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Abstract: Host defense mechanisms against viral infections have been extensively studied over the
past few decades and continue to be a crucial area of research in understanding human diseases
caused by acute and chronic viral infections. Among various host mechanisms, recent findings
have revealed that several host RNA-binding proteins play pivotal roles in regulating viral RNA
to suppress viral replication and eliminate infection. We have focused on identifying host proteins
that function as regulators of viral RNA, specifically targeting viral components without adversely
affecting host cells. Interestingly, these proteins exhibit dual roles in either restricting viral infections
or promoting viral persistence by interacting with cofactors to either degrade viral genomes or
stabilize them. In this review, we discuss RNA-binding zinc finger proteins as viral RNA regulators,
classified into two major types: ZCCCH-type and ZCCHC-type. By highlighting the functional
diversity of these zinc finger proteins, this review provides insights into their potential as therapeutic
targets for the development of novel antiviral therapies.
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1. Introduction

Viral infections are well known to cause a variety of acute and chronic human diseases.
Acute viral infections lead to the rapid onset of symptoms and typically run their course
within a short period, often cleared by the immune system. However, when the immune
system fails to promptly eliminate certain acute viral infections, disasters like the COVID-19
pandemic can occur. In contrast, chronic viral infections persist over long periods and
may result in long-term complications or severe diseases, such as cancer. It is now well
established that several viruses, such as human papillomavirus (HPV), hepatitis B and
C viruses (HBV/HCYV), Epstein—-Barr virus (EBV), human T-cell lymphotropic virus type
1 (HTLV-1), human herpesvirus 8 (HHV-8), and Merkel cell polyomavirus (MCPyV), are
classified as oncogenic viruses due to their ability to potentially induce cancer [1]. These
viruses contribute to cancer by disrupting normal cellular processes, such as DNA repair,
cell cycle regulation, and apoptosis, leading to tumor formation. Viral vaccines and antiviral
therapies can reduce the risk of virus-associated cancers.

Once viral RNA is detected by host intracellular sensors, antiviral pathways are
activated to inhibit viral replication, subsequently triggering innate and adaptive immune
responses aimed at eliminating the virus. These responses are mediated by cytokines,
particularly interferons (IFNs), which play a crucial role in promoting cytotoxic immune
responses [2—4]. However, in many cases, it can also be difficult to efficiently eliminate the
infected viruses because many viruses evade immune detection by exploiting host factors
and enhancing their stability within the host environment. Although antiviral drugs play a
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crucial role in managing viral infections, they face significant limitations such as resistance,
toxicity, limited efficacy in chronic diseases, and narrow spectrum of activity.

Recent studies have revealed that certain ZC3H and ZCCHC superfamily proteins
containing zinc finger domains in infected cells play crucial roles in binding viral RNAs,
inducing antiviral responses, and regulating their replication. Due to these functions, these
proteins are of great interest as potential targets for the development of antiviral therapies.
In this context, we focus on the interactions between these zinc finger proteins and viral
RNAs known to date and categorize the host zinc finger proteins based on their positive or
negative roles in viral replication.

2. ZC3HAV1

Zinc Finger CCCH-type Antiviral Protein 1 (ZC3HAV1), also known as Poly ADP-
ribose Polymerase-13 (PARP-13) or Zinc Finger Antiviral Protein (ZAP) [5], is an RNA-
binding protein that targets both positive and negative single-stranded viral RNAs with
four zinc finger domains in the N-terminal by binding to specific RNA sequences, CpG
dinucleotides [6]. ZAP, initially recovered through cDNA screening from Moloney murine
leukemia virus (MLV)-resistant cells [7], has been primarily recognized for its antiviral
functions, including the suppression of viral replication and degradation of viral RNA [8].
Recent studies have expanded ZAP’s roles as not only a direct antiviral restriction factor in
viral replication but also a regulator of host cell homeostasis in antiviral IFN response [9].

