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Induced pluripotent Stem Cell-derived cardiomyocytes therapy for ischemic heart disease 
in animal model: Systematic Review and Meta-analysis 
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Figure S1. Cell-based effect on animal ejection fraction by animal size 
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Figure S2. Cell-based effect on animal ejection fraction by follow-up time 
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Figure S3. Cell-based effect on animal ejection fraction by delivery method 
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Figure S4. Cell-based effect on animal ejection fraction by time of injection 
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Figure S5. Cell-based effect on animal ejection fraction by disease model 
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Figure S6. Cell-based effect on animal ejection fraction by origin of cell 
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Figure S7. SYRCLE risk of bias. Yellow is unclear risk, green is low risk
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Table S1. General information of included studies  

Author 

(year) 

Animal characteristics Intervention characteristics Outcome measures 

Species Age 
Method of IHD 

induced 
Immunosuppression 

Type of 

treatment 
Total dose 

Time of 

treatment 

(after IHD-

induced) 

Control 

treatment 

Time of 

assessment 

Method 

of cardiac 

assessme

nt 

Small animal research 

Atsushi [1] 

(2017)  

SCID mice 90-

120 

days 

permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

500000 immediately PBS 2 weeks and 4 

weeks 

MRI 

Amalia [2] 

(2016) 

SCID mice 12 

weeks 

permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

500000 immediately Saline 4 weeks, 12 weeks Echo 

Chow [3] 

(2017) 

nut rat 8 

weeks 

permanent LAD 

ligation 

NR intramyocardial 

cell injections 

500000 10 minutes 

after 

PBS 48 hours, 10 

weeks 

MRI 

Diogo [4] 

(2021) 

Wistar rats 8 

weeks 

permanent LAD 

ligation 

Cyclosporine intramyocardial 

cell injections 

10000000 1 week after free 

solution 

30 days Echo 

Fan [5] 

(2019) 

NOD/SCID 

Gamma mice 

NR permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

300000 immediately PBS 6 months Echo 

Fan [6] 

(2020) 

mice NR permanent LAD 

ligation 

Genetic 

immunodeficient animal 

bio-engineered 

tissue treatment 

1000000 immediately free patch 4 weeks Echo 

Fabiola [7] 

 (2021) 

Sprague Dawley 

rat 

8-12 

weeks 

I/R athymic bio-engineered 

tissue treatment 

10000000 4 days after no 

treatment 

1 week, 4 weeks Echo 

Fengzhi [8] 

(2021) 

Sprague–Dawley 

rats 

NR permanent LAD 

ligation 

NR intramyocardial 

cell injections 

8000000 10 minutes 

after 

PBS 3 days, 4 weeks Echo 

Hekai [9] 

(2021) 

C57BL/6 mice  6-8 

weeks 

permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

200000 immediately PBS 1 week, 2 weeks, 4 

weeks 

Echo 
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Hekai [10] 

(2023) 

C57BL/6 mice 6-8 

weeks 

permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

200000 immediately PBS 4 weeks Echo 

Jacek [11] 

(2020) 

Foxn1nu mice 6-8 

weeks 

permanent LAD 

ligation 

athymic intramyocardial 

cell injections 

500000 immediately Saline 1 week, 2 weeks, 4 

weeks, 6 weeks 

Echo 

Junjun [12] 

(2017) 

nude rats 8 

weeks 

permanent LAD 

ligation 

no report bio-engineered 

tissue treatment 

7000000 immediately free patch 4 weeks Echo 

Junya [13] 

(2021) 

F344/NJcl-rnu/rnu 

rats 

NR permanent LAD 

ligation 

Genetic 

immunodeficient animal 

bio-engineered 

tissue treatment 

3000000 2 weeks 

after 

free patch 4 weeks, 12 weeks Echo 

Kenji [14] 

(2012) 

F344/NJcl-rnu/rnu  

rats 

NR permanent LAD 

ligation 

Genetic 

immunodeficient animal 

bio-engineered 

tissue treatment 

NR 2 weeks 

after 

no 

treatment 

1 week, 2 weeks, 4 

weeks 

Echo 

Klaus [15] 

(2021) 

C57BL/6 mice 8-10 

weeks 

cryo-infarction Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

500000 immediately PBS 1 week, 2 weeks, 3 

weeks, 4 weeks 

MRI 

KP My [16] 

(2015) 

SCID mice 10-12 

weeks 

permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

200000 immediately PBS 2 weeks, 4 weeks Echo 

Laura [17] 

