementing culture media with various
bioactive molecules due to the increased prevalence of infertility stemming from factors
like advanced age, recurrent failure (RIF), and unexplained infertility [5–9].

This review aims to summarize the effects of various supplements in culture media
on embryo development by comprehensively reviewing the existing literature. The study
population, experimental methodologies, and outcomes from in vitro and in vivo studies
were examined, focusing on the impact of supplements on various aspects of embryo
development, including embryo quality, blastocyst formation, implantation potential, and
pregnancy outcomes. Through a thorough evaluation of existing evidence, this review
endeavors to consolidate our understanding of the potential advantages of incorporating
these supplements into embryo culture media. Ultimately, a comprehensive assessment of
their effects will aid in optimizing the culture conditions for improving the outcomes of IVF
procedures, offering new avenues to enhance the success rates and overall reproductive
health of individuals undergoing ART.

2. Effect of Supplements in IVF Culture Media on Embryonic Development

Since the first human IVF baby was born on 25 July 1978, there have been great
advancements in clinical human embryo culture conditions [10,11]. Culture conditions that
affect embryos cultured in vitro are crucial factors related to pregnancy outcomes [12–16].
Among air quality, culture medium, incubator type, temperature, and pH, the composition
of the culture medium holds paramount importance, as it is in direct contact with the
embryo and engages with it via paracrine and autocrine mechanisms [17].

Research on the impact of embryo culture media on embryos in ART cycles has inves-
tigated parameters such as embryo quality, pregnancy outcomes, and neonatal outcomes.
In a comparative study of two culture media, GIII (Vitrolife, Gothenburg, Sweden) media
exhibited higher quality and more viable embryos, and correlated with heightened rates
of implantation and pregnancy success in frozen–thawed cycles compared to G1.2-G2.2
(Vitrolife, Gothenburg, Sweden) media [18]. Similarly, significant differences were observed
between the G5 culture medium and HTF culture medium in implantation rates, clinical
pregnancy rate, and birth weight [19]. A UK study reported the impact of eight different
culture media types—Cook sequential, Irvine Single-step, LifeGlobal Single-step, Sage
sequential, and Vitrolife sequential, among others—on the live birth rate [20]. Conversely,
there are studies indicating no difference in miscarriage rate, live birth rate, and birth
weights among different culture media [21,22]. Efforts have been made to enhance culture
media for in vitro embryos, recognizing the pivotal role of medium composition compared
to the in vivo environment’s trophic support. Therefore, four different culture media most
commonly used for embryo development, namely, G-TL (Vitrolife, Gothenburg, Sweden),
1-Step (Origio, Måløv, Denmark), Global-Total (LifeGlobal, Guilford, CT, USA), and CSC
(Irvine Scientific, Santa Ana, CA, USA), were investigated with a focus on their composition
in terms of components critical for embryo growth (Table 1) [23–30]. The primary energy
substrates for preimplantation embryos include pyruvate, lactate, and glucose, which were
present in all four media, albeit at varying concentrations. Amino acid compositions and
ionic electrolyte levels also varied significantly among the four media [31,32]. The amino
acid and electrolyte levels should be maintained in the embryo culture media for synthesis
of protein, cell signaling, metabolism, cell balance, pH and membrane stability [33,34].
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Table 1. Components of single-step media for human embryo culture and their concentrations.

Component Role in Embryo Development Global-Total CSC G-TL 1-Step

Glucose (mM) Primary energy source during postcompaction stage 0.18 0.47 0.97 0.19
Lactate (mM) Primary energy source during precompaction stage 4.9 5.71 10.01 4.35

Pyruvate (mM) 0.24 0.28 0.55 0.22
Essential

amino acids (µM)
Arg Osmolytes 278 292 324 336
Cys Buffers of internal pH 32 34 26 28
His 76 80 89 90
Ile Antioxidants 182 199 215 204

Leu Protein synthesis, antioxidants 177 188 204 206
Lys Chelators for heavy metals 154 168 182 182
Met Osmolytes, chelators for heavy metals 44 50 54 54
Phe Antioxidants 79 83 91 92
Thr Energy source, osmolytes, antioxidants 162 176 184 204
Trp Biosynthetic precursor molecules 18 20 21 23
Tyr Protein synthesis 69 75 80 83
Val Biosynthetic precursor molecules, antioxidants 163 174 200 196

Nonessential
amino acids (µM)

Ala Buffers of internal pH, antioxidants 46 48 63 38
Asn Energy source 42 46 40 36
Asp Energy source, osmolytes, chelators for heavy metals 42 43 12 58
Glu Energy source, osmolytes 40 41 0 49

Gln Energy source, biosynthetic precursor molecules,
protein synthesis 0 0 10 36

Gly Energy source, osmolytes 42 44 185 48
Pro Osmolytes 55 60 126 66
Ser Osmolytes, antioxidants 40 42 96 46
Tau Antioxidants 0 0 48 0

Calcium (mM) Metabolic parameters and macromolecular synthesis
through cell-to-cell interaction

1.6 1.9 1.0 2.1
Magnesium (mM) 0.24 0.78 1.62 1.78

Potassium (mM) High concentrations in oviduct fluid relative
to serum 2.8 2.8 5.5 2.9

Signal pathways regulate transcription factors that the embryo encounters, poten-
tially altering its development competence [35–40]. Supplements in embryo culture
media include hormones, growth hormones, growth factors, and cytokines. In this re-
view, we selected the most frequently studied supplementations for each class of com-
pound for investigation. Hence, we have chosen four molecules—melatonin, GM-CSF,
IGF-I, and LIF—and conducted a review regarding their molecular signal pathways
(Figure 1) and potential impact on pre-implantation embryo development and, if available,
pregnancy outcomes.

