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Abstract: Eosinophilic esophagitis (EoE) is a chronic, progressive, type 2 inflammatory disease with
increasing global prevalence. An eosinophil-predominant inflammation that permeates the epithe-
lium and deeper esophageal layers characterizes the disease. Several cytokines, mainly derived from
inflammatory T-helper 2 (Th2) cells and epithelial cells, are involved in perpetuating inflammatory
responses by increasing surface permeability and promoting tissue remodeling characterized by
epithelial–mesenchymal transition (EMT) and collagen deposition. This leads to esophageal stric-
tures and narrow caliber esophagi, which are proportional a patient’s age and untreated disease
length. Pathophysiological mechanisms leading to EoE have been described in recent years, and
transforming growth factor beta (TGF)-beta have been involved in fibrotic phenomena in EoE. How-
ever, evidence on the dependence of these phenomena on TGF-beta is scarce and contradictory. This
review provides state-of-the art knowledge on intimate mechanisms of esophageal fibrosis in EoE
and its clinical consequences.

Keywords: eosinophilic esophagitis; transforming growth factor beta; inflammation mediators/
immunology; inflammation mediators/metabolism; remodeling

1. Introduction

Eosinophilic esophagitis (EoE) is a syndrome characterized clinically by symptoms
related to esophageal dysfunction and histologically by an eosinophil-predominant inflam-
matory infiltration limited to the esophagus, for which additional secondary causes of
esophageal eosinophilia are excluded [1]. First defined in the 1990s [2,3], EoE was initially
described as a particular form of food allergy [4], in which immunoglobulin E (IgE) plays
quite a limited role [5]. At first considered a rare condition, the epidemiology of EoE in
recent years has risen sharply [6], and currently affects up to 1 in 850 people in developed
countries [7,8]. EoE is also emerging in developing countries, with cases being reported
on all continents. In the absence of treatment, esophageal inflammation and symptoms
tend to persist or even worsen over time [9]. The chronicity of EoE symptoms deteriorates
patients’ quality of life [10], while the persistence of eosinophilic inflammation has been
linked to structural changes in the esophagus [11], thus indicating a need to treat patients
with active disease.

The cumulative literature over the last 3 decades has described the clinical picture
of EoE [12] and investigated several therapeutic approaches. These are either based on
dietary modifications aimed at identifying and avoiding food triggers, or on drugs with
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anti-inflammatory effects and consisting of topical corticosteroids and proton pump in-
hibitors [13]. An increasing number of studies focused on characterizing the disease at
the molecular level [14] have also allowed for the development of new therapies, mainly
based on monoclonal antibodies that target cytokines involved in the pathophysiology of
EoE [15]. However, the pathophysiological processes involving cells and cytokines that
contribute to EoE, its regulatory mechanisms and the complex interplay between genes
and the environment that triggers it [16] still need to be fully understood [17].

This review aims to provide an overview of the inflammatory phenomena in EoE, its
chronicity, progression to esophageal fibrosis, and its clinical consequences and to reveal
some pathophysiological issues which have not been fully analyzed until now.

2. Immunological Aspects of EoE

EoE is characterized by a specific cytokine secretion pattern that determines it as a type
2 inflammatory disease [18,19]. In healthy conditions, T helper 2 (Th2) cells are primarily
important in defense against helminth infections and exposure to venoms [20], but in atopic
individuals, they are also involved in different types of allergic diseases including asthma,
atopic dermatitis, allergic rhinitis, and food allergies [21]. Thus, a Th2 response is induced
in EoE as a particular form of non-IgE-mediated food allergy, and typically associated with
increased expression of interleukin (IL)-4, IL-5, IL-13, and eotaxins [22].

IL-5 promotes the differentiation, maturation, and release of eosinophils from the
bone marrow [23], enhances eosinophil trafficking to the esophagus [24] and, in murine
models of EoE, drives esophageal fibrous remodeling [25]. Among other functions, IL-4
promotes the differentiation of Th2 lymphocytes, the proliferation and differentiation of
B lymphocytes, and is a potent inhibitor of apoptosis, thus playing an important role in
the development of atopic diseases [26]. Treatment with dupilumab, which blocks IL-4
receptors I and II, has been shown to be effective in several atopies, including asthma and
atopic dermatitis, and also improves histological, endoscopic, and EoE symptoms [27,28].
For its part, IL-13, mainly released by esophageal epithelial cells, induces pleiotropic effects
in the pathophysiology of EoE. This is due to its ability to selectively reproduce in vitro the
esophageal transcriptome characteristic of EoE in epithelial cell cultures [29], and induce the
expression and secretion of the eosinophil-activating chemoattractants eotaxin-1/CCL11
and eotaxin-3/CCL26 [30], which then move eosinophils from blood to the esophageal
tissues. In fact, eotaxin-3/CCL23 is the most intensively upregulated gene in the esophageal
mucosa of EoE patients, compared to controls [31].

