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Abstract: The function of the respiratory chain is closely associated with kidney function, and the
dysfunction of the respiratory chain is a primary pathophysiological change in chronic kidney failure.
The incidence of chronic kidney failure caused by defects in respiratory-chain-related genes has
frequently been overlooked. Correcting abnormal metabolic reprogramming, rescuing the “toxic
respiratory chain”, and targeting the clearance of mitochondrial reactive oxygen species are potential
therapies for treating chronic kidney failure. These treatments have shown promising results in
slowing fibrosis and inflammation progression and improving kidney function in various animal
models of chronic kidney failure and patients with chronic kidney disease (CKD). The mitochondrial
respiratory chain is a key target worthy of attention in the treatment of chronic kidney failure. This
review integrated research related to the mitochondrial respiratory chain and chronic kidney failure,
primarily elucidating the pathological status of the mitochondrial respiratory chain in chronic kidney
failure and potential therapeutic drugs. It provided new ideas for the treatment of kidney failure and
promoted the development of drugs targeting the mitochondrial respiratory chain.

Keywords: mitochondrial respiratory chain; chronic renal failure; potential treatment strategies

1. Introduction

The global total number of patients with acute kidney injury (AKI) and chronic kidney
disease (CKD), and individuals receiving renal replacement therapy (RRT) has exceeded
850 million, posing a major burden on global public health [1,2]. Most kidney diseases, par-
ticularly chronic kidney disease, inevitably progress to end-stage renal failure. With a lack
of effective drug treatment, life maintenance relies on dialysis or renal transplantation [3].
Patients have to face extremely high mortality and a heavy economic burden [4–6].

As the organ with the second highest oxygen consumption in the body at rest, the
kidney has a high mitochondrial density second only to the heart [7,8].These physiological
and structural characteristics are largely due to the tubular cells that comprise about 90%
of the renal parenchyma, requiring a large supply of ATP to establish an energy-intensive
electrochemical gradient [9,10]. Mitochondria rely on the respiratory chain to produce
ATP [11], which closely links the normal functioning of the kidneys to the respiratory chain.

As the main source of ROS production, the mitochondrial respiratory chain plays an
important role in the progression of kidney injury [12]. Simultaneously, the mitochondrial
respiratory chain is also a major target of multiple uremic toxins (UTs) produced during kid-
ney failure. Inhibition of the respiratory chain by UTs can lead to excessive ROS production,
further promoting the production and accumulation of UTs, forming a positive feedback
loop [13], and accelerating the deterioration of kidney function. Thus, the respiratory chain
is closely linked with kidney failure.

This review aimed to summarize the most recent research progress on the relationship
between the mitochondrial respiratory chain and chronic kidney failure, mainly elucidating
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the pathophysiological changes in the mitochondrial respiratory chain in chronic kidney
failure and potential therapeutic drugs. It can provide new solutions for the treatment of
chronic kidney failure and promote the development of drugs targeting the mitochondrial
respiratory chain.

2. Mitochondrial Respiratory Chain in Normal Kidneys
2.1. Selection of Energy Substrates

Glucose and fatty acids are the two most commonly used energy substrates in normal
kidneys. Fatty acid oxidation can produce three times more ATP than glucose oxidation,
making it the preferred substrate for high-metabolic tissues/cells [14]. Different cells in a
normal kidney exhibit varying mitochondrial densities and specific fuel preferences that
often correspond to their ATP demands [15].

Glomerular cells, including podocytes, endothelial cells, and mesangial cells, mainly
function to filter blood under the glomerular filtration pressure [16]. This passive pro-
cess does not consume ATP, and ATP is primarily used to maintain cellular homeostasis.
Therefore, glomerular cells mainly rely on glucose as an energy source and have a lower
mitochondrial density [11,17,18]. In contrast, tubular cells primarily utilize fatty acids
as their main energy source and have abundant mitochondria. This is because tubular
cells (especially proximal tubule cells) actively reabsorb solutes and water from the pri-
mary filtrate, which is an energy-consuming process requiring significant ATP to maintain
function [19,20].

2.2. Composition of the Mitochondrial Respiratory Chain

The mitochondrial respiratory chain, comprising five protein complexes located in the
mitochondrial cristae and two electron carriers moving between these complexes, serves as
the core of cellular energy metabolism [21]. The five protein complexes are identified as
complex I (NADH-coenzyme Q reductase), complex II (succinate dehydrogenase), complex
III (cytochrome bc1 complex), complex IV (cytochrome c oxidase), and complex V (ATP
synthase), with the two electron carriers being coenzyme Q embedded in the membrane
and soluble cytochrome c [21,22].

Complex I, the largest and most intricate component, facilitates the electron transfer
between NADH and coenzyme Q, leading to the pumping of four protons across the
membrane to provide the proton motive force essential for ATP synthesis [23–25]. Serving as
a crossover point between the Krebs cycle and oxidative phosphorylation system, complex
II catalyzes the oxidation of succinate to fumarate and transfers electrons to coenzyme Q.
Despite not generating a proton motive force, it converts coenzyme Q to ubiquinol, thereby
supplying fuel for complexes III and IV [26–28]. The ubiquinol generated by complexes I
and II is further oxidized by complex III and the electrons are transferred to cytochrome
c. This process is also coupled with the pumping of four protons into the intermembrane
space [29]. Therefore, complex III is not only the balancing point for maintaining the redox
state of the ubiquinone pool and the relay point for electron transfer between two electron
carriers, but also the main source of proton motive force [30]. Complex IV accepts electrons
transferred by cytochrome c to reduce oxygen to water. Additionally, while oxidizing
one molecule of cytochrome c, it transfers two protons into the intermembrane space to
accumulate proton motive force [31]. Finally, complex V utilizes the proton motive force
accumulated by complexes I, III, and IV to phosphorylate ADP and generate ATP, which
serves as the universal energy currency for cellular activities.
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2.3. Generation and Function of Reactive Oxygen Species (ROS)

The production of ROS in kidney cells mainly occurs in the mitochondrial respiratory
chain, generating highly active compounds such as hydrogen peroxide, superoxide anions,
and hydroxyl radicals, collectively referred to as ROS [32,33]. Within cellular homeostasis,
respiratory chain complexes I and III can generate low levels of ROS, primarily through
the modification of key active Cys residues, participating in various intracellular signal
transductions. These processes play a significant role in cell proliferation, differentiation,
oxygen sensing, and mitochondrial autophagy [34–36].