(2019) 

BALB/C (Rag-2) 

mice 

8-12 

weeks 

permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

150000 15 minutes 

after 

free 

solution 

7 days, 60 days Echo 

Liying [18] 

(2015) 

NOD/SCID/γc−/− 

(NSG) mice 

12 

weeks 

permanent LAD 

ligation 

Genetic 

immunodeficient animal 

bio-engineered 

tissue treatment 

600000 immediately free 

solution 

1 week, 4 weeks Echo 

Lucas [19] 

(2014) 

nude rats  NR permanent LAD 

ligation 

athymic intramyocardial 

injections 

1000000 immediately free 

solution 

4 weeks Echo 

Olalla [20] 

(2015) 

DBA/2J mice 8 

weeks 

permanent 

coronary ligation 

Genetic 

immunodeficient animal 

intramyocardial 

injections 

200000 15 minutes 

after 

PBS 3 days, 60 days Echo 

Ruilian [21] 

(2018) 

SCID mice 10-12 

weeks 

permanent 

coronary ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

200000 immediately PBS 4 weeks Echo 

Saidulu [22] 

(2018) 

NOD/SCID 

Gamma mice 

NR permanent LAD 

ligation 

Genetic 

immunodeficient animal 

bio-engineered 

tissue treatment 

200000 immediately no 

treatment 

4 weeks Echo 



11 
 

Sang-Ging [23] 

(2015) 

NOD/SCID mice NR permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

2000000 immediately Saline 7 days, 35 days MRI 

Sebastian [24] 

(2017) 

SCID beige mice  NR permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

1500000 immediately PBS 3 days, 7 days, 14 

days, 21 days, 28 

days 

MRI 

Shunsuke [25] 

(2015) 

NOG mice NR permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

1000000 immediately PBS 1 week, 2 weeks, 3 

weeks, 4 weeks, 6 

weeks, 8 weeks 

Echo 

Si-Jia [26] 

(2021) 

ICR mice 12-16 

weeks 

permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

1000000 immediately PBS 4wks Echo 

Soon-Jung [27] 

(2019) 

Fischer 344 rat 8-10 

weeks 

permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

1000000 7 days after no 

treatment 

2 weeks, 4 weeks, 

8 weeks 

Echo 

Takaaki [28] 

(2020) 

nude rat 8 

weeks 

permanent LAD 

ligation 

athymic bio-engineered 

tissue treatment 

5000000 immediately free sheet 1 week, 2 weeks, 3 

weeks, 4 weeks 

Echo 

Takahiro [29] 

(2015) 

F344/NJcl-rnu/rnu 

rats  

6 

weeks 

permanent LAD 

ligation 

Genetic 

immunodeficient animal 

bio-engineered 

tissue treatment 

NR 2 weeks 

after 

no 

treatment 

7 days, 14 days Echo 

Weihua [30] 

(2021) 

NOD/SCID 

Gamma mice 

NR permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

300000 immediately PBS 4 weeks Echo 

Won [31] 

(2017) 

nude rat NR permanent LAD 

ligation 

athymic intramyocardial 

cell injections 

10000000 4 days after PBS 30 days MRI 

Wuqiang [32] 

(2018) 

NOD/SCID 

Gamma mice 

NR permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

300000 immediately PBS 1 week, 4 weeks Echo 

Xi [33] 

(2019) 

NOD/ SCID 

gamma mic 

8-10w permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

300000 immediately no 

treatment 

1 week, 4 weeks Echo 

Xiang [34] 

(2023) 

NJcl-rnu/rnu nude 

rat 

7w permanent LAD 

ligation 

Genetic 

immunodeficient animal 

bio-engineered 

tissue treatment 

5000000 2 weeks 

after 

no 

treatment 

1 week, 2 weeks, 3 

weeks, 4 weeks 

Echo 
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Xin Jiang [35] 

(2020) 

ICR mice 12-

16w 

permanent LAD 

ligation 

Genetic 

immunodeficient animal 

intramyocardial 

cell injections 

400000 10 minutes 

after 

free 

solution 

1 week, 2 weeks, 4 

weeks 

Echo 

Xintong [36] 

(2015) 

nude rats  NR permanent LAD 

ligation 

NR intramyocardial 

cell injections 

3000000 30 minutes 

after 

PBS 2 weeks Echo 

Xuetao [37] 