In addition, by presiding over the CAPN14 gene, which codifies for Calpain-14
(CAPN14) esophageal specific protease [32,33], IL-13 downregulates the gene expression
of proteins that keep the intercellular spaces sealed. These include filaggrin (FLG) and
involucrin (IVL) [34], the adhesion molecule desmoglein-1 (DSG) [35], and tight junction-
associated proteins [36]. The alteration of all these proteins leads to epithelial dysfunction,
whereby dilated intercellular spaces [37] facilitate luminal antigen penetration into the
epithelial layers [38,39] and thus perpetuate inflammatory responses.

The central position of IL-13 in the pathophysiology of EoE at multiple levels is clear,
therefore, and is exemplified by its independent ability to produce experimental EoE in
mice when intratracheally instilled [40].

IL-13, together with IL-4 are synergistically involved in activating fibroblasts to secrete
enhanced amounts of extracellular matrix (ECM) [41,42]—a complex three-dimensional
network of interlaced fibrillar proteins, multiple matrix protein macromolecules, proteo-
glycans, anchored growth factors, and other bioactive components [43]. As a consequence
of sustained inflammatory phenomena in the esophageal mucosa, fibrous remodeling is
triggered in EoE in a similar way to other type 2 inflammatory conditions [44,45].

Infiltration by eosinophils, as the most significant cell in the inflammatory infiltrate
of EoE, is usually found in endoscopic biopsies taken from the epithelial surface. Here,
eosinophils frequently tend to aggregate forming microabsceses [46]. However, evidence
from surgical specimens also demonstrated eosinophilic infiltration and fibrous remodeling
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in deep esophageal layers. Eosinophils permeating the submucosal and muscle layers and
the neuronal plexus promote fibrous remodeling, intense collagen deposition, and smooth
muscle hypertrophy [47,48], all of which contributed to altering the mechanical properties
of the esophageal wall and to reducing esophageal distensibility in EoE patients [49].
Murine models also demonstrated transmural inflammatory and fibrotic involvement in
experimental EoE [25], the same as in the pathophysiology of bronchial asthma [50].

3. Inflammation to Fibrosis in EoE: A Dynamic Process

Inflammation and fibrosis are two inter-related conditions with many overlapping
mechanisms [51]. Sustained inflammation may result in fibrosis when it exceeds the normal
wound-healing response to injury [52] in a highly orchestrated process, with common
pathways that occur in many different tissues. Fibrogenesis results from defined sequences
of molecular signals and cellular response mechanisms that provoke tissue inflammation,
macrophage activation, and immune cell infiltration. The release of soluble mediators by
the tissue (including alarmins, cytokines and chemokines) leads to the local activation
of collagen-producing mesenchymal cells, (the composition of ECM varies according to
specific tissues [53]) and provides a distinctive cell microenvironment for the various tissue
compartments [54]. As a result, local activation of fibroblasts, recruitment of fibroblast
precursors, and the transition of various cell types into myofibroblasts lead to an excessive
deposition of ECM, which replaces healthy parenchymal tissue with collagen-rich ECM
components, thus resulting in a loss of the normal function of affected organs [55].

EoE is characterized by an abnormal exacerbated response to harmless antigens
(mainly derived from dietary components). Early-life factors have been involved in the
origin of the immune imbalance that converts the innate esophageal surveillance system
into a reactive one in susceptible individuals [56]. These are common in other allergic dis-
eases [57], and usually involve changes in the abundance or composition of the esophageal
microbiome [58] in adaptive responses, with epithelial cells releasing alarmins such as IL-25,
IL-33, and thymic stromal lymphopoietin (TSLP) [59]. TSLP is a relevant player in EoE [59]
and other type 2 inflammatory and allergic diseases. It activates antigen-presenting cells,
including food antigen-presenting dendritic cells in the esophageal mucosa, and promotes
T cells maturation and polarization to Th2 cells [60]. These Th2 cells are also involved
in the repair of tissues that are damaged by parasitic infections, and in allergic reactions,
and activate macrophages and epithelial cells to enhance the production of ECM, which is
crucial for tissue repair. Th2 cells produce the so-called Th2 cytokines IL-4, IL-5, and IL-13.