3. Mitochondrial Respiratory Chain in Chronic Kidney Failure
3.1. Shift in Energy Substrates—Metabolic Reprogramming

In cases of renal failure, defects in the mitochondrial respiratory chain lead to disorders
in ATP production, necessitating metabolic reprogramming of renal cells to adapt to injury
and maintain ATP supply [37–39].

The most typical example is the proximal tubular cells of the kidney, which, as high-
energy-demanding cells, are more susceptible to mitochondrial dysfunction, leading to an
early shift from fatty acid oxidation to glycolysis to compensate for mitochondrial energy
loss [40]. Additionally, when tubular cells are damaged, key upstream regulators of fatty
acid oxidation such as peroxisome proliferator-activated receptor gamma coactivator 1
alpha (PGC1α), peroxisome proliferator-activated receptor alpha (PPARα), and the cru-
cial enzyme for fatty acid oxidation, carnitine palmitoyltransferase 1A (Cpt1A), exhibit
decreased expression. Consequently, insufficient fatty acid oxidation and an increase in
free fatty acids occur [41–43]. The accumulation of free fatty acids, also known as non-
esterified fatty acids (NEFA), within cells can have lipotoxic effects, mediating renal damage
by promoting ROS production and activating NLRP3 inflammasomes and peroxisome
proliferator-activated receptors (PPARs) [44–47]. Furthermore, in injured tubular cells, key
rate-limiting enzymes of glycolysis and the major regulatory molecule, 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are activated. Sustained abnormal levels
of glycolysis are strongly linked to renal fibrosis [48–50]. For instance, pyruvate kinase
M2 (PKM2), one of the key rate-limiting enzymes of glycolysis, has been found to colocal-
ize with the fibrosis marker vimentin in atrophic tubular cells. Moreover, the glycolytic
metabolite lactate can maintain a positive feedback loop between glycolysis and fibrosis
by sustaining the expression of the key rate-limiting enzymes hexokinase 2 (HK2) and
PFKFB3 [51,52].

Consequently, while metabolic reprogramming initially enables the kidney to uphold
energy production, long-term disruptions in lipid metabolism leading to lipid accumulation
and lipotoxicity, as well as sustained incomplete energy compensation due to continuous
glycolysis and fibrosis, are correlated with worsened renal outcomes.

3.2. Mitochondrial Respiratory Chain Dysfunction—“Poisoned” Respiratory Chain

The normal kidney plays a pivotal role in clearing metabolic waste generated within
the body. However, in instances of renal failure, the inability to excrete various metabolic
waste products leads to their accumulation in the body, disrupting normal physiological
functions. These accumulated toxic compounds, referred to as UTs [53], are classified into
three categories by the European Uremic Toxins Work Group (EUTox): water-soluble small
molecules, medium-sized compounds, and protein-bound compounds [54].

Among the small molecule UTs, 4-hydroxynonenal (4-HNE), a lipid peroxidation
product, has been extensively studied due to its ability to modify proteins through ac-
tive double bonds and aldehyde groups, consequently impacting protein structure and
function [55,56]. 4-HNE, generated and metabolized within the mitochondria, potentially
targets the modification of respiratory chain protein complexes, inhibiting the activity of
complexes I, II, and IV through precise modifications. This inhibition leads to reduced
mitochondrial oxygen consumption and ATP production, increased proton leakage, and
mitochondrial dysfunction [57–64]. Additionally, guanidinoacetic acid (GAA), another
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small-molecule UT, acts as a precursor molecule of creatine metabolism and can inhibit
the activity of complexes II and IV, reducing ATP production, resulting in intracellular
Ca2+ accumulation and cytochrome C detachment from the inner membrane, consequently
leading to oxidative stress [65,66]. In the context of medium-sized compounds, resistin, a
fat factor linked to obesity-mediated insulin resistance, exhibits a general inhibitory effect
on the electron transport chain and complexes I, II, IV, and V, culminating in reduced
ATP generation [67]. Similarly, tumor necrosis factor-α (TNF-α), another medium-sized
UT closely associated with inflammation, invokes a decrease in the subunit expression of
complexes I and III, demonstrating concentration-dependent inhibition of mitochondrial
activity [68]. Furthermore, the protein-bound UTs, which form strong bonds with plasma
macromolecular proteins making their removal challenging through dialysis, are notably
linked to an increased incidence and mortality of patients with end-stage renal disease
(ESRD) [69]. Among the prevalent protein-bound UTs, indoxyl sulfate, indoxyl-3-acetic
acid, and p-cresol sulfate, metabolites of tryptophan, are highlighted, as even at low con-
centrations, they can hinder the activity of mitochondrial complexes III and IV enzymes,
impeding energy generation in the respiratory chain [70,71]. Homocysteine (Hcy), a protein-
bound UT derived from methionine metabolism, is considered an important independent
risk factor for renal dysfunction [72]. Studies have shown a negative correlation between
tissue Hcy levels and fifteen nuclear-encoded mitochondrial respiratory chain complex
genes (encoding complexes I, IV, V), particularly indicating that high Hcy impedes complex
assembly and reduces activity by inhibiting the core subunits S3/7 and V1/2 of complex I,
ultimately leading to impaired electron transfer and an imbalanced mitochondrial redox
state [73].

Mitochondria play a crucial role in the synthesis and metabolism of various pathways
of UTs, and the mitochondrial respiratory chain complex stands out as a significant target
for the damage caused by UTs. This interaction to a certain extent forms a positive feedback
loop, accelerating the deterioration of kidney function [13].

3.3. Excessive Generation of ROS—Oxidative Stress

The imbalance between excessive generation of reactive oxygen species (ROS) and/or
reduced antioxidant defense mechanisms is a major risk factor for the occurrence and
development of kidney disease [74]. In renal failure, malfunction of the mitochondrial
respiratory chain, alterations in the respiratory chain electron flux, and defects in down-
stream catalytic subunits result in electrons spending more time at the reduction center,
leading to increased leakage and excessive ROS production [11,12,75]. The resultant ex-
cessive ROS are transferred to the mitochondrial matrix and intermembrane space from
complexes I, II, and III, exacerbating the respiratory chain dysfunction, thus setting off a
vicious cycle [76]. Notably, in patients with renal failure, plasma levels of non-enzymatic
antioxidants such as vitamin C, vitamin E, selenium, and enzymatic antioxidants, including
superoxide dismutase, catalase, glutathione, and glutathione peroxidase, are reduced. The
imbalance between excessive oxidative reactions and an inadequate antioxidant system
leads to renal oxidative stress (OS), causing cellular DNA damage, protein denaturation,
and lipid peroxidation [77,78]. Of particular note is that although dialysis is currently
the most effective treatment for ensuring the survival of chronic renal failure patients,
apart from kidney transplantation, dialysis, especially hemodialysis, stimulates immune
responses and inflammation by directly exposing blood to low biocompatible dialysis
membranes and dialysate, exacerbating the production of ROS [79,80].