ZAP exists in several isoforms, most notably ZAP-short (ZAPS) and ZAP-long (ZAPL),
which are produced from the same gene via alternative splicing [10] (Figure 1). These
isoforms share an identical RNA-targeting sequence in their N-terminal regions but differ
in their C-terminal domains, which affect their subcellular localization, expression kinetics,
and functions [9]. ZAPL, which contains a PARP-like domain with a C-terminal prenylation
motif (CaaX) within, acquires hydrophobicity through prenylation by S-farnesyltransferases,
leading to the formation of membrane-associated foci that mediate viral RNA degradation
in the host cell [11,12]. In contrast, ZAPS, which lacks a PARP-like domain, resides in the
cytoplasm and interacts with interferon (IFN) mRNA to maintain cellular homeostasis in
antiviral IFN responses by binding preferentially to AU-rich elements (AREs) in the 3’
UTR of IFN mRNAs, promoting their degradation [9]. In addition, another study suggests
that ZAPS may also enhance RIG-I signaling by promoting RIG-I oligomerization, thereby
stimulating IFN expression [13]. Two other isoforms of ZAP are ZAPM and ZAPXL, which
have an extended exon 4 (Figure 1). ZAPXL, like ZAPL, contains a PARP-like domain at
the C-terminus, but ZAPM, like ZAPS, lacks this domain. These isoforms exhibit different
sensitivities to various types of viruses. It has been suggested that ZAPL and ZAPXL, due
to their PARP-like domains, are more sensitive, and have greater antiviral potential against
hepatitis B virus (HBV) compared to the other two isoforms [14].

ZAP contains four zinc finger (ZnF) domains in its N-terminal region, grouped into
two clusters (ZnF1-2 and ZnF3-4) [10,15], with a fifth ZnF domain (ZnF5) located near
two WWE domains in the central region [16,17] (Figure 1). ZnF2 plays a crucial role as a
CG-binding pocket, forming hydrogen bonds with CpG dinucleotides in single-stranded
RNA, thereby increasing ZAP’s binding affinity [6,15]. ZnF3 functions as a binding pocket
for both guanine and cytosine, while ZnF4 serves specifically as a binding pocket for
cytosine [6]. Structural studies of the ZnF5-WWE1-WWE2 domains in both mouse and
human ZAP have demonstrated that the WWE2 domain exhibits poly (ADP-ribose) binding
activity, with the binding site being extended by the groove formed through the WWE1
fold. In contrast to the other zinc finger domains located in the N-terminal region, ZnF5 is
thought to facilitate the assembly of these three domains rather than directly engaging in
RNA binding [16].
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Figure 1. Schematic domain maps of human ZAP isoforms. The N-terminal region contains four
key zinc finger domains, with an additional zinc finger domain located centrally, near the WWE1
and WWE2 domains. ZAPL and ZAPXL possess PARP-like domains, which are absent in ZAPS and
ZAPM. Additionally, ZAPM and ZAPXL feature an extended exon 4, while ZAPS and ZAPL contain
the normal exon 4.

ZAP’s antiviral mechanism involves its selective binding to CpG-rich RNA sequences.
In the case of HIV-1, ZAP binding to CpG dinucleotides, but not GpC dinucleotides, inhibits
viral replication by recruiting RNA degradation machinery [18]. The optimal ZAP binding
motif was proposed as C(n7)G(n)CG, which leads to the recruitment of RNA degradation
machinery to inhibit the viral replication [6]. The findings about the number and spacing of
CpG dinucleotides, as well as nearby sequences in viral RNA, that influence ZAP sensitivity
explain that each CpG dinucleotide had a cumulative antiviral effect, and approximately
15 CpG dinucleotides with adequate spacing, about 14 to 32 nucleotides, were necessary
to efficiently inhibit HIV-1 replication [19]. Additionally, the sequences with high UpA
near CpG sites (CpG-high and UpA-high) could further enhance the effectiveness of ZAP
binding more strongly; however, the number of CpG dinucleotides has a greater impact on
binding affinity [20].