2.1. N-Acetyl-5-Methoxytryptamine (Melatonin)

Melatonin, derived from tryptophan and originating in the pineal gland, exhibits
a circadian rhythm and is primarily secreted during the dark hours of the night [41,42].
It is predominantly synthesized within the mitochondria, and can easily pass through
the cell membrane due to its amphiphilic nature [43,44]. Melatonin acts as an activator
of antioxidants and regulator of inflammation, effectively scavenging free radicals in
organisms [45–47]. Melatonin could increase the activity of other antioxidant enzymes,
such as glutathione and superoxide dismutase (SOD), and is an inhibitor of pro-oxidant
enzymes. In mammals, the melatonin receptor functions as a G protein-coupled protein
(GPCR) with two known types: Mt1 and Mt2 [48]. The elevated expression of proteins
(NRF2 and KEAP1) after melatonin treatment offers evidence that melatonin effectively
protects IVF-derived embryos from oxidative stress through the Nrf2/ARE signaling
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pathway [49]. Melatonin exhibits antioxidant properties by regulating the expression of
NFE2L2, SOD1, GPX1, and GPX4 genes. Melatonin also activates essential genes, such as
ErbB1, ErbB4, GJA1, POU5F1, Nanog, and vascular endothelial growth factor (VEGF) and VEGF
type 1 receptor (VEGF-R1), which are involved in embryo implantation, blastocyst growth,
and angiogenesis (Figure 1) [50–52].
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Figure 1. An illustrative schematic depicts how melatonin, GM-CSF, IGF-1, and LIF pathways func-
tion in embryo culture media, showing their expected effects. Melatonin binding to MT1,2 receptors 
trigger the KEAP1/NRF2 complex formation. Protein kinases aid NRF2 dissociation, enabling its 
translocation. NRF2, post-translocation, binds ARE, initiating transcription of SOD and GPX1 and 
activating POU5F1 and Nanog. GM-CSF binds to its receptors, GM-CSFRα/β. Upon binding, the re-
ceptors undergo autophosphorylation, activating the JAK1,2/STAT3,5 pathway. Once STATs are ac-
tivated, they translocate and form dimer to suppress target genes, including heat shock protein and 
Gas5. IGF-Ⅰ interacts with its receptors, IGF-ⅠR. Upon binding, the receptor autophosphorylates and 
recruits IRS-1/2 and Shc. This activates the PI3K/Akt/mTOR pathway and S6K1 gene. Simultane-
ously, Shc recruitments activate the Ras/Raf/MEK/ERK pathway and cMyc gene. LIF binds to its 
receptor, LIFR, along with gp130. Upon binding, it promotes receptor heterodimerization, trigger-
ing the activation of the JAK1,2/STAT3 pathway. This activation results in the regulation of apopto-
sis-related genes, such as Bcl-2, p53, and survivin. It also activates the crucial transcription genes, 
Oct-4 and Cdx-2. These supplementations ultimately have the potential to reduce oxidative stress in 
the embryo and elevate mitotic activity and survival, thus presenting promise for successful implan-
tation. The do ed line indicates translocation in each pathway. This Figure was created using PPT 
Drawing Toolkits-BIOLOGY Bundle from Motifolio, Inc, and created with BioRender.com. 
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Figure 1. An illustrative schematic depicts how melatonin, GM-CSF, IGF-1, and LIF pathways func-
tion in embryo culture media, showing their expected effects. Melatonin binding to MT1,2 receptors
trigger the KEAP1/NRF2 complex formation. Protein kinases aid NRF2 dissociation, enabling its
translocation. NRF2, post-translocation, binds ARE, initiating transcription of SOD and GPX1 and
activating POU5F1 and Nanog. GM-CSF binds to its receptors, GM-CSFRα/β. Upon binding, the
receptors undergo autophosphorylation, activating the JAK1,2/STAT3,5 pathway. Once STATs are
activated, they translocate and form dimer to suppress target genes, including heat shock protein
and Gas5. IGF-I interacts with its receptors, IGF-IR. Upon binding, the receptor autophosphory-
lates and recruits IRS-1/2 and Shc. This activates the PI3K/Akt/mTOR pathway and S6K1 gene.
Simultaneously, Shc recruitments activate the Ras/Raf/MEK/ERK pathway and cMyc gene. LIF
binds to its receptor, LIFR, along with gp130. Upon binding, it promotes receptor heterodimerization,
triggering the activation of the JAK1,2/STAT3 pathway. This activation results in the regulation of
apoptosis-related genes, such as Bcl-2, p53, and survivin. It also activates the crucial transcription
genes, Oct-4 and Cdx-2. These supplementations ultimately have the potential to reduce oxidative
stress in the embryo and elevate mitotic activity and survival, thus presenting promise for successful
implantation. The dotted line indicates translocation in each pathway. This Figure was created using
PPT Drawing Toolkits-BIOLOGY Bundle from Motifolio, Inc, and created with BioRender.com.

During embryo development, oxygen is used in three pathways to produce adeno-
sine triphosphate, fulfilling energy needs and converting some of it into reactive oxygen
species (ROS) [53,54]. ROS, including the superoxide anion (O2

−), hydrogen peroxide
(H2O2), and the hydroxyl radical (•OH), can accumulate inside gametes and embryos due
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to oocyte activation, cleavage, transcription regulation, and hatching to implantation and
exogenous factors during ART [55–62]. Optimal ROS levels sustain cellular metabolism
and embryonic development, while excessive ROS may adversely impact embryo mor-
phokinetics, gene expression, and survival [63,64]. Cells have antioxidant mechanisms to
defend against these ROS [65]. There are two categories of antioxidant systems: enzymes
like SOD, catalase, and glutathione peroxidase (GSH); and non-enzyme types like vitamins,
polyphenols, carotenoids, and minerals. During the in vivo preimplantation stage of em-
bryo development, embryos protect themselves with oxygen scavengers that are present
in the reproductive tract, such as vitamins, pyruvate, GSH, SOD, and cysteamine [66].
However, embryos cultured in vitro rely solely on their intrinsic antioxidant pathways to
rescue ROS without support from the maternal environment. Therefore, although there
are still pros and cons, the need for research to reduce ROS by adding antioxidants to the
embryo culture medium has emerged.

Among the studies investigating the effects of melatonin, half were retrospective
randomized controlled trial (RCT)s on humans and the rest were studies on animals
(Table 2). Most recently, a human clinical study using 10−7 M of melatonin in the embryo
culture medium investigated the blastocyst development rate and gene expression [67].
The addition of melatonin to the embryo culture medium improved the rate of high-quality
day 3 embryos (29.6% (Melatonin) vs. 19.5% (Control), p = 0.0123) in patients with repeated
poor-quality-embryos, although no significant difference was observed in the clinical
pregnancy rate. In addition, melatonin enhanced the blastocyst development rate (42.25%
(Melatonin) vs. 26.38% (Control), p < 0.05) in the patients with frozen–thawed cycles. The
ROS levels did not differ significantly between the two groups, but only the CAT gene
exhibited a significant increase in the cultured blastocysts among the anti-apoptosis and
antioxidant genes (1.68 ± 0.43 (Melatonin) vs. 1.00 ± 0.09 (Control), p < 0.05). This research
indicates that melatonin supplementation could benefit repeated poor-quality embryos
as well as frozen–warmed embryos in terms of the preimplantation embryo development
rate and quality. It suggests that further research is needed using a large-scale sample and
focusing on implantation outcomes.