The pathophysiological changes in the mitochondrial respiratory chain in chronic
renal failure are shown in Figure 1.
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Figure 1. Mitochondrial respiratory chain in chronic kidney failure (by Figdraw). The mitochondrial 
respiratory chain complex is an important target for damage in chronic kidney failure. The produc-
tion and accumulation of various uremic toxins (UTs) during kidney failure leads to dysfunction of 
the mitochondrial respiratory chain, resulting in inadequate energy generation. Kidney cells, espe-
cially proximal tubule cells, are forced to undergo metabolic reprogramming to adapt to the damage 
and maintain ATP supply. At this stage, the key upstream regulators of fatty acid oxidation levels, 
PGC1α, PPARα, and the key enzyme Cpt1A, show decreased expression, leading to lipid accumu-
lation and kidney lipotoxicity. The expression of key rate-limiting enzymes in glycolysis, HK-2, 
PFKFB3, and PKM2, is enhanced, and sustained glycolysis results in incomplete energy compensa-
tion and accelerates kidney fibrosis. In addition, dysfunction of the respiratory chain leads to in-
creased electron leakage at complexes I, II, and III, resulting in excessive ROS production. Mean-
while, levels of various antioxidant enzymes in the plasma of kidney failure patients are generally 
decreased, causing an imbalance between excessive oxidative reactions and inadequate antioxidant 
systems, leading to oxidative stress (OS) in the kidneys, exacerbating respiratory chain damage. 
AcCoA, acetyl-CoA; FAO, fatty acid oxidation; TCA, tricarboxylic acid cycle; IMM, inner mitochon-
drial membrane; IMS, intermembrane space; OMM, outer mitochondrial membrane; SOD2, super-
oxide dismutase2; GPx, peroxidase; GR, glutathione reductase; GSSG, oxidized glutathione; GSH, 
glutathione. 

4. Kidney Failure Caused by Mitochondrial Respiratory Chain Abnormalities 
Primary mitochondrial cytopathy encompasses a heterogeneous group of diseases 

resulting from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mDNA), pri-
marily leading to hereditary defects in the respiratory chain. Kidney disease occurs in ap-
proximately 5% of patients with primary mitochondrial cytopathy. However, due to the 
low prevalence of kidney biopsies in patients, this proportion is significantly underesti-
mated [81,82]. 

Figure 1. Mitochondrial respiratory chain in chronic kidney failure (by Figdraw). The mitochondrial
respiratory chain complex is an important target for damage in chronic kidney failure. The production
and accumulation of various uremic toxins (UTs) during kidney failure leads to dysfunction of the
mitochondrial respiratory chain, resulting in inadequate energy generation. Kidney cells, especially
proximal tubule cells, are forced to undergo metabolic reprogramming to adapt to the damage and
maintain ATP supply. At this stage, the key upstream regulators of fatty acid oxidation levels, PGC1α,
PPARα, and the key enzyme Cpt1A, show decreased expression, leading to lipid accumulation
and kidney lipotoxicity. The expression of key rate-limiting enzymes in glycolysis, HK-2, PFKFB3,
and PKM2, is enhanced, and sustained glycolysis results in incomplete energy compensation and
accelerates kidney fibrosis. In addition, dysfunction of the respiratory chain leads to increased
electron leakage at complexes I, II, and III, resulting in excessive ROS production. Meanwhile, levels
of various antioxidant enzymes in the plasma of kidney failure patients are generally decreased,
causing an imbalance between excessive oxidative reactions and inadequate antioxidant systems,
leading to oxidative stress (OS) in the kidneys, exacerbating respiratory chain damage. AcCoA, acetyl-
CoA; FAO, fatty acid oxidation; TCA, tricarboxylic acid cycle; IMM, inner mitochondrial membrane;
IMS, intermembrane space; OMM, outer mitochondrial membrane; SOD2, superoxide dismutase2;
GPx, peroxidase; GR, glutathione reductase; GSSG, oxidized glutathione; GSH, glutathione.

4. Kidney Failure Caused by Mitochondrial Respiratory Chain Abnormalities

Primary mitochondrial cytopathy encompasses a heterogeneous group of diseases
resulting from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mDNA), pri-
marily leading to hereditary defects in the respiratory chain. Kidney disease occurs in
approximately 5% of patients with primary mitochondrial cytopathy. However, due to the
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low prevalence of kidney biopsies in patients, this proportion is significantly underesti-
mated [81,82].

Mitochondrial cytopathy can induce various renal phenotypes, with the renal tubule
being the most commonly affected due to its high mitochondrial density. Proximal tubular
involvement primarily manifests as Fanconi syndrome, which is the most frequent clinical
presentation of mitochondrial cytopathy affecting the kidneys. This syndrome is character-
ized by reduced reabsorption of various filtered solutes [83]. Initial symptoms typically
manifest in the neonatal period or before the age of 2, often accompanied by moderate renal
failure and a poor prognosis for the patients [84–87]. Involvement of the distal renal tubules
often results in electrolyte disturbances, particularly hypomagnesemia [88]. Mitochondrial
cytopathy affecting the renal glomeruli commonly presents as nephrotic syndrome, espe-
cially steroid-resistant nephrotic syndrome, with focal segmental glomerulosclerosis being
its typical histological feature [88–90]. Additionally, mitochondrial cytopathy may lead to
tubulointerstitial nephritis and cystic kidney disease, ultimately culminating in end-stage
renal disease [87,91,92].

Among the respiratory chain complexes, mutations associated with complex I defi-
ciencies are the most prevalent primary respiratory chain disorders [93]. These mutations
are categorized into two groups: one involves gene mutations encoding subunits of the
complex, and the other encompasses gene mutations encoding auxiliary proteins vital
for the biogenesis, assembly, and stability of the complex [94]. Phenotypes affecting the
kidney as a result of alterations in complex subunits are often linked to the occurrence
and metastasis of renal oncocytoma and renal clear cell carcinoma [95–98]. On the other
hand, mutations in genes related to auxiliary proteins often lead to multi-system diseases,
manifesting diverse kidney implications and early onset of kidney failure [92,94,99–102].
Additionally, the reduction in Ndufs6, as the second most conserved subunit in complex
I, resulting in the lack of complex I, could also lead to isolated non-tumor-related kidney
damage in young mice [103].