(2020) 

rnu/rnu rat 7-8 

weeks 

permanent LAD 

ligation 

athymic intramyocardial 

cell injections 

10000000 2 weeks 

after 

no 

treatment 

4 weeks Echo 

Xumin [38] 

(2020) 

Sprague Dawley 

rat 

8 

weeks 

permanent LAD 

ligation methylprednisolone 

intramyocardial 

cell injections 

10000000 10 days 

after 

Albumin 

solution 

4 weeks Echo 

Yi-Hsien [39] 

(2020) 

Sprague Dawley 

rat 

12 

weeks 

temporary LAD 

ligation 

cyclosporine intramyocardial 

cell injections 

10000000 4 days after free 

solution 

4 weeks Echo 

Yu Jiang [40] 

(2021) 

Sprague Dawley 

rat 

NR permanent LAD 

ligation 

NR 1. intramyocardial 

cell injections 

2. bio-engineered 

tissue treatment 

1000000 

 

immediately Saline 4 weeks Echo 

Yuanxue [41] 

(2021) 

Sprague–Dawley 

rat 

NR permanent LAD 

ligation 

no report intramyocardial 

cell injections 

10000000 immediately PBS 1 week, 5 weeks Echo 

Yun [42] 

(2023) 

C57BL/6J mice  11-12 

weeks 

permanent LAD 

ligation 

no report bio-engineered 

tissue treatment 

200000 7 days after free 

solution 

7 days, 28 days, 60 

days, 90 days 

Echo 

Zhonghao [43] 

(2020) 

Wistar rat 12 

weeks 

permanent LAD 

ligation 

cyclosporine bio-engineered 

tissue treatment 

1000000 10 minutes 

after 

free 

solution 

6 weeks Echo 

Large animal research 

Constantin [44] 

(2022) 

guinea pigs  NR cryo-infarction cyclosporine, 

methylprednisolone 

bio-engineered 

tissue treatment 

15000000 4 weeks 

after 

free patch 4 weeks Echo 

Eva [45] 

(2021) 

guinea pigs 8-9 

weeks 

cryo-infarction cyclosporine, 

methylprednisolone 

bio-engineered 

tissue treatment 

9000000, 

12000000, 

15000000 

7 days after free patch 4ws Echo 
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Hong-mei [46] 

(2023) 

primate 4-6y 

years 

I/R methylprednisolone, 

mycophenolate mofetil, 

tacrolimus 

1. intravenous,  

2. intramyocardial  

3. intracoronary 

cell injections, 

100000000/

kg, 

100000 

(coronary) 

24 hours 

after 

no 

treatment 

1 week, 2 weeks, 4 

weeks, 6 weeks ,8 

weeks, 12 weeks 

Echo 

Masashi [47] 

(2011) 

minipig NR permanent LAD 

ligation 

tacrolimus bio-engineered 

tissue treatment 

25000000 1 month 

after 

no 

treatment 

4 weeks, 8 weeks Echo and 

CT scan 

Masaru [48] 

(2019) 

CLAWN 

miniature porcine 

6-10 

month

s 

permanent LAD 

ligation 

tacrolimus, 

mycophenolate mofetil, 

corticosteroids 

bio-engineered 

tissue treatment 

100000000 1 month 

after 

no 

treatment 

8  Echo and 

MRI 

Meng [49] 

(2021) 

Yorkshire pig NR I/R no report intramyocardial 

cell injections 

60000000 60 minutes 

after 

PBS 4 weeks MRI 

Richard [50] 

(2021) 

New Zealand 

white rabbit 

NR permanent 

coronary ligation 

ciclosporin, 

methylprednisolone 

bio-engineered 

tissue treatment 

17500000 immediately free patch 1 week, 2 weeks, 4 

weeks 

Echo 

Yuji [51] 

(2016) 

Filipino 

cynomolgus 

monkeys 

4-5 

years 

I/R methylprednisolone, 

tacrolimus 

intramyocardial 

cell injections 

400000000 2 weeks 

after 

free 

solution 

4wks, 12wks Echo 

NR: not report  

I/R: ischemia/reperfusion therapy 
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Table S2. Meta-regression of potential modifiers of FS 