The enrichment of uridine (U) or adenosine (A) sequences also enhances the accessi-
bility of ZAP and several cofactors by preventing the formation of stable secondary RNA
structures [19]. The cofactors include RNase L, whose cleavage activity gets stronger as
the proportion of U and A sequences increases [19-21], and co-operation of TRIM25 [22,23]
and KHNYN [23], which promote antiviral effects by inducing the production of antibodies
against viruses such as HIV-1.

In addition to TRIM25 and KHNYN, several cofactors are involved in ZAP activity
(Table 1). RNA degradation activity of ZAP can be triggered through following: (1) interac-
tion of TRIM25 [22,23] and the endoribonuclease KHNYN [23], (2) Riplet co-operating with
TRIM25 [24], (3) RNase L activated by OAS3-inducing molecule [20], (4) the complex of the
P72 RNA helicase (DDX17) [25] and the DCP1A:DCP2 decapping enzyme [26], (5) the 5’
to 3’ exoribonuclease XRNT1 [27], and (6) RNA exosome complex [28]. Although elF4A is
not a cofactor, it is recognized by ZAP, disrupting its interaction with eIF4G and inhibiting
mRNA translation [29].

It is important to examine whether ZAP also impacts host mRNA. In contrast to viral
RNA, vertebrate genomes contain relatively few CpG dinucleotides [30]. This reduction
in CpG sequences is primarily due to C-to-T mutations, driven by CG-specific DNA
methyltransferases, which result in a lower abundance of CpG dinucleotides. Consequently,
ZAP predominantly targets viral RN As without significantly affecting host mRNA, as the
latter contains fewer CpG sites for ZAP recognition [18,31].
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Table 1. Cofactors of ZAP.
Cofactors of ZAP Effects on Viruses References
Regulating ZAP pre-mRNA splicing .
TRIM25 Enhancing ZAP binding to SINV RNA [22-24]
KHNYN Viral RNA degradation [23]
. Enhancing degradation of viral mRNAs
Riplet Co-operating with TRIM25 [24]
p72 RNA helicase Recruiting RNA exosomes and [25]
(DDX17 or DEAD-box RNA helicase)  degradation machines
DCP1A-DCP2 Inhibiting translation [26]
XRN1 5" to 3’ RNA degradation [27]
PARN deadenylase Degradation of the poly(A) tail [32,33]
RNA exosome 3’ to 5’ RNA degradation [5,34]
. R
OAS3 Producing 2'-5" oligoadenylate [20]
molecules
Cleaving ssRNA sequences at UpU and
RNaseL UpA dinucleotides sites on activation [20]

with 2/-5 oligoadenylate

3. ZCCHC Family

Human CCHC-type zinc finger proteins, annotated as ZCCHC1 to ZCCHC25, contain
a conserved 18-residue domain with the CX,CX4HX,C consensus sequence, commonly
referred to as a zinc knuckle. In this sequence, “C” represents cysteine, “H” represents
histidine, and “X” denotes any amino acid, with the exception of ZCCHC23, because its
histidine (H) residue is substituted by asparagine (N) [35,36].

3.1. ZCCHC3

ZCCHC3, a CCHC-type zinc-finger-containing protein, is expressed in a variety of
cell types, including epithelial cells, monocytic cells, and T-cell lines, with predominant
localization in the cytoplasm [37]. ZCCHC3 has been shown to interact with retinoic-acid-
inducible gene I (RIG-I) and melanoma-differentiation-associated protein 5 (MDAD5), two
key sensors of viral RNA [38,39]. Normally, the expression of RIG-I and MDA?J is minimal
in most cells, but it significantly increases when viral RNA invades the host cell. ZCCHC3
functions as a co-receptor for these proteins, enhancing their antiviral activity [39].