Complex II links the tricarboxylic acid cycle and serves as the entry point for succi-
nate into the respiratory chain. Deficient activity of complex II leads to cellular energy
characteristics resembling the Warburg effect, where cells depend on glycolysis to meet
synthetic metabolic demands [104]. Mutations in complex II subunits are primarily as-
sociated with renal cell carcinoma of proximal tubule epithelial cell origin, representing
the most prevalent kidney phenotype. Nonetheless, considering the fibrosis-promoting
effect of glycolysis and the incomplete energy compensation, exploring kidney damage
resulting from mutations linked to complex II is necessary [105]. In 2005, Goldenberg A and
colleagues documented a case of congenital nephrotic syndrome in a patient with rapidly
deteriorating renal function, culminating in end-stage renal failure by the age of 22 months.
Despite the absence of related gene mutations, the patient’s clinical symptoms and the
detection of complex II deficiency in multiple biopsied organs prompted the authors to
contemplate primary complex II deficiency instead of secondary downregulation [106].
Additionally, Micheletti MV and colleagues documented a case where a mutation in the
relevant gene led to recurrent hemolytic uremic syndrome and rhabdomyolysis due to
complex II deficiency. This child required regular dialysis to sustain life from the age of two,
largely supporting the evidence that complex-II-related mutations could lead to kidney
failure [107].

The content and enzyme activity of mitochondrial complex IV are negatively correlated
with the extent of tubular atrophy [108]. Hereditary defects in complex IV are one of
the causes of chronic tubulointerstitial nephropathy [81,109,110]. Defects in complex IV
are closely associated with the occurrence and development of chronic tubulointerstitial
nephropathy. Renal Fanconi syndrome may be the initial sign of partial deficiencies in
respiratory chain complex IV [110,111].

ATP6 encodes a subunit of complex V, and its pathogenic mutations are currently
the only ones known to be associated with kidney failure among the mutations in com-
plex V. The pathogenic mechanism may be linked to mutations leading to ATP synthase
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dysfunction, indirectly affecting proton displacement in renal cells, and promoting ROS
production [112,113]. However, as a target for renal ischemia–reperfusion injury and drug-
induced kidney toxicity, there is still significant potential for exploring the connection
between complex V and kidney failure [114,115].

Coenzyme Q plays a crucial role in maintaining the flow of reducing equivalents from
complex I and II to complex III in the respiratory chain, and also serves as an essential
antioxidant in the human body. In contrast to the tubular lesions commonly associated
with the aforementioned respiratory chain complex deficiencies, hereditary defects in
coenzyme Q often present as steroid-resistant nephrotic syndrome, with focal segmental
glomerulosclerosis being the primary kidney pathology [116–125]. The specific mechanism
of this unique glomerular lesion pattern remains unclear. However, in patients with
CoQ2 gene mutations, widespread abnormal mitochondrial proliferation was observed in
glomerular cells. Furthermore, Pdss2 knockout mice exhibited kidney diseases that were
not observed in conditional Pdss2 knockout mice in renal tubular epithelium, suggesting
a certain degree of cell specificity in coenzyme Q deficiency-induced oxidative stress and
mitochondrial dysfunction [119,122].

In renal failure, the abnormal internal environment of the body results in dysfunction
of the mitochondrial respiratory chain. Defects in respiratory-chain-related genes are
closely associated with the occurrence and development of kidney diseases. This provides
a robust chain of evidence demonstrating the close relationship between the mitochondrial
respiratory chain and the occurrence and development of kidney failure.

The characteristics of the renal failure caused by genetic defects in the respiratory
chain are shown in Table 1.
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Table 1. Characteristics of the renal failure caused by genetic defects in the respiratory chain.

Defects of Respiratory Chain
Components Genetic Mutations Species Gene Function Renal Phenotype and Time to

Reach Renal Failure

Complex I
TMEM126B biallelic mutation,

c.635G>T (p.Gly212Val) and/or
c.401delA (p.Asn134Ilefs*2) [94]

Human
Encode component of the

mitochondrial complex I assembly
complex

Renal tubular acidosis in infancy, chronic
renal insufficiency in early childhood

ACAD9 biallelic mutation, c.187G>T
(p.E63*) and c.941T>C (p.L314P)

[99,100]
Human Encode a critical assembly factor for

complex I biogenesis
Proximal tubular mitochondrial

hyperplasia and renal failure in newborns

MTND5 frameshift mutation,
m.12425delA (p.Asn30ThrfsX7) [92] Human

Unclear as to the exact contribution
to complex I function, but mutation

leads to complex I
assembly defects

Glomerular cystic disease with marked
atrophy and fibrosis,

school-age renal failure

XPNPEP3 homozygous frameshift,
931_934del AACA (p. N311LfsX5)

[101,102]
Human Maintain complex I stability NPHP-like nephropathy,

school-age renal failure

Ndufs6GT/GT (knockdown of the
Ndufs6 gene) [103]

Mouse Encode complex I subunits
Juvenile mice with increased urinary Kim-1

excretion and elevated
circulating cystatin C

Complex II Lack of coverage [106,107] Human

The presence of relevant gene
mutation and its function have not

been cleared, but strongly associated
primarily with the lack of complex II

Congenital nephrotic syndrome or
hemolytic uremic syndrome, end-stage

renal failure in early childhood

Complex III

BCS1L compound heterozygous
mutation, c.166C>T (p.Arg56)

andc.205C>T (p.Arg69Cys)
[126]; homozygous mutation c.142A>G
(p.M48V) [127]; homozygous mutation

c.296C>T (P99L) [128–130];

Human
Encode chaperone/translocase that

promotes Rieske Fe/S protein
insertion in complex III

Fanconi syndrome; patients with
compound heterozygous mutation had

end-stage renal failure at age 49; patients
with p.M48V homozygous mutation had

renal failure at age 17; patients with
homozygous P99L mutation had renal

failure in newborns

Complex IV MTCO1 heteroplasmic nonsense
mutation, m.6145G>A (p. Trp81Ter) [81] Human Encodes the core subunit

of complex IV

Chronic tubulointerstitial disease, with
abnormal mitochondria in distal tubular

epithelial cells, chronic renal insufficiency
in middle age
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Table 1. Cont.