Variable Coefficient SE t-value P-value 95% Confidence 
Interval 

Animal size -small 14.11 3.32 4.25 0.00 7.45 to 20.78 
Treatment timing: chronic 13.36 5.45 2.45 0.02 2.44 to 24.28 
Treatment timing: subacute -2.10 1.74 -1.20 0.23 -5.59 to 1.40 
Method delivery: Intracoronary -8.39 3.34 -2.51 0.02 -15.10 to -1.69 
Method delivery: Intramyocardial -0.73 1.51 -0.48 0.63 -3.76 to 2.31 
Method delivery: Intravenous -1.03 2.97 -0.35 0.73 -6.98 to 4.91 
Time of follow up: < 4w -1.87 1.09 -1.72 0.09 -4.06 to 0.31 
Time of follow up: > 8w -0.63 1.89 -0.33 0.74 -4.43 to 3.17 
Cell origin: Xenogeneic -4.63 2.96 -1.57 0.12 -10.57 to 1.30 
Disease model: Permanent injury -7.36 2.92 -2.52 0.01 -13.22 to -1.5 
 

Table S3. Meta-regression of potential modifiers of LV fibrosis 

Variable Coefficient SE t-value P-value 
95% Confidence 

Interval 

Animal size: big -1.64 2.31 -0.71 0.48 -6.31 to 3.01 

Animal size: small 3.51 2.91 1.21 0.23 -2.28 to 9.31 

Treatment timing: acute -3.11 2.26 -1.37 0.17 -7.61 to 1.39 

Treatment timing: chronic 8.16 4.65 1.75 0.08 -1.08 to 17.41 

Treatment timing: sub-acute -3.19 2.21 -1.44 0.15 -7.59 to 1.21 

Method delivery: Bio-engineered 

tissue 
3.91 2.14 1.82 0.07 -0.34 to 8.18 

Method delivery: Intracoronary -8.06 3.32 -2.42 0.02 -14.67 to -1.45 

Method delivery: Intramyocardial 3.82 1.64 2.33 0.02 0.56 to 7.08 

Method delivery: Intravenous 2.18 2.81 0.78 0.43 -3.37 to 7.75 

Cell origin: Allogenous -0.15 1.13 -0.13 0.89 -2.41 to 2.11 

Cell origin: Xenogeneic 2.01 0.92 2.18 0.03 0.18 to 3.84 

Disease model: IR 1.96 2.61 0.74 0.45 -3.24 to 7.16 

Disease model: Permanent injury -0.09 2.15 -0.04 0.96 -4.38 to 4.18 

Follow up: < 4 weeks 1.01 1.29 0.77 0.43 -1.57 to 3.59 

Follow up: 4-8 weeks 1.05 1.26 0.82 0.41 -1.47 to 3.57 

Follow up: > 8 weeks -0.96 2.45 -0.39 0.69 -5.84 to 3.91 

 

Table S4. Meta-regression of potential modifiers of LVESV 

Variable Coefficient SE t-value P-value 95% Confidence 
Interval 

Treatment timing: sub-acute -100.48 69.60 -1.44 0.169 -248.83 to 47.87 
Method delivery: Intramyocardial 34.21 20.06 1.71 0.109 -8.56 to 76.97 
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Time of follow – up: < 4w 0.99 5.06 0.20 0.847 -9.79 to 11.77 
Time of follow – up:  8w -30.45 10.72 -2.84 0.012 -53.30 to -7.60 
Cell origin: Xenogeneic -5.17 8.22 -0.63 0.539 -22.70 to 12.35 
 

Table S5. Meta-regression of potential modifiers of LVEDV 

Variable Coefficient SE t-value P- 
Value 

95% Confidence 
Interval 

Animal size: small -13.97 4.47 -3.12 0.005 -23.38 to -4.56 
Treatment timing: acute 23.77 10.84 2.19 0.04 0.98 to 46.55 
Treatment timing: sub-acute -37.74 14.31 -2.63 0.01 -67.81 to -7.68 
Method delivery: Bio-engineered 
tissue 

-27.47 10.82 -2.53 0.02 -50.21 to -4.72 

Method delivery: Intramyocardial 13.49 8.14 1.65 0.1 -3.61 to 30.59 
Time of follow – up: 4w-8w -3.59 6.94 -0.51 0.61 -18.18 to 10.99 
Time of follow - up: < 4w -9.15 7.67 -1.19 0.24 -25.28 to 6.97 
Time of follow – up: > 8w -1.2266 10.3233 -0.11 0.9 -22.91 to 20.46 
Cell origin: Allogenous -4.71 7.11 -0.67 0.51 -19.72 to 10.18 
Cell origin: Xenogeneic -9.20 5.73 -1.61 0.12 -21.25 to 2.85 
Disease model: Permanent injury -13.97 4.47 -3.12 0.006 -23.38 to -4.56 

 