Tissue remodeling is a dynamic process that combines different mechanisms such as
hyperplasia of the epithelium, subepithelial fibrosis, epithelial to mesenchymal transdif-
ferentiation (EMT), angiogenesis, and hypertrophy of esophageal smooth muscle [61]. An
EMT is a biological process that allows an epithelial cell, which normally interacts with the
basement membrane via its basal surface, to interact with myofibroblasts, undifferentiated
mesenchymal cell phenotypes, which achieve migratory capacity, invasiveness, elevated
resistance to apoptosis, and greatly increased production of ECM components [62]. EMT
contributes to fibrosis in EoE (as it is present in the esophageal tissue of patients with EoE),
correlates with inflammatory activity measured as eosinophil density and reverses with
treatments that decrease inflammation [41,63].

During the initial inflammatory phase, cytokines produced by Th2 cells target a
wide variety of immune and non-immune cells, including fibroblasts, epithelial cells,
macrophages, and endothelial cells, which act directly or indirectly to repair injured tis-
sues [45]. In the process of tissue formation, the pro-inflammatory signals weaken, and cell
proliferation is initiated by growth factors, such as transforming growth factor-β (TGF-β)
and basic fibroblast growth factor (FGF-2). Both promote the induction of fibroblasts
proliferation simultaneously, activating macrophages to remove apoptotic cell debris [64].
In particular, macrophages that receive type 2 cytokines (also referred as to alternatively
activated or M2 macrophages) are involved in tissue repair in some organs, including
the liver, central nervous system, heart, skeletal muscle, and lungs [65]. Interestingly, M2
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macrophages activated by IL-4 also contribute to slow the progression of fibrosis [66] in
schistosomiasis-induced liver fibrosis. Therefore, macrophages play an essential role in
regulating tissue regeneration. They can produce reactive oxygen species that worsen
tissue damage, and produce a variety of growth factors, such as insulin-like growth factor 1
(IGF-1), vascular endothelial growth factor (VEGF-α), and TGF-β, which regulate epithelial
and endothelial cell proliferation, myofibroblast activation, stem and tissue progenitor cell
differentiation and angiogenesis [67].

Myofibroblasts develop from EMT or by TGF-β1-dependent differentiation from fi-
broblast cells [68], and they are typically found in granulation tissue and scar tissue. Upon
activation, these cells secrete ECM components (such as collagen), proliferate, migrate,
and become contractile. In the particular case of EoE, in vitro studies demonstrated that
esophageal epithelial cells stimulated with the profibrotic cytokines tumor necrosis factor-
alpha (TNFα), TGFβ, and IL1β acquired a mesenchymal phenotype to become active
myofibroblasts [69]. TGFβ stimulation has a robust effect upon epithelial collagen produc-
tion [42], and under prolonged activation, myofibroblast activity promotes tissue stiffness,
collagen deposition, tissue retraction, and the formation of esophageal strictures, which
aggravate dysphagia and cause food impaction.

4. Clinical Consequences of Fibrous Remodeling in EoE

The natural history of EoE has been defined as a progressive condition that, in the
absence of treatment, tends to evolve from an inflamed to a rigid esophagus [70]. If left
untreated, symptoms and esophageal inflammation tend to persist over time, and patients
can develop esophageal rings, focal strictures, or a long narrowing in the esophageal
caliber [9]. Although not every EoE patient will experience this process [71], the cumulative
literature demonstrates a significant prevalence of esophageal strictures and narrow-caliber
esophagi in the untreated disease, and this is directly proportional to diagnostic delay.
The prevalence of fibrotic features of EoE, based on endoscopic evaluation, increases from
46.5% when the diagnostic delay from symptoms onset is less than 2 years to 87.5% in
patients diagnosed after >20 years of experiencing symptoms [72,73]. The chances of
finding esophageal strictures in EoE doubles with every 10 years of diagnostic delay [70].
As a consequence, fibrotic phenomena develops proportionally to the duration of the
untreated disease and patient’s age [58].