Defects of Respiratory Chain
Components Genetic Mutations Species Gene Function Renal Phenotype and Time to

Reach Renal Failure

A large-scale 7.3 kb deletion
of mtDNA [110] Human

Encodes three mitochondrial coding
core subunits of the

cytochrome c oxidase

Fanconi syndrome, chronic interstitial
nephritis, preschool renal failure

2.7 kb mtDNA deletion located between
nucleotide (nt) 9700 and nt 13700 [109] Human

Not directly involved in encoding
cytochrome c oxidase, encoding

tRNA affects the activity of
cytochrome c oxidase

Fanconi syndrome, progressive renal
insufficiency, tubular atrophy and

interstitial fibrosis, extreme mitochondrial
malformation of renal tubular cells,

preschool renal failure

Complex V
MT-ATP6 novel heteroplasmic

truncating variant, m.8782 G>A (p.
Gly86*) [112]

Human Encodes ATP synthase subunit Focal segmental glomerulosclerosis, renal
failure in middle age

MT-ATP6 G8969>A mutation [113] Human Encodes ATP synthase subunit
Severe IgA nephropathy, multiple
recurrences under steroid therapy,

adolescent kidney failure

Coenzyme Q

CoQ2 missense mutation, c.890G>A
(p.Tyr297Cys) [116]; CoQ2 frameshift
mutations, c.1198delT, N401fsX415

[117]; heterozygous mutation, c.590G>A
(p.Arg197His) and c.683A>G

(p.Asn228Ser), homozygous mutation,
c.437G>A (p.Ser146Asn) [119]

Human

Encodes key enzyme for coenzyme
Q biosynthesis:

para-hydroxybenzoate-polyprenyl
transferase

Nephrotic syndrome (steroid resistance is
common), focal and segmental

glomerulosclerosis or crescent nephritis,
renal failure in infancy and early childhood

or adolescence

CoQ2 heterozygous mutation, c.1058A >
G (p.Y353C) and c.973A > G, (p.T325A) Human

Encodes key enzyme for coenzyme
Q biosynthesis:

para-hydroxybenzoate-polyprenyl
transferase

Isolated nephrotic syndrome
(steroid-resistant), preschool renal failure

CoQ6 homozygous mutation,
c.763G>A (p.G255R), c.1058C>A

(p.A353D) [120,121]
Human

Encodes coenzyme Q10
monooxygen6, catalyze

cyclohydroxylation steps, which are
required for CoQ biosynthesis

Steroid-resistant nephrotic syndrome, focal
and segmental glomerulosclerosis, median

age of renal failure less than 3 years

Pdss2kd/kd mice [122] Mouse
Encodes decaprenyl diphosphate

synthase subunit 2 for coenzyme Q
biosynthesis

Nephrotic proteinuria, renal failure after
8 weeks
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Table 1. Cont.

Defects of Respiratory Chain
Components Genetic Mutations Species Gene Function Renal Phenotype and Time to

Reach Renal Failure

ADCK4 homozygous mutation,
c.293T>G (p.Leu98Arg), c.1199dupA

(p.His400Glnfs*11), c.1339dupG
(p.Glu447Glyfs*10), c.1430G>A

(p.Arg477Gln), c.293T>G (p.Lys98Arg)
[123]; heterozygous mutation, the

following genes are combined
c.449G>A (p.R150Q),
c.737G>A (p.S246N),
c.532C>T (p.R178W),
c.538C>T (p.R180C),
c.551A>G (p.D184G),
c.748G>C (p.D250H),

c.936–938delGGT (p.V313del),
c.1468C>T (p.R490C) [124]; compound

heterozygous mutations, cc.439T>C
(p.Cys147Arg) and

c.1035 + 2T>C (p.?) [125]

Human Gene involved in endogenous
CoQ10 biosynthesis in human

Subnephrotic proteinuria or nephrotic
syndrome (steroid resistance is common),

renal failure usually occurs during
adolescence or school age

Cytochrome C NA NA NA NA
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5. Targeting the Mitochondrial Respiratory Chain: Potential Therapeutic Drugs for
Chronic Renal Failure
5.1. “Starting from Scratch”—Targeting the Energy Substrate Selection Stage

In chronic renal failure, the primary pathophysiological mechanism at the energy
substrate selection stage is the disorder in fatty acid utilization, and restoring normal fatty
acid oxidation presents a potential therapy for this condition [19].

L-carnitine promotes the mitochondrial matrix transport of long-chain fatty acids,
regulates fatty acid β-oxidation, and possesses antioxidant and free radical scavenging
properties. It has exhibited benefits for various diseases characterized by low carnitine
levels or impaired fatty acid oxidation [131–133]. In the human body, L-carnitine mainly
relies on dietary intake and endogenous synthesis in the liver and kidneys. The balance of
carnitine homeostasis is maintained through glomerular filtration and tubular reabsorption
in the kidneys [134]. Chronic renal failure patients often suffer from carnitine deficiency
due to dietary restrictions, renal dysfunction, and continuous loss during dialysis. Thus,
oral or intravenous supplementation of L-carnitine presents a potential therapy for cor-
recting the abnormal metabolic reprogramming in these patients [134,135]. Several clinical
randomized controlled trials of L-carnitine supplementation have been conducted in pa-
tients undergoing hemodialysis or peritoneal dialysis for chronic renal failure; however,
the existing results are somewhat controversial [136–140].

PGC-1α is a key transcription factor that regulates mitochondrial biogenesis and
function, as well as a crucial upstream regulator of fatty acid oxidation [141,142]. Experi-
mental models of chronic kidney disease in mice and patients with chronic renal failure
exhibited low levels of PGC-1α expression. Pharmacological activation of PGC-1α pre-
sented a potential therapy for improving energy metabolism in patients with chronic renal
failure [143–147]. A novel selective PGC-1α small-molecule agonist, ZLN005, has been
validated in mice as promoting fatty acid oxidation and mitochondrial biogenesis. It was
shown to improve insulin resistance and ketone tolerance in diabetic mouse models and to
alleviate fibrosis and lipid accumulation in a unilateral ureteral obstruction (UUO) mouse
model [148,149]. The traditional Chinese medicine prescription Shen Shuai II stimulated
PGC-1α expression and improved mitochondrial functional protein expression and energy
production in hypoxia-treated renal tubular epithelial cells (HK-2) and a 5/6 nephrectomy
rat model of CKD. It also inhibited hypoxia-induced fibrosis in HK-2 cells [150]. Unfortu-
nately, this treatment prescription lacks data related to fatty acid metabolism. The plant
extract sulforaphane enhanced the expression of PGC-1α and nuclear respiratory factor 1
(NRF1) by suppressing the fatty acid intake membrane receptor CD36 and enhancing the
expression of the key fatty acid oxidation enzyme CTP1A, reducing lipid deposition in a
UUO rat model. It also improved the tricarboxylic acid cycle by increasing the expression
and activity of mitochondrial functional proteins [151]. Furthermore, the plant extract
huperzine A glucoside has been shown to activate PGC-1α transcription, but its specific
pharmacological effects require further investigation [152].