Another human study investigated the embryonic development rate, implantation
rate, and live birth rate based on the presence or absence of melatonin supplementations;
this study used 140 patients who underwent at least one failed repeated IVF/ICSI cycle [68].
The melatonin group showed a significant increase in fertilization rate (87.7% (Melatonin)
vs. 83.6% (Control), p < 0.01), cleavage development rate (94.1% (Melatonin) vs. 90.5%
(Control), p < 0.01), high-quality embryo rate (58.3% (Melatonin) vs. 43.8% (Control),
p < 0.0001), and high-quality blastocyst development rate (43.4% (Melatonin) vs. 22.9%
(Control), p < 0.0001). When the vitrified/warmed blastocysts were transferred, the implan-
tation rate (65.6% (Melatonin) vs. 9.7% (Control), p < 0.0001) and the clinical pregnancy
rate (40.0% (Melatonin) vs. 11.7% (Control), p < 0.0001) were significantly higher in the
melatonin group. Notably, the melatonin group included two women who delivered two
healthy individual newborns. This demonstrates that melatonin-containing embryo culture
media could increase both preimplantation embryo development and clinical outcomes;
this finding particularly stands out with regard to the implantation rate and live births in
patients with repeated failed IVF/ICSI cycles.

Another RCT was carried out with polycystic ovary syndrome (PCOS) patients with
in vitro maturation (IVM)-IVF cycles; in this RCT, 10 µmol/L of melatonin was added
to the culture medium [69]. PCOS patients showed significantly higher implantation
rates in the melatonin-supplemented group both when using non-stimulation protocols
(22.6% (Melatonin) vs. 11.6% (Control), p < 0.05) and human chorionic gonadotropin (hCG)
priming protocols (26.4% (Melatonin) vs. 12.7% (Control), p < 0.05). However, there were
no differences in embryo development competency and ongoing pregnancy rate. This
study showed that melatonin could bring beneficial effects to PCOS patients’ IVM and
implantation competency.
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The most recent study with in vivo-derived and in vitro-derived porcine embryo
examined the effects of the sequential addition of melatonin to the IVM, IVF, and culture
medium by development competence [70]. Melatonin accelerated embryo development
(p < 0.05), showing a significant increase in the cleavage development rate (p < 0.001) while
indicating no notable difference in the blastocyst rate. Additionally, intracellular glutathione
levels, (~40% increase, p < 0.03) showed a significant increase, while the reactive oxygen
species level showed a significant decrease (~26% decrease, p < 0.01) in the melatonin
group. Ultimately, this study shows that exogenous melatonin addition could increase the
cleavage development rate but not the blastocyst development rate or its cell number. In
addition, the study suggests that melatonin supplements in culture media function like
antioxidants; this finding was supported by a decrease in the intracellular levels of oxygen
free radicals and deoxyribo nucleic acid (DNA) damage in in vitro porcine embryos.

The animal study analyzed the developmental rate and gene expression using 10−7 M
melatonin, investigating its impact on in vitro vitrified/warmed bovine embryos [71]. The
melatonin group exhibited a higher cleavage development rate (87.78 ± 1.02% (Melatonin) vs.
82.50 ± 1.12% (Control), p < 0.05) and blastocyst development rate at day 7 (38.33 ± 2.21%
(Melatonin) vs. 26.67± 1.05% (Control), p < 0.05) compared to the control group. Furthermore,
melatonin improved the re-expansion of vitrified/warmed blastocysts and development-
related gene expression levels. In summary, this finding indicates that melatonin enhances
the progression of in vitro embryo development and the cryotolerance of blastocysts. In
addition, vitrified/warmed blastocysts demonstrated increased re-expansion rates, potentially
mediated by the regulation of gene expression, including DNMT3A, OCC, CDH1, and AOP3.

Using 10−7 M of melatonin, the same author investigated the effects of melatonin on
embryo development competence and its impact on conception and birth outcomes [72].
There was a significant difference in the cleavage development rate (92.0 ± 5.68% (Mela-
tonin) vs. 89.3 ± 4.17% (Control), p < 0.05) and the blastocyst development rate
(80.3 ± 4.57% (Melatonin) vs. 64.6 ± 6.04% (Control), p < 0.05) in the melatonin group.
Using a recipient mouse with transferred embryos, the implantation rate (95.0 ± 3.42%
(Melatonin) vs. 67.8 ± 5.03% (Control), p < 0.01), litter size (4.1 ± 0.37 pups/litter (Mela-
tonin) vs. 2.7 ± 0.42 pups/litter (Control), p < 0.05), and the survival rate (96.8 ± 2.15%
(Melatonin) vs. 81.2 ± 4.36 (Control), p < 0.05) were increased in the melatonin group
while the body weight of the offspring was comparable between the two groups. Addi-
tionally, gene expressions associated with antioxidant and apoptotic factors were regulated
differently in embryos at each developmental stages in the two groups. The author con-
cluded that a higher pregnancy rate could be linked to the improved blastocyst following
melatonin treatment, as the melatonin group showed an increase in the cell number of
blastocysts and decreases in the apoptotic rate. Similarly, improved pregnancy quality in
recipients led to the birth of heal their offspring, resulting in increased postnatal survival.

Overall, current studies support the finding that melatonin may enhance preimplan-
tation embryonic development [67,68,70–72] and the success rate of implantation [68,72],
as indicated by human clinical studies and animal research. Furthermore, some studies
indicate that melatonin could result in a reduction in ROS during embryo development, and
this may lead to a decrease in DNA damage [70,72,73]. While human studies have shown
consistent results, the dosage of melatonin varied within the same species, highlighting the
need for further research to standardize its dosage before clinical application. Additionally,
the exact mechanism by which melatonin affects embryos in in vitro culture remains un-
clear. Since melatonin is not a major essential factor for pregnancy, there is a greater need
to determine whether its addition to culture media has any negative impact on fetus and
perinatal outcomes. Therefore, further investigation of the downstream signaling pathways
is necessary to gain a precise understanding of how melatonin influences embryo develop-
ment. Additionally, melatonin operates in conjunction with other molecules rather than
in isolation, potentially forming intricate interactions. Thus, a comprehensive approach
encompassing diverse perspectives is imperative for its thorough research and application.
Melatonin shows promise as a beneficial addition to embryo culture media, particularly
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when substantiated by studies featuring a larger sample size, multicenter involvement, and
comprehensive long-term follow-ups, including birth outcomes.

Table 2. Effects of melatonin in culture media on embryonic development and pregnancy outcomes.

Year Model Study
Type

Dose of
Melatonin

Timing of
Intervention

Cleavage
Development

Rate

Blastocyst
Development

Rate

Embryo
Grade

Implantation
Rate

Live
Birth
Rate

Ref.