The origin of symptoms in EoE is complex and not fully understood. Displayed symp-
toms vary according a patient’s age [12], and include abdominal pain, nausea, vomiting,
and slow eating as early symptoms in children, and typically dysphagia, food impaction,
and heartburn in adults. Differences in disease presentation have been related to progres-
sive fibrous remodeling of the esophagus [74], and also abnormal esophageal motility. This
has been documented by manometry records: a variety of ineffective peristalsis patterns
have been described in patients with EoE (which reverse after short-term anti-inflammatory
treatment), together with dysphagia improvement [75–78]. Most patients usually de-
velop coping strategies by adapting eating behaviors, or the use of dietary restrictions to
manage symptoms and avoid food impactions in particular [79]. Esophageal narrowing
and stricture formation under a certain lumen caliber will be a major determinant for
food impaction.

The Endoflip™ impedance planimetry system is a novel method with the potential to
assess esophageal function overall, which has provided evidence of the fibrotic changes that
may appear as a consequence of fibrous remodeling resulting from long-term inflammation
in EoE [80]. It allows for the determination of esophageal distensibility and esophageal
diameter at the distensibility plateau, thus providing a measure of fibrostenotic severity
that can be used to clinically phenotype EoE patients. Esophageal compliance is found
to be reduced in EoE patients with a stricturing disease, and Endoflip™ measurements
are able to predict the risk of food impaction. However, the potential use of Endoflip™
to assess EoE severity and therapeutic monitoring, as well as its possible superiority to
esophageal biopsies to guide EoE treatment, still remains unclear.
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5. TGF-β1: A Major Mediator of Fibrosis

Chronic inflammatory diseases, including diabetes, cardiovascular diseases, interstitial
lung disease, viral and non-viral hepatitis, non-alcoholic steatohepatitis, and immune-
related disorders such as scleroderma and inflammatory bowel disease, are all associated
with fibrotic tissue responses that determine disease prognosis [81–86]. In all these diseases,
the fibrosis process is triggered in response to an injury that jeopardizes tissue integrity.
It is mediated by pro-fibrotic cytokines, with TGF-β as a key driver [87]. They directly
induce differentiation of fibroblasts into collagen-secreting fibroblasts, and their production
correlates with dysfunction in affected organs [88].

The TGF-β superfamily consists of more than 40 members of secreted polypeptide
growth factors that were identified in 1981 as “transforming”, due to their ability to trigger
proliferation in cultured fibroblasts [89]. In particular, TGF-β presents three isoforms
characterized by different expression patterns, including TGF-β1 (which is expressed in
endothelial, hematopoietic, and connective tissue cells); TGF-β2 (expressed in epithelial and
neuronal cells); and TGF-β3 (which is expressed primarily in mesenchymal cells) [90,91].
The three members of the TGF-β family are active as secreted peptides and share similar
biological activities in vitro, while eliciting more specific biological responses in vivo [92].
During inflammation and fibrosis, TGF-β1 is the most important member in physiological
repair and collagen accumulation, as it regulates accumulation of ECM; it is involved in the
modulation of inflammation by suppressing its excess [93]; and regulates essential cellular
processes, including proliferation, differentiation, apoptosis, adhesion, and migration in
several cell types [94].

Binding of TGF-β1 to its specific receptor activates different signaling pathways,
the TGF-β/Smad one being involved in fibrogenesis. Multiple non-canonical (Smad-
independent) TGF-β signaling pathways have also been described [95]. The tissue environ-
ment greatly determines the effect of TGF-β1 on the same cell and regulates several cellular
functions such as actin cytoskeleton changes, tight-junction resolution, and transcriptional
regulation [96]. Cellular responses to signaling pathways culminate in the expression of
genes involved in tissue repair, with ECM accumulation by proliferation and migration of
epithelial and mesenchymal elements being an early effect.

6. Contribution of TGF-β1 to Fibrosis in EoE: Distinct Methods and Variable Result

The TGFβ1 signaling pathway has been involved in fibrous remodeling phenom-
ena in several type 2 inflammatory diseases, including bronchial asthma [97,98], atopic
dermatitis [99], allergic rhinitis [100], nasal polyposis [101], and idiopathic eosinophilic
pneumonia [102], all of them sharing common pathophysiological mechanisms with EoE.
The inflammatory and fibrotic phenomena described in these organs are similar to those
observed in EoE, and despite the differences in intimate molecular mechanisms, it was as-
sumed that the patterns that occur in asthma [50] could be largely extrapolated to EoE [103].