The tissue expression of PPARα positively correlates with mitochondrial density and
fatty acid β-oxidation levels, thus playing an important role in lipid metabolism [153].
Patients with chronic kidney failure exhibited reduced expression of renal PPARα. Mouse
models further corroborated the link between low PPARα expression and the progression
of fibrosis, suggesting that PPARα agonists hold potential as therapeutic drugs for chronic
kidney failure [20,154,155]. Fibrates, the most commonly used PPARα agonists, are mainly
excreted by the kidneys, thus limiting their use in patients with chronic kidney failure due
to potential kidney-related complications. The novel fibrate pemafibrate, mainly excreted
by bile, regulated fatty acid metabolism by activating renal PPARα and its target genes,
leading to the inhibition of kidney fibrosis and the expression of inflammatory markers in
UUO mice. Additionally, it improved plasma creatinine and blood urea nitrogen levels, as
well as kidney fibrosis in CKD mouse models, consequently reducing renal inflammation
and oxidative stress levels [156].
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Cpt1A is a crucial rate-limiting enzyme in fatty acid metabolism. Reduced expression
of Cpt1A in patients with chronic kidney failure is associated with fibrosis. Overexpression
of Cpt1A in a mouse model of CKD restored fatty acid metabolism in the fibrotic kidney,
which improved mitochondrial homeostasis and consequently ameliorated both renal
fibrosis and kidney function [157]. Cpt1A agonists are potential drugs for targeting the
energy substrate selection stage to improve fibrosis in chronic kidney failure. Resveratrol
and its derivative, BEC2, have been experimentally confirmed as directly activating Cpt1A,
thus accelerating long-chain fatty acid β-oxidation, but this class of drugs has not yet been
used in animal CKD models [158,159].

5.2. Strive for “Precision Strike”—Targeting the Mitochondrial Respiratory Chain

Mitochondrial damage and dysfunction represent the primary pathogenic events in
chronic kidney failure, with the dysfunction of the respiratory chain serving as the central
component. Restoring the function of the mitochondrial respiratory chain is crucial in
preventing the progression of chronic kidney failure [160].

Coenzyme Q10 (CoQ10) serves as both an electron carrier in the respiratory chain
and an effective scavenger of reactive oxygen species [161]. The reduction in CoQ10 in the
plasma of chronic kidney failure patients results in the diminished efficiency of electron
transport in the respiratory chain, alterations in mitochondrial membrane potential, esca-
lated production of reactive oxygen species, and a cascade of pathological changes [162]. As
a result, the supplementation of CoQ10 not only enhances electron transport efficiency in
the respiratory chain to facilitate ATP production, but also ameliorates abnormal fatty acid
metabolism in diabetic and obese mice and patients with chronic kidney failure through the
upregulation of PGC-1α expression. Additionally, it inhibits the depolarization of the mito-
chondrial membrane potential, thereby reducing oxidative stress markers in chronic kidney
failure patients [162–166]. Moreover, CoQ10 supplementation demonstrated the ability to
decrease proteinuria in a rat model of subtotal nephrectomy chronic kidney disease and
in patients with primary CoQ10-induced kidney failure, consequently contributing to an
improvement in kidney function to some extent. A large dosage of oral CoQ10 supple-
mentation can successfully eliminate proteinuria and preserve normal kidney function in
children with inherited mutations of CoQ2, CoQ6, and CoQ8b genes [90,123,167,168].

RP81-MNP is a nanocapsule-encapsulated renal enzyme stimulant that targets the
proximal tubules of the kidney. RP81-MNP administration mainly upregulated the expres-
sion of mitochondrial respiratory chain complex I Nd1, Nd3–5 subunits and enhanced
the reduction state of complex I to reduce cisplatin-induced renal tubular damage and
excessive ROS production in a mouse model of CKD [169]. GC4419, a novel small molecule
superoxide dismutase (SOD) mimic, demonstrated the ability to reduce excessive superox-
ide anion production induced by cisplatin. This was achieved by inhibiting the abnormal
activity of mitochondrial respiratory chain complex I, leading to improvements in renal
tubule necrosis, interstitial fibrosis, and the protection of kidney function in a mouse model
of CKD [170].

Mitochondrial acid MA-5 is a newly synthesized indole derivative, which can regulate
mitochondrial ATP synthesis and clear mitochondrial ROS production by promoting ATP
synthase oligomerization and forming a supercomplex with mitofilin/Mic60 to improve
mitochondrial dysfunction. Its nephroprotective effect has been further demonstrated in
oxidative stress cell models and cisplatin-induced mouse nephropathy models [171–173].
The emergence of MA-5 provides a new strategy for mitochondrial-targeted therapy for
chronic renal failure.

Mitochondrial complex I and cytochrome c are considered to be the targets of
flavonoids [174]. Pre-administration of curcumin effectively mitigated the decline in respi-
ratory chain complex I and V activities in a rat 5/6 nephrectomy model. This protective
effect on the respiratory chain complex ameliorated excessive ROS production and renal
structural damage. Unfortunately, the study on the efficacy of this drug has been limited
to preventive administration [175–177]. Quercetin stimulated mitochondrial biogenesis
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and suppressed the production of reactive oxygen species by elevating the concentration
of the electron carrier cytochrome c and inhibiting the generation of superoxide anions by
mitochondrial complex I. Consequently, it suppressed inflammation and the expression of
apoptosis factors in the rat UUO model [174,178,179]. Meanwhile, the mixed preparation
of curcumin and quercetin, Oxy-Q, was confirmed in a phase I clinical trial to improve
early graft function in deceased donor kidney transplant recipients. Further promotion of
flavonoid preparations in the treatment of chronic kidney failure is anticipated [180].

The renal protective effect of non-flavonoid polyphenols, resveratrol, has been veri-
fied in various models of acute kidney injury [181,182]. Resveratrol could also improve
mitochondrial ATP synthesis in the kidneys and reverse depolarization of mitochondrial
membranes to alleviate glomerular injury in the 5/6 nephrectomy CKD rat model by in-
creasing the expression of ATP synthase subunit beta and cytochrome c oxidase subunit I
protein, and by exposing mesangial cells to TGF-β1 [183]. Unfortunately, the poor bioavail-
ability of resveratrol has limited the translation of animal experiments to clinical trials.
Improving the delivery of the drug, such as nanoencapsulation, is critical for its further
clinical promotion [184].