2022
Human
(unex-

plained
infertility)

RCT 10−7 M
COC - - ↑

day 3 - - [67]
Day 3 embryo

after vitri-
fied/warmed

- ↑ ↑
day 5 - -

2022 Human
(RIF) RCT 10−9 M

COC or
oocyte ↑ ↑

↑, ↑
day 3, day

5
↑ ↑ [68]

2013 Human
(PCOS) RCT 10−6 M

Immature
COC

surrounded
by compact

cumulus cells

→ - →
day 3 ↑ - [69]

2022 Porcine animal 10−9 M
Presumed

zygote ↑ → - - - [70]

2014 Bovine animal 10−7 M Zygote ↑ ↑ - - - [71]
2013 Murine animal 10−7 M Zygote ↑ ↑ - - ↑ [72]

-: not analyzed;→: non-significance; ↑: significantly increased.

2.2. Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF)

GM-CSF, also known as CSF2, is the most well-studied cytokine among the CSF group
of cytokines. GM-CSF has specific receptors that are comprised a cytokine-specific α-chain
(GM-Rα) and b-chain (GM-Rβ) [74,75]. The main target cells of GM-CSF are immune cells,
myeloid cells, dendritic cells, lymphocytes, and macrophages identified by its receptors [76].
GM-CSF has mediated cell survival, differentiation, adhesion, growth, and even immune
regulation. In mice, GM-CSF k/o mice showed decreases in litter size and litter weights
and increased fetal death [77]. GM-CSF is synthesized in the epithelial cells of the female
reproductive tract and plays a crucial role by altering its activity during pregnancy [78–82].
GM-CSF appears in its highest levels from conception to early implantation and then
gradually declines; then, it is produced by chorionic villi cells and decidual cells until
labor [83–85]. Unlike most growth factors and cytokines, GM-CSF cannot be produced
by the embryo. Rather, as confirmed in both human and mouse models, its receptor
synthesis occurs during the preimplantation stage of embryo development [86,87]. Several
studies have shown that GM-CSF has positive effects on embryo development, including
blastocyst quality, the survival rate, and the expression of genes which are associated with
apoptosis [86,88,89]. In other species, mouse embryos cultured with GM-CSF showed
evidence of reduced apoptosis [11,90]. There are already commercial embryo culture
media supplemented with GM-CSF, namely, EmbryoGen® (Origio, Måløv, Denmark) and
BlastGen™(Origio, Måløv, Denmark).

The binding of GM-CSF to its receptor initiates the activation of janus kinase (JAK)
2 and JAK1 kinases, facilitated by the transphosphorylation of these kinases following
receptor subunit oligomerization. Activation of JAK kinases leads to tyrosine phosphory-
lation, creating docking sites for two members of the signal transducers and activators of
transcription (STAT) family. GM-CSF functions through the JAK1,2/STAT3,5 pathway, in-
hibiting the expression of heat shock protein (HSP) and apoptosis pathway genes Cbl, Hspa5,
Hsp90aa1, Hsp90ab1, and Gas5, thereby facilitating the growth and survival of embryos
(Figure 1) [89,91]

Of the seven studies involving GM-CSF, six studies were human studies (Table 3).
One of these was a human retrospective study of the effect of a dose of 0.6 ng/mL of
GM-CSF [92]. The objective of this study was to investigate the effect of relatively low
concentrations of GM-CSF on human embryo quality and the clinical outcomes with fresh
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embryo transfer cycles. This study retrospectively grouped patients by age, based on the
use of GM-CSF, and compared them accordingly. Regardless of the patient’s age, there were
no significant differences in the cleavage development rate, blastocyst development rate,
blastocyst morphology grade, and the clinical outcomes. However, the group with patients
aged over 38 years old showed a significant increase in the cleavage development rate
(99.4% (GM-CSF) vs. 97.8% (Control), p = 0.027) and the blastocyst development rate (45.7%
(GM-CSF) vs. 34.9% (Control), p = 0.028). There were no comparable data on pregnancy
outcomes and infant characteristics. This result demonstrates that 0.6 ng/mL of GM-CSF
has no beneficial effect on pregnancy outcomes but has an advantage in patients older than
38 years in terms of increasing the opportunity for embryos.

A study utilizing commercial embryo culture media containing GM-CSF evaluated
embryo quality and clinical outcomes among patients meeting inclusion criteria indicative
of poor prognoses [93]. The researchers adjusted for age, body mass index, and fertilization
procedure for the results. There was no significant difference in the cleavage development
rate between the two groups, but there was a significant decrease in blastocyst development
rate (OR 0.70, p = 0.02) and embryo grade (OR 0.35, p = 0.009) in GM-CSF group. After
embryo transfer, there was no statistical difference between the two groups in live birth,
and the fetal heart rate. In summary, it showed the negative effects of GM-CSF media on
the blastocyst development rate and the embryo grade in patients with poor prognoses,
while comparable results were observed in clinical outcomes.

Another RCT conducted an explorative secondary analysis based on Ziebe [94] to
investigate the implantation potential of poor-quality embryos [95]. The main finding that
GM-CSF could not increase the implantation rate for embryos, which are morphologically
poor grade on day 3. According to the morphological quality on the day of transfer, there
were no statistical differences in total ongoing pregnancy at week 12 and total live birth rate
between subjects with GM-CSF and without GM-CSF in top-/intermediate-/poor-grade
embryo groups. The researchers concluded that GM-CSF in human embryo culture did not
alter clinical results, including ongoing pregnancy rate, live birth rate, and pregnancy loss,
in morphological poor-quality embryos. There is a limitation to this study: it shows only
favorable effects in top-grade embryo quality and not in the quality of poor-grade embryos.

The earliest human study using GM-CSF containing commercial culture media was
carried out with patients who previously failed an ART attempt [96]. Although there was
no statistical difference between the two groups in the frequency of the clinical pregnancy
rate, the GM-CSF group showed significant increases in the implantation rate at 7 weeks
(20.4% (GM-CSF) vs. 11.6% (Control), p < 0.05) and 12 weeks (17.4% (GM-CSF) vs. 9.1%
(Control), p < 0.001). This research demonstrated the positive effects of GM-CSF on the
implantation rate of patients who underwent failed IVF/ICSI cycles; however, this study
was conducted over a short period of six months, and patient characteristics are lacking.