Several studies, using different experimental approaches, tried to describe the poten-
tial involvement of TGF-β1 in the fibrous remodeling that happens in EoE [1] (Table 1).
Used strategies ranged from esophageal epithelial cell cultures [104] to murine experi-
mental models of EoE [105,106], while most evaluated biopsies were obtained from EoE
patients [103,107–116]. Tissue results from human EoE were also applied to a murine
model [25], and blood samples were exceptionally used [117]. The approach to deter-
mine TGF-β1 also varied from one study to another. Some of them attempted to demon-
strate the protein mainly by staining TGF-β1-positive cells with immunohistochemistry
(IHC) [103,105,108,111,112,114] or immunofluorescence (IF) staining [107,109], while others
used ELISA [104,117] or measured the changes in TGF-β1 gene expression in EoE biopsies
compared to controls [108–110,112–117] and the changes after therapy [103,110,111]. As
demonstrated, the results of these different approaches have not always been comparable
(Table 1).
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Table 1. Characteristics of the reviewed manuscripts.

Publication
and Year Species Sample Method EoE Samples (n) Outcome Comparative

Group p Value

Aceves 2007
[103] Human Biopsies IHC 7

Increased numbers of
TGF-β1(+) cells in LP from

EoE

GERD
Healthy

p = 0.02
p = 0.004

Misrha 2008
[25]

Human
Mice

Biopsies
Tissue RTqPCR 8

7
Increased expression level

of TGF-β1 from EoE
Healthy
WT mice

p < 0.001
p < 0.001

Aceves 2010
[107] Human Biopsies IF 21

Increased numbers of
TGF-β1(+) cells in SM

from EoE
Healthy p = 0.005

Aceves 2010
[113] Human Biopsies IHC 16

Increased numbers of
TGF-β1(+) cells in LP from

EoER

EoEpostR p = 0.01

Dohil 2010
[108] Human Biopsies IHC 15

Increased numbers of
TGF-β1(+) cells in LP from

EoEp
EoEpost NA

Straumann
2010 [109] Human Biopsies IF 18

Increased numbers of
TGF-β1(+) cells from

EoEpre
EoEpost NA

Lucendo 2011
[110] Human Biopsies RTqPCR 10

No significant increased
expression levels of
TGF-β1 from EoE

GERD
Healthy
EoEpost

p = 0.11

Kagalwalla
2012 [111] Human Biopsies IHC 18

Increased score of TGF-β1
index of EoE, and correlate

with EMT scores index
(r = 0.520, p < 0.01)

GERD
Healthy

p < 0.01
p < 0.001

Cho 2014 [105] Mice Tissue IHC
RTqPCR

12 (sensitized
mice)

Increased numbers of
TGF-β1(+) cells and
expression levels in

sensitized mice.
No difference in numbers
of TGFβ1 positive cells in
sensitized mice Smad3 KO

compared to sensitized
WT mice (p = NS)

WT mice
SMAD−/− mice

p < 0.01
(IHC)

p < 0.001
(qPCR)

Rieder 2015
[104] Human OCS ELISA 14 Increased protein level of

TGF-β1 from EoE Healthy p = 0.006

Collison 2015
[106] Mice Tissue RTqPCR NA

Increased expression level
of TGF-β1 in sensitized

mice.
WT mice p < 0.05

Rajan 2015
[112] Human Biopsies IHC 32

Increased numbers of
TGF-β1(+) cells from EoER

over time.
(No alignment with

fibrosis is found, except in
the early stages of the

disease course and only in
responders)

EoER over time p = NS

Rawson 2016
[114] Human Biopsies IHC 14

Increased numbers of
TGF-β1(+) cells in LP

from EoE
Healthy NA

Arias 2016
[115] Human Biopsies RTqPCR 10

No significant increased
expression levels of

TGF-β1 from EoEpre

Healthy
EoE post

p = 0.740
p = 0.386

Sarbinowska
2021 [117] Human Serum ELISA 16

Increased protein level of
TGF-β1 from EoE

compared to controls but
not significant differences

to EoEpost.

Healthy
EoE post

p = 0.04
p = 0.12
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Table 1. Cont.