Extracts of the traditional Chinese medicine formula Zhen Wu Decoction enhanced
the expression of representative subunits NDUFB8, SDHB, UQCRC2, COX-I, and ATP5A of
mitochondrial respiratory complexes I-V in the kidneys of mice in a UUO model, restoring
oxidative phosphorylation and improving kidney fibrosis and renal function damage [185].
However, since this research was based on a composite formula, the specific effective
ingredients need further clarification.

Preventive administration of the member of the vitamin E family, γ-tocotrienol, could
effectively prevent the decrease in the activity of complexes I, III, and F0F1-ATPase after
ischemia/reperfusion injury, preserve ATP levels in the renal cortex, and alleviate renal
tubular injury and the post-injury inflammatory response [186]. However, as with curcumin,
this drug is still in the stage of preventive administration and lacks verification in CKD
models. It is unknown whether it has the same renal protective effect on patients with
chronic kidney failure.

5.3. “Stepping on the Brake”—Targeting Mitochondrial Oxidative Stress

The causal relationship between oxidative stress and respiratory chain dysfunction
is a primary contributor to the development and progression of chronic kidney failure.
Addressing oxidative stress, particularly that originating from mitochondria, holds promise
as a therapeutic approach for managing or ameliorating chronic kidney failure [74,76].
Traditional drugs that primarily act on energy substrate selection and mitochondrial respi-
ratory chain stages can improve mitochondrial function to a greater or lesser extent while
also having some degree of free radical scavenging effects. The primary hindrance to the
antioxidant effect is the low concentrations of drugs in the mitochondria. The emergence of
novel antioxidants specifically targeted at the mitochondria has facilitated the targeting of
mitochondrial oxidative stress [12].

Mito molecules, such as MitoQ and Mito-TEMPO, are mitochondrial-targeted antioxi-
dants traditionally linked to triphenylphosphonium (TPP) cations. Their specific delivery
primarily relies on the electrostatic attraction between the outer TPP carrying a positive
charge and the high transmembrane potential of the mitochondria [187]. MitoQ is formed
by covalently connecting the quinone part to TPP. Upon entry into the mitochondria, the
quinone part integrated into the mitochondrial lipid bilayer and underwent reduction
by the respiratory chain, forming a quinol derivative. This derivative acted as a potent
antioxidant, preventing lipid peroxidation and restoring activity through the respiratory
chain cycle [188]. Currently, MitoQ has been validated to delay age-related kidney fibrosis
in a mouse aging model and improve vascular dysfunction in patients with chronic kidney
failure, suggesting its potential for application in chronic kidney failure patients [189,190].
Mito-TEMPO, an SOD mimic composed of peroxynitrite and TPP coupling, effectively
reversed DNA methylation and reduced kidney fibrotic changes in an NDRG2-dependent
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manner, leading to a notable enhancement in renal function in a rat model of chronic kidney
failure [191,192]. Furthermore, mitochondrial-targeted quinone analogs such as SkQ1 and
SkQR1, as well as the SOD mimic Mito-CP, have demonstrated renal protective effects in
various acute kidney injury models, though their verification in chronic kidney failure
models is still pending [193,194].

Sodium tanshinone IIA sulfonate (SS) peptides are a class of cell-penetrating peptides
with a specific mitochondrial-targeting sequence. They eliminate oxygen free radicals
through tyrosine or dimethyltyrosine residues and are currently considered highly promis-
ing mitochondrial-targeted efficient antioxidants [195]. SS-31 penetrates the mitochondria
in a manner independent of membrane potential and accumulates in the inner mitochon-
drial membrane to eliminate reactive oxygen species, thereby inhibiting the opening of
mitochondrial permeability transition pores and the release of cytochrome c [196]. Admin-
istration of SS-31 effectively improved glomerulosclerosis and tubulointerstitial fibrosis
in a rat 5/6 nephrectomy and unilateral ureteral obstruction (UUO) model, reduced renal
function damage and proteinuria, and effectively prevented the transition from acute is-
chemic AKI to CKD [197–200]. SS-20, another SS peptide targeting the inner mitochondrial
membrane, shares the same antioxidant mechanism as SS-31 but is not as widely utilized.
While clearing mitochondrial reactive oxygen species, it effectively improved mitochon-
drial respiratory chain efficiency and ameliorated renal dysfunction and inflammation
progression in a mouse model of chronic kidney failure [201]. Recently, electrostatically
complexed SS-31 nanopolymer chains formed using anionic hyaluronic acid and cationic
chitosan have achieved a breakthrough in targeting acute kidney injury after systemic
administration, providing insights for targeting chronic kidney injury [202]. Additionally,
mtCPP-1, a mitochondria-targeting peptide designed based on the structure of SS-31, has
shown better mitochondrial-targeting ability than SS-31 [203]. Therefore, before clinical
application in chronic kidney failure patients, the focus of drug improvement for SS-31
should be on improving the targeting of chronic kidney injury and mitochondrial targeting.

The potential therapeutic agents for chronic renal failure targeting the mitochondrial
respiratory chain are shown in Table 2, and the mechanisms of action of the potential
therapeutic drugs for chronic renal failure are shown in Figure 2.

Table 2. Potential therapeutic agents for chronic renal failure targeting the mitochondrial respiratory chain.

Drug Name The Main Action Stage Mechanism Current Usage Status

L-carnitine [131–140,204] Energy substrate selection
Mediates fatty acid transport

and promotes the
tricarboxylic acid cycle

Validated by randomized clinical
trials in patients with

hemodialysis and peritoneal
dialysis with chronic renal failure,
but the results were controversial

ZLN005 [148,149] Energy substrate selection

PGC-1α agonists, promotes
fatty acid oxidation,

mitochondrial biogenesis and
function

Phenotypic improvement
validation of mouse model of
diabetes mellitus and UUO

Shen Shuai II recipe [150] Energy substrate selection
Activates PGC-1α and

regulates mitochondrial
dynamics

Phenotypic improvement
validation of rat 5/6 nephrectomy

CKD model

Sulforaphane [151] Energy substrate selection

Enhances PGC-1α and NRF1
expression, improves lipid

metabolism and
mitochondrial biogenesis

Phenotypic improvement
validation of rat UUO model

Cucurbitane glucoside [152] Energy substrate selection Activates PGC-1α Lack of animal model validation

Pemafibrate [156] Energy substrate selection PPARα agonist, regulates fatty
acid metabolism

Phenotypic improvement
validation of mouse UUO and
purine-induced CKD models
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Table 2. Cont.