One of the major studies in which GM-CSF containing culture media could be pro-
duced using commercial culture media was conducted with patients from 14 fertility
clinics [94]. A total of 1332 patients were mainly divided into two groups: EmbryoAssist
medium, with 2 mg/mL human serum albumin (HSA) or 5 mg/mL HSA, and supple-
mentation, with or without 2 ng/mL GM-CSF. There was no statistical difference in the
top-quality rate of day-3 embryos. The results showed that supplementation of GM-CSF
with low HSA to embryo culture media produced significant increases in the ongoing
implantation rate (23.0% (GM-CSF) vs. 19.7% (Control), p = 0.02) and the live birth rate
(28.9% (GM-CSF) vs. 24.1% (Control), p = 0.03). The researchers also showed exploratory
data for subgroups who had previous miscarriages. These data showed efficacious results
in the ongoing implantation rate (23.2% (GM-CSF) vs. 16.5% (Control), p = 0.003) and
the live birth rate (29.6% (GM-CSF) vs. 23.1% (Control), p = 0.02) when using GM-CSF.
This study indicated that GM-CSF had positive effects on the ongoing implantation rate
and the live birth rate and that these effects were further enhanced in patients who un-
derwent a previous miscarriage. This study holds significance in demonstrating GM-CSF
stability in embryo culture media. Although exploratory subgroup study requires further
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investigation, this analysis has shown promise that GM-CSF may function positively in
particular patients.

Another study determined the developmental potential of early embryos depending
on the presence or absence of GM-CSF in embryo culture in a mouse model [97]. The
blastomere was mechanically isolated to minimize the specificity of each embryo and
was assigned to different groups. The 4-cell rate (59.33% (GM-CSF) vs. 53.57% (Control)
p < 0.05) showed a significant increase in the GM-CSF group, although no significant
difference in blastocyst development rate, blastocyst size (93.89 ± 4.93 µm (GM-CSF) vs.
81 ± 3.02 µm (Control), p < 0.05), and cell number (52.8 ± 1.79 (GM-CSF) vs. 44.7 ± 2.84
(Control), p < 0.05) were demonstrated in the GM-CSF group.

Based on a multicenter study targeting patients with a history of previous miscarriage,
which noted an increase in the ongoing pregnancy rate and live birth rate [94], subsequent
RCTs conducted on infertility patient groups have shown either a negative effect [93] or
a non-significant effect with GM-CSF [92,95]. There were no consistent research findings
demonstrating a positive effect consistent enough to suggest routine use of GM-CSF in
specific patient groups. Despite the availability of commercial media containing cytokines
with determined optimal concentrations, the widespread adoption of routine application
has not ensued. Among the seven RCTs reviewed, three studies indicated a significant
increase when GM-CSF was added to the embryo culture medium, while the remaining
four studies showed either non-significant or negative effects. This suggests uncertainty
regarding the overall positive impact of GM-CSF on a broader scale.

Table 3. Effects of GM-CSF in culture media on embryonic development and pregnancy outcomes.

Year Model Study
Type

Dose of
GM-CSF

Timing of
Intervention

Cleavage
Development

Rate

Blastocyst
Development

Rate

Embryo
Grade

Implantation
Rate

Live
Birth
Rate

Ref.

2020 Human
(infertility)

Retrospective
study

0.6
ng/mL

After
fertilization →,↑ →,↑ → → - [92]

2020 Human
(RIF) RCT

2 ng/mL
(EmbryoGen,
BlastGen)

COC or
oocyte → ↓ ↓ - → [93]

2020 Human
(infertility)

Explorative
sec-

ondary
RCT

2 ng/mL COC or
oocyte - - - - → [95]

2014 Human
(RIF) RCT 2 ng/mL

(EmbryoGen)
COC or
oocyte - - → ↑ - [96]

2013
Human

(unexplained
infertility)

Multicenter
RCT

2 ng/mL COC or
oocyte

→ - →
day3 ↑ ↑ [94]

→ → →
day3 ↑ ↑

2008 Murine Animal 2 ng/mL

Isolated
blastomere
from 2-cell

stage

↑ → - - - [97]

-: not analyzed;→: non-significance; ↑: significantly increased; ↓: significantly decreased.

2.2.1. Insulin-like Growth Factor 1 (IGF-I)

The human reproductive tract produces numerous growth factors, and the preimplan-
tation embryo expresses those receptors to maintain the maternal–fetal interface. Therefore,
clinical reports have been produced concerning the effects of controlled ovarian stimulation
using different types of growth factors to increase the success rate IVF [98–101]. Among
various types of growth hormones, the insulin-like growth factor (IGF) family includes
peptide hormones consisting of two ligands (IGF-I, IGF-II), their receptors, and IGF-binding
proteins [102,103]. IGF-I comprises a small amino acid chain and is linked to its receptor,
IGF-IR. Various mammalian species expressed IGF-I and IGF-II ligands, along with their
respective receptors, at the mRNA or protein level in early embryos [6,104–107]. Addition-
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ally, IGF-I is produced by the female reproductive tract, the fallopian tube, follicle fluid,
and uterine fluid [108,109].

The IGFs are involved in a variety of roles promoting cell growth, proliferation,
differentiation, and anti-apoptosis by acting as endocrine, paracrine, and autocrine fac-
tors [110–112]. IGF plays pivotal roles in various functions, including follicle growth and
subsequent embryonic development [113–117]. There have been previous studies utilizing
animal models to investigate the effects of IGF in preimplantation embryo culture media;
these studies demonstrated an increase in blastocyst formation rate, cell number, glucose
uptake, and a decrease in apoptosis [118–120]. Additionally, a postnatal experiment in mice
indicated a significant reduction in body weight in IGF-I(-/-) mutant mice compared to
wild-type mice [121].

Growth hormone (GH) and insulin-like growth factor (IGF)—which is closely related to
GH—are found in various reproductive tissues, indicating that the GH/IGF axis may directly
influence the development. GH and IGF have the ability to modulate key signal transduction
pathways involved in cell division and hormone production, such as the mitogen-activated
protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), Jak/STAT, and phos-
phoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathways. When IGF interacts with the
insulin receptor, it triggers the recruitment and phosphorylation of either insulin receptor
substrate-1 or -2 (IRS-1 or -2). Although IGF-IR and the insulin receptor use the same pathway
through IRS-1 and PI3K, IGF-IR acts dependently on IRS-1 and PI3K [122,123]. ERK1/2
enhances cellular mitogenic signals and can be activated by PLC/PKC through increased
intracellular calcium and indirectly through PKA. These pathways have downstream associa-
tions with S6K1, GSK3, and GLUT4/8, which play a role in apoptosis, glucose homeostasis,
glycogen synthase, and glucose transport (Figure 1) [124–128].