Publication
and Year Species Sample Method EoE Samples (n) Outcome Comparative

Group p Value

de Rooij 2022
[116] Human Biopsies RTqPCR 40

Significant decreased
expression levels of

TGF-β1 from EoE after
combined treatment, but

no differences were
observed after FFED

treatment alone.

EoE post
EoE post FFED

p < 0.01
p > 0.05

Pronio 2022
[118] Human Biopsies RTqPCR 5

TGF-β expression was
similar to the control in
the mid-esophagus but
reduced the distal EoE

esophagus

Healthy NA

Cao 2023 [119] Mice Tissue WB 6

Compared with naïve
mice, TGF-β1 protein
levels in sham-treated

mice increased and
decreased significantly

after treatment, comparing
before and after treatment.

WT mice
EoE mice post

p < 0.001
p < 0.01

Species: species of origin of the sample used in the study. Samples: type of samples used in the study. Method:
technique used to measure TGF-β1 levels. Comparative groups: samples compared to those in the EoE group
(GERD group/Healthy group or WT in mice). EoE samples (n): number of samples obtained from patients with
EoE. Outcome: result of the statistical comparison of TGF-β1 levels. p value: statistical significance of comparative
analysis. OSC: organ culture system. LP: lamina propria. SM: smooth muscle. IHC: immunohistochemistry.
NA: not available; RTqPCR: quantitative reverse transcription polymerase chain reaction. ELISA: enzyme-linked
immunosorbent assay. IF: immunofluorescence. GERD: gastroesophageal reflux disease. WT: wild type. EoER:
responder patients to corticoids. EoENR: non-responders patients to corticoids. FFED: four-food elimination diet.
EoEpost: EoE after effective treatment. EoEp: EoE placebo group/not treated. EoEpre: EoE before treatment, NS:
not significant. Statistical significance p < 0.05.

Immunochemical techniques (IHC [103,105,108,111–114] and IF [107,109]) on esophageal
biopsies were the first ones applied to study the role of TGF-β1 in EoE. Using this semi-
quantitative assessment, greater numbers of TGF-β1 positive cells were found in esophageal
samples taken from patients with active disease, compared to biopsies obtained after
effective anti-inflammatory treatment based on topical budesonide.

In contrast, studies based on quantifying TGF-β1 mRNA expression on esophageal
biopsies by reverse transcription polymerase chain reaction (RT-PCR) failed in reproducing
the results obtained with IHC or IF [105,110,115,116]: It was immaterial whether the treat-
ment tested was an elimination diet [115] or a topical corticosteroid [110,112], whether it
was measured after only 6 weeks [115,116], or after years from the initiation of therapy [112].
Unfortunately, no studies have evaluated whether changes at the gene expression level
were reproduced in terms of protein expression, thus preventing definitive conclusions. It
also remains unclear whether TGF-β1 gene expression is increased in patients with EoE
compared to healthy controls or those with GERD, as studies are very scarce and show
contradictory results [110,116–118].

To provide a deeper insight into the research about TGF-β1 in fibrosis, the study
design, the patient or sample groups that were compared, the techniques used to detect
TGF-β1 (Figure 1A), and whether the analysis was carried out at the pre-transcriptional
or post-translational level were then analyzed. The experimental designs consisted of
determining TGF-β1 mRNA and protein by quantitative methods in human esophageal
samples, comparing patients and controls, as well as patients with active EoE versus
inactive disease (Figure 1B). Overall, five publications included a more complete study
design to determine whether TGF-β1 was involved in EoE fibrosis (Figure 1C), since they
were carried out on human samples using quantitative methods.
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tion of publications reviewed according to the groups of patients compared and the results obtained
in the levels of TGF-β1 [25,110,115–117].

It seems that the available literature is either inconclusive or inadequate in regard to
being able to claim a definitive pro-fibrotic role of TGF-β1 in EoE. This is due to the fact that
most studies were performed using cell line cultures [112], or animal models [107,114,119,120],
a method which does not necessarily reproduce the pathophysiology of the disease in hu-
mans. Where studies were performed on human samples, such as Sarbinowska et al. [117]
and Pronio et al. [118], they used an inadequate (serum samples) or limited number of
patients, respectively, which increased the risk of biased conclusions. Excluding these
research works, only two papers claimed to have found differences in TGF-β1 [25,105],
with another two having found no differences [110,115]. However, none of these studies
parallelly analyzed TGF-β1 at the protein level (Figure 1C).