Drug Name The Main Action Stage Mechanism Current Usage Status

Baicalin, BEC2 [158,159] Energy substrate selection
CPT1A agonist, accelerates β

oxidation of long-chain
fatty acids

Not verified by mouse
CKD model

Coenzyme Q10
[90,123,162–168]

Mitochondrial
respiratory chain

improves the electron
transport efficiency of the

respiratory chain, activates
PGC-1α to improve fatty acid

metabolism, and inhibits
mitochondrial membrane
potential depolarization

Phenotypic improvement
validation of a rat renal

hemirectomy CKD model and
patients with chronic renal failure,

large-scale
clinical randomized controlled

trials were lacking

RP81-MNP [169] Mitochondrial
respiratory chain

Upregulates the expression of
mitochondrial complex I
subunit and enhances the

reduction state of complex I

Phenotypic improvement
validation of cisplatin-induced

mouse CKD model

GC4419 [170] Mitochondrial
respiratory chain

Inhibits mitochondrial
complex I aberrant activity

Phenotypic improvement
validation of cisplatin-induced

mouse CKD model

MA-5 [171–173] Mitochondrial
respiratory chain

Promotes ATP synthase
oligomerization and forms a

supercomplex with
mitofilin/Mic60

Phenotypic improvement
validation of cisplatin-induced

mouse nephropathy model

Curcumin [176,177] Mitochondrial
respiratory chain

Maintains complexes I,
V activity

Prophylactic administration was
used to verify the protective effect

of renal function in rat 5/6
nephrectomy CKD model

Quercetin [174,178,179] Mitochondrial
respiratory chain

Enhances cytochrome C
concentration and inhibits the

generation of superoxide
anion by complex I

Validation of phenotypic
improvement in rat UUO model

Resveratrol [183] Mitochondrial
respiratory chain

Increases the expression of
ATP synthase β and

cytochrome c oxidase subunit
I protein, promotes ATP

synthesis, and
reverses mitochondrial

hyperpolarization
membrane potential

Validation of phenotypic
improvement in rat 5/6

nephrectomy CKD model

ZhenWu Decoction [185] Mitochondrial
respiratory chain

Enhances mitochondrial
respiratory complex I-V

subunit expression to restore
oxidative phosphorylation

Validation of phenotypic
improvement in rat UUO model

γ-Tocotrienol [186] Mitochondrial
respiratory chain

Maintains complex I, III and
F0F1-ATPase activity

Prophylactic administration has
only been shown to be effective in

a mouse model of
ischemia–reperfusion acute

kidney injury

MitoQ [189,190] Mitochondrial
oxidative stress

Targets mitochondria to
prevent lipid peroxidation

Validation of phenotypic
improvement in mouse aging

model and chronic renal failure
patients, large-scale clinical

randomized controlled
trials were lacking
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Table 2. Cont.

Drug Name The Main Action Stage Mechanism Current Usage Status

Mito-TEMPO [191,192] Mitochondrial
oxidative stress

SOD enzyme mimics targeting
ROS-mediated

hypermethylation of the
NDRG2 promoter

Validation of phenotypic
improvement in mouse UUO

model and rat 5/6 nephrectomy
CKD model

SS-31 [197–200] Mitochondrial
oxidative stress

Targets the inner
mitochondrial membrane to

scavenge mitochondrial
oxygen radicals by tyrosine or

dimethyltyrosine residues

Validation of phenotypic
improvement in rat 5/6

nephrectomy and UUO model

SS-20 [201] Mitochondrial
oxidative stress

Targets the inner
mitochondrial membrane to

scavenge mitochondrial
oxygen radicals by tyrosine or

dimethyltyrosine residues

Validation of phenotypic
improvement in mouse 5/6

nephrectomy model

mtCPP-1 [203] Mitochondrial
oxidative stress

Targets mitochondria to
scavenge mitochondrial

oxygen radicals by
dimethyltyrosine residues

Lack of animal model validation
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6. Prospects

Although there are currently various drugs targeting different stages of the mitochon-
drial respiratory chain, most of them are limited in their further clinical application due to
the difficulty in targeting the kidneys or mitochondria.

Currently, mitochondrial targeting primarily relies on TPP molecule linkage to en-
ter the mitochondria in a membrane potential-dependent manner. Based on this, cobalt
tetraoxide-polyethylene glycol-triphenylphosphine nanoparticles designed to target the
mitochondria could induce mitochondrial autophagy and inhibit the transition from AKI
to CKD [187,205]. The receptor for the giant protein on the surface of the proximal tubules
in the kidney is a key target for kidney-specific delivery. Various biopolymer nanoparticles
designed for this purpose have achieved targeted delivery to the renal tubules. For instance,
the previously mentioned RP81-MNP and SS-31 electrostatically complexed nanopolymer
chains are practical examples of nanoparticles encapsulated for proximal tubule target-
ing [169,202,206]. Moreover, recent research has focused on targeted drug delivery to the
kidneys via extracellular vesicles. Vesicles derived from RAW264.7 could encapsulate
dexamethasone and target the inflammatory renal tissue through their specific surface
proteins integrin αLβ2 (LFA-1) and α4β1 (VAL-4) to mitigate the adverse effects of systemic
dexamethasone administration [207].

In summary, developing drugs with triple targeting of the kidneys, mitochondria, and
mitochondrial respiratory chain is the main direction for the research and development of
a new generation of therapies for chronic kidney failure.

In addition, the emergence and more and more widespread use of multi-omics tech-
nologies (including genomics, proteomics, metabolomics, and transcriptomics) have pro-
vided powerful assistance in deepening the understanding of the mechanisms of chronic
kidney disease progression and searching for pertinent biomarkers and potential therapeu-
tic targets, enabling multi-dimensional and high-throughput evaluation of disease states
and treatment effects [208]. In the future, multi-omics technology may empower precision
therapy of chronic kidney failure with the combination of triple-target drugs (targeting the
kidney, mitochondrial, and mitochondrial respiratory chain).

7. Search Strategy

We searched the PubMed, Embase, and Web of Science databases from inception
to 13 August 2023. The search strategy combined the keywords and their variants of
“mitochondrial respiratory chain” and “chronic kidney failure,” basic research. Clinical
research, reviews, and case reports related to the mitochondrial respiratory chain and
chronic kidney failure were included after reviewing their relevance. In addition, we
manually searched the references of the identified studies in published reviews and cross-
checked the search results as supplements.
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