The studies related to IGF-I were divided into two subcategories: those using a
mixture of IGF-I with other substances and those using IGF-I alone (Table 4). There was a
foundational study conducted using IGF-I in culture media that are related to the study of
human embryos [107], based on which, the effects of IGF-I during human preimplantation
embryo development were investigated [129]. After fertilization, day 2 embryos of good
morphology were cultured with or without 13 ng/mL IGF-I up to day 6. Embryos in the
IGF-I group showed a significantly increased rate of blastocyst formation (74% (IGF-I)
vs. 49% (Control), p < 0.05). In addition, these embryos showed decreased numbers of
apoptotic nucleus cells in the IGF-I group (16.3 ± 2.9% (IGF-I) vs. 8.7 ± 1.5% (Control),
p < 0.01). However, there was no difference in total cell number between the two groups.
The study should have taken into consideration that patient characteristics may not have
been randomly distributed and that IGF- I treatment was initiated after day 2. Regardless,
this study demonstrated the possibility that IGF-I could reduce apoptosis, and outlined the
appropriate dose for human embryo culture.

Among the three experiments that examined the impact of using IGF- I exclusively in
embryo culture media, the most recent paper examined the effects of IGF-I on cat embryo
development [130]. This study contained three experimental designs, the last of which
experiment was excluded in this review, as it analyzed the effects of IGF-II. Using different
fertilization techniques, the cleavage development rate was studied. Briefly, one study
showed 20 ng/mL of IGF-I did not produce a statistically significant change in the cleavage
development rate compared to the control group, regardless of fertilization method, though
one of the designs showed a significantly higher morula rate (87.0% (IGF-I) vs. 52.2%
(Control), p < 0.05) and blastocyst development rate (43.5% (IGF-I) vs. 13.0% (Control),
p < 0.05) in single-culture group through IVF. In addition, in a group with combined
GM-CSF and IGF-I, a significant increase only in the morula rate (81.0% (Combination)
vs. 52.2% (Control), p < 0.05) of the single-culture group was demonstrated, but this
did not translate into an increase in the blastocyst development rate. Collectively, the
first experiment showed positive effects, the second experiment showed non-significant
effects, and the last experiment showed non-significant effects with IGF-I. The researchers
concluded that the maturation rate increased with IGF-I supplementation in the IVM
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medium; however, caution is required in interpreting this finding as it was inferred from
the cleavage development rate.

Another study analyzed the impact of IGF-I on the development of mouse em-
bryos [131]. In brief, this study confirmed that regardless of the culture media volume,
the presence of 10 ng/mL of IGF-I had no impact on the cleavage development rate but
notably increased the blastocyst development rate (p < 0.05). In addition, this study showed
the autocrine role of IGF-I by treating embryos with IGF-IR-neutralizing antibodies and
demonstrated increased phosphorylation of Akt in blastocysts after a 10 min treatment
with 100 ng/mL of IGF-I.

Table 4. Effects of IGF-I in culture media on embryonic development and pregnancy outcomes.

Year Model Study Type Dose of
IGF-I

Timing of
Intervention

Cleavage
Development

Rate

Blastocyst
Development

Rate

Implantation
Rate Ref.

2000 Human
(infertility)

Prospective
study 13 ng/mL

Day 2
embryos of

good
morphology

→ ↑ - [129]

2021 Cat Animal

10 ng/mL,
20 ng/mL
(GM-CSF
2 ng/mL)

COC → →, ↑ (20
ng/mL) -

[130]
20 ng/mL

(IGF-II
20 ng/mL)

COC → → -

20 ng/mL Oocyte → - -
→ - -

2019 Yak-cattle
crossbred Animal

100 ng/mL
(EGF 10 ng/mL,

L-cysteine
0.6 mM)

COC - ↑ - [132]

2013 Murine Animal 10 ng/mL Zygote → ↑ - [131]

2013 Bovine Animal 10 ng/mL
(EGF 10 ng/mL) Zygote → ↑ - [133]

2010 Bovine Animal

500,000 ng/mL
(IGF-II

10 µg/mL, bFGF
25 µg/mL, TGF-
β1 1 µg/mL,

GM-CSF
1 µg/mL, LIF

µg/mL)

Zygote - ↑ - [134]

2003 Bovine Animal 50 ng/mL Zygote → ↑ - [120]

-: not analyzed;→: non-significance; ↑: significantly increased.

Finally, a study determined the effects of IGF-I and epidermal growth factor (EGF)
in bovine embryo culture medium, respectively; however, we specifically emphasized
the role of IGF-I, as the combination outcomes were identical to the outcomes when
each substance was used individually [120]. In the experimental results for IGF-I, this
study showed significant differences in the blastocyst development rate (56.1% (IGF-I)
vs. 43.4% (Control), p < 0.01), the total cell number (162 ± 6.83 (IGF-I) vs. 141 ± 6.59
(Control), p < 0.05), and the apoptosis rate (2.1 ± 0.28 (IGF-I) vs. 3.3 ± 0.42 (Control),
p < 0.05) between the two groups. This study provided support for the positive effects of
IGF-I on in vitro bovine blastocyst development, particularly in reducing apoptosis.

2.2.2. Insulin-like Growth Factor 1 (IGF-I) Combined with Other Supplements

There are three studies that investigated the results of treating embryo culture media
with a combination of IGF-I and other substances such as EGF, GM-CSF, IGF-II, etc.

The substances of IGF-I, cysteine, and EGF treated with yak–cattle crossbred embryos
before fertilization [132]. All the parameters showed positive results in the maturation rate
(84.44 ± 0.02 (Combination) vs. 66.50 ± 0.04 (Control), p < 0.05), the cleavage development
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rate (80.45 ± 0.12 (Combination) vs. 64.77 ± 0.10 (Control), p < 0.05), and the blastocyst
development rate (38.67 ± 0.06 (Combination) vs. 21.16 ± 0.08 (Control), p < 0.05) with the
combination group compared to the control group. In addition, with treated IGF-I alone,
there was an increase in the blastocyst development rate (30.06 ± 0.05 (IGF-I) vs. 21.16 ± 0.08
(Control), p < 0.05), but the cleavage development rate did not show a statistical difference.
The researchers concluded that the combination of IGF-I, cysteine, and EGF could enhance
maturation rate and embryo development.

In another study, using bovine embryos, the effects of the combination of IGF-I and
EGF on embryo culture media were investigated [133]. There was a non-significant differ-
ence in the cleavage development rate between the groups, while the blastocyst develop-
ment rate was significantly increased in IGF-I with the EGF group (23.5% (Combination)
vs. 17.1% (Control), p < 0.05) and the EGF-alone group. In addition, the apoptosis rate in
blastocysts showed statically decreased data in the IGF-I with EGF (10.5 ± 0.7 (Combina-
tion) vs. 21.9 ± 1.6 (Control), p < 0.05) group and EGF-alone group compared to the control
group, respectively.