7. TGFβ Receptor Signaling: The Key of TGF-β1 Effects in EoE?

Recent research has focused attention on the role of TGF-β1 in EoE over its receptor
TGFβR1 [121]. There are three receptors specific for the different TGFβ family ligands,
which can be distinguished by their structural and functional properties and peptide map-
ping [122]. Research on murine models has shown that TGFβR participates in the increase
in bronchial secretion secondary to rhinovirus infection [123] and in airway smooth muscle
cell proliferation [124]. A role of TGFβR 1 variant has been more recently involved in
EoE; based on the demonstration, this receptor was essential in maintaining epithelial cell
homeostasis to control allergic inflammation in a mouse model of EoE [121]. Knockout
mice bearing TGFβR1 loss-of-function variants developed symptoms, pathological, im-
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munological, and transcriptional changes in the esophagus consistent with human EoE. In
particular, the primary defect in epithelial development in knockout mice led to initiate a
Th2 inflammatory cascade independent of lymphocytes or allergen exposure. Eosinophilic
inflammation in this murine model was restricted to esophageal and gastric mucosa, whilst
absent in other organs and tissues. Despite the undoubted value of this observation to
advance the knowledge of the potential phenomena leading to fibrosis in EoE, some dif-
ferences with the disease in humans should be noted, mainly including that mice with
experimental EoE developed the disease independently of the exposure to allergens or the
presence of lymphocyte infiltrate in the esophageal tissue, which is completely different
in the human disease. Exclusive feeding with an elemental diet (completely lacking food
antigens) almost universally reverses inflammatory infiltration in EoE patients [4,125],
while lymphocytes are part of the cellular infiltrate of the esophagus, and their density
varies with eosinophil density [126]. Finally, eosinophilic infiltration of the gastric mucosa
is absent in the human form of the disease, but not in this experimental EoE model. The
authors justified this finding in that the proximal forestomach in mice is lined by stratified
squamous epithelium that is contiguous with the esophagus up to the limiting ridge.

8. Profibrotic Mechanisms Aside of TGF-β

TGF-β signaling, with its downstream activation of Smad-mediated (also referred
to as the canonical profibrotic pathway), [127] is the most widely involved mechanism
in disease-associated fibrosis in many organs. However, non-canonical pathways have
also been identified as primary drivers of this process in some organs and under specific
circumstances. Non-TGF-β-mediated pathways involve different inflammatory agents and
metabolic shifts in intercellular communication within the tissue microenvironment and
can also trigger EMT; some of these pathways are presented below:

(a) Bone Morphogenetic Protein (BMP) is part of the TGF-β superfamily. BMP signaling
regulates the maintenance of adult tissue homeostasis within multiple tissues [128],
being mostly studied in bone. Its role in the morphogenesis of the digestive tract is
increasingly recognized [129], however, including its role in the development of the
Barrett esophagus [130]; but as of yet, no role in EoE has been described.

(b) Macrophages are highly heterogeneous cells of the innate immune system, involved in
innate immunity, inflammatory responses, homeostasis, and tissue regeneration [131].
Th2 cytokines, such as IL-4 and IL-13, are able to: polarize macrophages to M2 cells,
which produce chemokines that recruit Th2 lymphocytes and T regulatory; promote
dysfunction, which can impair the proper regenerative process; and promote the
development of fibrosis, deposition of type I and III collagen, and myofibroblasts
activation [132]. The M2-derived specific chemokine CCL18 has been involved in
pulmonary/alveolar, peritoneal, and hepatic fibrosis [133]. High plasma levels of
CCL18 have been associated with progressive fibrosing disorders of the lungs and
liver; and their elevated concentration in the peritoneal dialysis effluent predicts
fibrosis and dysfunction of the peritoneal membrane [120]. Preliminary evidence
points towards a role for M2 signaling in fibrosis associated with EoE [110]; and this
should be further investigated.

(c) An IL-13-dependent fibrotic mechanism, independent of the downstream actions
of TGF-β1 and MMP-9, was described in Schistosoma mansoni infection-related liver
fibrosis [134]. These mechanisms might be particularly relevant for diseases where
a vigorous type-2 cytokine response is also present, as in EoE, but no study has
addressed them in this context to date.

9. Reversibility of Fibrosis in EoE

Fibrosis is a common outcome in many inflammatory diseases that may disintegrate
the regular structure of organs and cause persistent damage. However, clinical observations
and experimental models provide evidence that fibrosis is not irreversible, and once the
chronic tissue injury is resolved, fibrosis may regress through the deactivation of myofi-
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broblasts, degradation of ECM, and fibrolysis of excess matrix scaffold [52]. The ability
of fibrosis to reverse and the degree of recovery may vary depending on the tissue type,
its capacity to regenerate, its originating mechanism, and to a certain extent, on its degree
of evolution. Termination of the underlying cause of tissue damage avoids further acti-
vation of myofibroblasts and deactivates the inflammatory pathways, while regenerative
pathways in parenchymal cells are provided by the development of an anti-inflammatory
microenvironment. Thus, myofibroblasts undergo apoptosis or revert to an inactive pheno-
type. The ECM is then degraded by matrix metalloproteinases (MMPs) that digest collagen
and other components. Macrophages contribute to phagocytizing ECM fragments and to
reducing MMP-inhibitory proteins [135].

Evidence of fibrosis reversion in EoE after effective anti-inflammatory therapy has
been provided at both tissue and clinical levels [103,110,136,137]. The degree of lamina
propria remodeling, demonstrated with Mason trichrome staining in esophageal biopsies
obtained from children with EoE, before and after at least 3 months of therapy with budes-
onide, reduced fibrosis among responders, where TGF-β1- and pSmad2/3-positive cells
were diminished [113]. Similar findings were reported in adults treated with fluticasone
propionate for one year [110]. In this study, reduced fibrosis was visible in deep esophageal
biopsies (including the whole lamina propria) accompanied by vanishing eosinophils in
both epithelial and lamina propria layers and reduced mRNA levels for IL-5, FGF-9, and
CCL18. Notably, mRNA expression levels of TGF-β1 still remained. In another trial, treat-
ment with viscous budesonide reduced the TGF-β epithelial cells by 75% in areas of intense
eosinophil infiltration [109].

Rings and strictures are the endoscopic features characteristic of fibrosis in EoE, along
with narrow caliber esophagi. Some evidence in the literature showed that endoscopic
fibrotic changes in EoE may improve with anti-inflammatory therapy when assessed with
endoFLIP. Improvements in esophageal dysmotility have been demonstrated with topical
corticosteroids [138], diets [137,139], and even proton pump inhibitors [136]. Improve-
ments in endoscopic features of fibrosis after anti-inflammatory treatment have also been
described; recently, the benefit of Dupilumab (a monoclonal antibody that blocks the het-
erodimeric receptor common for IL-4 and IL-13) on severe, refractory, and fibrostenotic EoE
was assessed. After a median of 6 months, most patients achieved histological, endoscopic,
and symptom improvement, along with improved esophageal stricture diameter [140].

There are, however, few therapeutics that have shown to be effective once dense
fibrotic tissue has been formed and patients present with strictures that cannot be passed
with an endoscope. Endoscopic dilation has been used as a mechanical procedure to
enlarge a narrowed esophageal lumen when patients are unable to swallow solid food
properly or present repeated episodes of esophageal choking, which typically occurs with
an esophageal diameter lower than 13 mm [141].

10. Conclusions and Perspectives

The recognition of EoE as a prevalent cause of esophageal symptoms, capable of
deteriorating the quality of life of those who suffer from it, has been accompanied by rapid
progress in the description of the cellular and molecular bases of the disease. The devel-
opment of therapies for EoE now includes drugs specifically directed against cytokines,
with a key role in the initiation and maintenance of the inflammatory response. Fibrous
remodeling of the esophagus represents the main sequel of untreated or insufficiently
treated disease, and the major consequence of delayed diagnosis. Collagen deposition in
the esophagus, in its most advanced forms, seriously alters the structure and functionality
of the esophagus and severely impairs quality of life. Limited evidence suggests that avail-
able anti-inflammatory treatments are effective in reversing fibrotic phenomena in EoE,
at least in its initial stages, and preliminary experiences with new biological drugs seem
promising for the most severe fibrotic forms of EoE. However, research on the molecular
basis that leads to it has been scarce, and has often tried to reproduce in the esophagus
mechanisms well known in other type 2 inflammatory diseases, such as bronchial asthma.
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Still, there is no solid evidence that fibrosis in EoE appears to be mainly mediated by TGF-β,
thus opening the door to investigating alternative mechanisms largely independent of
TGF-β. This approach might identify potential therapeutic targets directed to one of the
most severe consequences of EoE.
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