There is another study on the impact of a combination of various growth factors
and cytokines on bovine embryo culture medium [134]. The culture medium contained
six kinds of supplements: IGF-I, IGF-II, transforming growth factor beta (TGF-β), GM-
CSF, basic fibroblast growth factor (bFGF), and LIF. The researchers obtained positive
results regarding the effects of supplements on the blastocyst development rate (45%
(Combination) vs. 24% (Control without serum), p < 0.05) and the blastocyst cell number
(154 ± 15 (Combination) vs. 125 ± 11 (Control without serum), p < 0.05). Combination
groups showed a significant increase in hatched blastocyst development rate, compared to
the control, with 10% fetal calf serum (72% (Combination) vs. 48% (Control with serum),
p < 0.05). This study demonstrated that growth factors and cytokines could act synergisti-
cally to promote embryo development competency, especially in blastocysts; nevertheless,
accurate data on the viability and quality of embryos may require additional assessment.

Overall, the lack of implantation data in IGF-I studies limits the precise analysis of the
effects when IGF-I is added to embryo culture media. Despite the addition of combination
supplementations, all studies consistently show a non-significant result in the cleavage
development rate [120,129,130,133]. However, most of the research results, including
the study that solely added IGF-I, showed an increase in the blastocyst development
rate [120,129,130,132,133]. There are limited data on the effects of adding IGF-I to embryo
culture media in terms of obtained clinical outcomes, both in animal models and in human
models. Most of the studies examining the effects of IGF-I supplementation involve its
application in combination with other supplementations rather than alone. Further research
is needed to investigate the effects of adding IGF-I alone to embryo culture media. The
routine application of IGF-I in embryo culture media would require human clinic data and
studies that examine pregnancy outcomes to support its effectiveness.

2.2.3. Leukemia Inhibitory Factor (LIF)

Leukemia inhibitory factor (LIF), an interleukin 6 class cytokine, is expressed in the
trophectoderm and regulates various cellular functions by binding to specific receptors,
LIFR, and glycoprotein 130 [135]. These receptors have two forms: membrane-bound and
soluble [136]. LIF contributes to cellular growth, proliferation, and survival through cell
signaling pathways.

In the various cell types, LIF could promote JAK/STAT, PI3K/PKB, and ERK/MAPK
pathways [137–141]. Within a mouse model study, the LIF signaling mechanism in uterine tissue
and trophoblast cells occurs through the activation of the JAK1/STAT3 pathway [142,143]. LIF
promotes receptor heterodimerization, leading to the activation of a JAK/STAT pathway. JAK1
phosphorylates tyrosine residues, providing binding sites for STAT3. Multiple studies have
shown that STAT3 stimulates various downstream genes related to proliferation, angiogenesis,
differentiation, cell cycle progression, and apoptosis, such as c-Myc, VEGF, HIF1a, Rac1, Notch1,
p53, and Bcl-2 (Figure 1) [144–155].
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It has been observed that human oocytes, cleavage, and blastocysts express LIFR
and gp130 in mRNA and protein levels [156]. These receptors, expressed in the en-
dometrium and upregulated during the luteal phase coinciding with implantation, correlate
with studies associating LIF with the implantation process [157–160]. In a mouse study,
gp130 k/o and LIFR k/o types of embryos could not survive during post-implantation de-
velopment [161]. Indeed, LIF has been extensively studied and found to play a crucial role,
particularly during the process of implantation in pregnancy in various species [162,163].
Another study showed that supplements of LIF could increase the cell number in mouse
blastocysts and in gene expression of Oct-4 and Cdx22, related to ICM and trophectoderm,
respectively [164]. Through various human and animal studies, it has been demonstrated
that LIF plays a crucial role in not only implantation but also embryo development [165,166].
There is a study that higher concentration of LIF in embryo culture media is associated with
a higher pregnancy rate when blastocysts are transferred [167]. Recently, the expression of
LIF in follicular fluid and ovarian stromal cells has also been associated with young women
with poor ovarian response during ovarian stimulation cycle [168].

Six studies have analyzed the effects on embryonic development of adding LIF to
embryo culture media (Table 5). Among them, three studies focused on human models,
while the remaining three studies investigated animal models. Furthermore, four studies
specifically investigated the effects of adding LIF alone to the culture medium, while the
remaining two studies assessed the use of a combination of LIF with other supplements.

A RCT with human frozen–thawed cleavage was conducted in early 2000 to evaluate the
effects of LIF [169]. It used two kinds of base culture media, human tubal fluid medium, and
M3 medium. The results showed no significant difference in cleavage development rate with
the addition of LIF. However, there was a significant increase in both morula rates using HTF
medium for the base medium (23.2% (LIF) vs. 6.9% (Control-1), p < 0.05) (23.1% (LIF) vs. 19.7%
(Control-2), NS) and the blastocyst development rate (11.0%, 12.8% (LIF) vs. 0% (Control), p >
0.05). The researchers concluded that LIF has the potential to affect early embryo development,
but further, larger-scale multicenter studies are needed to confirm these findings.

Another study was performed to assess blastocyst development, total cell number,
hatching rate, and LIF and its receptor expression in preimplantation buffalo embryos [170].
The group of LIF supplements demonstrated a positive influence on blastocyst development.
There was no significant difference in the cleavage development rate and the morula rate.
In terms of blastocyst development parameters, the expanding blastocyst development rate
(16.57 ± 1.13 (LIF) vs. 9.80 ± 1.19 (Control), p < 0.05) and total cell number (81.5 ± 2.93 (LIF)
vs. 70.5 ± 2.2 (Control), p < 0.05) were significantly increased in the LIF group. Additionally,
the expression of LIFR mRNA and protein was confirmed from the oocyte to blastocyst stages,
while the expression of LIF ligand mRNA and protein was observed from the 8 cell stage to
the blastocyst stage.

In the previously mentioned paper on GM-CSF, the researchers also investigated
the impact of supplementing the embryo culture medium with LIF on mouse embryo
development [97]. Using isolated blastomeres from mouse 2 cell embryos, LIF showed
a significant increase in cleavage development rate (61.10% (LIF) vs. 52.4% (Control),
p < 0.001) after 48 h of culture. There was no significant difference in the blastocyst
development rate between the two groups, but the total cell number (53.4 ± 1.82 (LIF) vs.
44.7 ± 2.84 (Control), p < 0.05) was higher in the LIF group.

2.2.4. Leukemia Inhibitory Factor (LIF) Combined with Other Supplements

Two studies used LIF with other supplementations such as GM-CSF, HB-EGF, FGF2,
and IGF-I. An RCT was conducted to investigate the effects of culture media integrated
with LIF, GM-CSF, and heparin-binding epidermal growth factor-like growth factor (HB-
EGF) on embryonic development and pregnancy outcomes with a human ICSI cycle [171].
The incorporation of cytokines and growth factors could have directly targeted potential
effects in hatching or implantation, leading to improved clinical outcomes for the recurrent
implantation failure (RIF) and pregnancy-loss groups. The cytokines and growth factors
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demonstrated potential effects on clinical outcomes in terms of ongoing pregnancy rate
(47% (Combination) vs. 36% (Control), p = 0.012) and live birth rate (45% (Combination)
vs. 33% (Control), p = 0.0062). In addition, embryologic characteristics and blastocyst
development rate (68% (Combination) vs. 61% (Control), p = 0.0001), showed a good
quality of blastocyst development rate according to Istanbul guidelines (48% (Combination)
vs. 36% (Control), p = 0.0001), and implanted fresh embryo rate (38% (Combination) vs.
30% (Control), p = 0.023) showed a statistical increase in the combination group while
cleavage development rate was statistically non-significant. This study showed that the
integration of LIF, GM-CSF, and HB-EGF could enhance embryonic development and
pregnancy outcomes with no adverse consequences.

Table 5. Effects of LIF in culture media on embryonic development and pregnancy outcomes.

Year Model Study
Type

Dose of
LIF

Timing of
Intervention

Cleavage
Development

Rate

Blastocyst
Development

Rate

Embryo
Grade

Implantation
Rate

Live
Birth
Rate

Ref.

2019 Human
(infertility) RCT

5 ng/mL
(GM-CSF
2 ng/mL,
HB-EGF

5 ng/mL)

After ICSI → ↑
→, ↑

day 3, day
5/6

↑,→
Fresh, FER ↑ [171]

2000 Human
(infertility) RCT 1000 IU/mL

Cleavage after
vitrified-
thawed

→ ↑ - - - [169]

2021 Bovine Animal

20 ng/mL
(FGF2

40 ng/mL,
IGF-I

20 ng/mL)

Putative
zygote → ↑ - - - [172]

2013 Buffalo Animal 100 ng/mL Presumptive
zygote → ↑ - - - [170]

2008 Murine Animal 1500 IU/mL

Isolated
blastomere
from 2-cell

stage

↑ → - - - [97]

-: not analyzed;→: non-significance; ↑: significantly increased.

The remaining studies all focused on the effects of supplementation in mammalian em-
bryos, primarily observing the development of embryos without pregnancy outcomes. In 2021,
the effects of LIF, IGF-I, and fibroblast growth factor 2 (FGF2) on bovine embryo development
were studied [172]. Although there was no significant difference in cleavage development rate
between the supplementation group and control group, the supplementation group exhibited
an increase in blastocyst development rate (46.2 ± 1.3 (Combination) vs. 32.9 ± 1.3 (Control),
p < 0.05). However, there were no statistical differences in total blastocyst cell number. Af-
ter the blastocyst was frozen–thawed, the hatching rate (40.4% ± 0.04 (Combination) vs.
19.8% ± 0.04 (Control), p < 0.05) and apoptosis index (6.70% ± 1.32 (Combination) vs.
18.06% ± 1.62 (Control), p < 0.05) was statistically significantly different between the two
groups. This study suggests that LIF supplementations have positive influences on blastocyst
development rate and its quality.

These two studies both showed an increase in blastocyst development rate although
they used different combinations of supplementations and models. Both studies selected
supplementations based on other research that demonstrated their positive effects [134,173].

In conclusion, LIF supplementation of embryo culture media showed developmental
potential in blastocysts. Only one human RCT has demonstrated positive effects in im-
plantation and birth outcomes, although they used a mixture of supplementations [171].
All of the studies showed an increase in the blastocyst development rate using LIF or a
LIF combination [169–172], except for one study, which showed no significant effect [97].
While the diverse roles and significant importance of LIF in embryo development and the
pregnancy process have been well established, there have been relatively few studies on
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the supplementation of LIF in embryo culture media. Therefore, there may need to be more
studies including pregnancy outcomes and human RCT.

3. Conclusions

In this review, we summarized the effects on embryonic development of several rep-
resentative supplements added to culture media. Melatonin, GM-CSF, IGF-I, and LIF all
showed positive effects on embryo-related outcomes such as blastocyst development rate
and the grade of the embryo. Melatonin, GM-CSF, IGF-I, and LIF seem to have a generally
positive effect on pregnancy-related outcomes such as the implantation rate and the live
birth rate. Studies have been recently published on the effect of supplements in different
clinical situations, such as old age, RIF, and unexplained infertility. In the case of melatonin
and GM-CSF, many clinical studies have been conducted on humans, but for the rest of the
supplements, only preclinical studies on murine and bovine models have been conducted.
The results of human studies should be built on with future clinical trials. In addition,
studies to find the optimal dose and timing of intervention should be continued, as each
study used different doses of supplements and timings of intervention. Supplementation
strategies in culture media have shown promise in enhancing blastocyst development
rates and improving certain aspects of ART outcomes. However, the translation of these
benefits into increased live birth rates requires further investigation. Robust clinical studies
encompassing a wider range of substances and participant profiles are essential to unrav-
eling the true potential of supplementation in culture media. Ultimately, understanding
the molecular mechanisms behind these effects will enable us to use an embryo culture
medium containing personalized supplements tailored to the individual circumstances of
infertility patients, bringing renewed hope to those on the journey to parenthood.
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IVF in vitro fertilization
ART assisted reproductive technology
Nrf2/ARE nuclear factor erythroid 2-related factor 2/antioxidant-responsive element
VEGF vascular endothelial growth factor
ATP adenosine triphosphate
RCT randomized clinical trial
hCG human chorionic gonadotropin
DNA deoxyribo nucleic acid
PCOS polycystic ovary syndrome
IVM in vitro maturation
GM-CSF granulocyte–macrophage colony-stimulating factor
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HSP heat shock protein
GH growth hormone
IGF insulin-like growth factor
MAPK mitogen-activated protein kinase
ERK extracellular signal-regulated kinase
IRS 1insulin receptor substrate
EGF epidermal growth factor
bFGF basic fibroblast growth factor
LIF leukemia inhibitory factor
JAK Janus family tyrosine kinase
STAT signal transducers and activators of transcription
PI3K phosphoinositide 3-kinase
Akt protein kinase B
ROS reactive oxygen species
GPCR G protein-coupled receptor
O2− superoxide anion
H2O2 hydrogen peroxide
•OH hydroxyl radical
SOD superoxide dismutase
GSH glutathione peroxidase
Th1 Type 1 helper T cells
Th2 Type 2 helper T cells
HSA human serum albumin
HB-EGF heparin-binding epidermal growth factor-like growth factor
RIF recurrent implantation failure
FGF2 fibroblast growth factor 2
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