ZCCHCS3 directly binds to double-stranded RNA (dsRNA) and recruits RIG-I, MDAS5,
and E3 ubiquitin ligase TRIM25. TRIM25 activates RIG-I and MDAS5 by inducing K63-
linked polyubiquitination, which is essential for their antiviral signaling [40]. RIG-I and
MDAS5 differ in their C-terminal domains (CTDs), which are responsible for sensing distinct
types of viral RNA, allowing for different RNA recognition preferences [41,42]. Despite
these differences, both proteins activate similar downstream signaling pathways. Once
viral RNA is recognized, RIG-I and MDAS interact with the mitochondrial protein VISA,
initiating a cascade that activates transcription factors such as IRF3 and NF-kB. These
transcription factors drive the expression of antiviral genes, thereby contributing to the
innate immune response [43-46].

Toll-like receptor 3 (TLR3) recognizes extracellular viral double-stranded RNA (dsRNA)
and its synthetic analog poly(I:C), promoting innate immune responses through the recruit-
ment of TRIF to TLR3, with the involvement of ZCCHC3 [47-52]. In a study involving
influenza A virus (H9N2), where the viral nucleic acid is negative-sense single-stranded
RNA, it was confirmed that ZCCHC3 promotes antiviral activity, evidenced by an increase
in IEN-3 expression along with elevated mRNA levels of related cytokines, such as IL-6 and
TNF-«, in cells overexpressing ZCCHC3 compared to ZCCHC3-knockout mutants [53].
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Most recently, interaction motifs between ZCCHC3 and HIV-1 single-stranded RNA
(ssRNA) have been identified [37]. This study proposed two mechanisms: (1) sequestration
of the HIV-1 genome into the P-body by the zinc finger (ZnF) motifs of ZCCHC3 binding
directly to the long terminal repeat (LTR) of HIV-1 genomic RNA, and (2) the binding of
ZCCHC3'’s middle-folded domain (MF) to the HIV-1 Gag nucleocapsid (GagNC), prevent-
ing viral genome recruitment and resulting in genome-deficient virions, thereby inhibiting
HIV-1 production [37].

3.2. ZCCHC2, ZCCHC7, and ZCCHC14

In addition to canonical poly(A) polymerases (PAPs) that synthesize mRNA poly(A)
tails, vertebrates possess various noncanonical PAPs that modify RNA. One such group
of noncanonical PAPs is the terminal nucleotidyltransferase 4 (TENT4), which includes
TENT4A (PAPD7, TUT5, hTRF4-1, or POLS) and TENT4B (PAPDS5, TUT7, hTRF4-2, or
GLD4). These enzymes are involved in adding not only adenosine but also guanosine to
the 3’ end of mRNA, resulting in what is known as a “mixed poly(A) tail” [54]. Unlike the
canonical poly(A) tail that consists solely of adenosines, mixed poly(A) tails contain other
nucleotides as well. In vitro incorporation assays have demonstrated that mixed poly(A)
tailing by TENT4 primarily involves the addition of single nucleotides within longer
poly(A) tails (>25 nt). Among these nucleotides, non-adenosine bases are incorporated at
the following frequencies: 15.5% for guanosine, 5.7% for uridine, and 5.2% for cytosine [55].

The addition of a single non-adenosine base at the 3’ end by TENT4A /B enhances RNA
stability by preventing or slowing the degradation of mRNA by the CNOT complex [55-57].

TENT4 can directly target viral nucleic acids introduced into the host during infection
by regulating viral RNA tailing with involvement of several ZCCHC family proteins,
including ZCCHC14, ZCCHC?7, and ZCCHC?2, facilitating this TENT4-mediated activity.
These three can be categorized into two functions: (1) enhancing the stabilization of viral
RNA (ZCCHC14 and ZCCHC2) and (2) degradation of viral RNA (ZCCHC?).

3.2.1. ZCCHC2 and ZCCHC14

ZCCHC14 has been shown to interact with TENT4 during infections caused by HBV,
HCMYV, and HAV [58-60]. Studies have demonstrated that HBV viral RNA undergoes
more rapid degradation, with reduced viral gene expression and a shortened 3’ tail, after
treatment with the dihydroquinolizinone (DHQ) compound RG7834, a drug that inhibits
TENT#4 activity. This inhibition leads to decreased RNA stability and viral replication [59,60].
These findings suggest that HBV RNA gains stability and delays degradation via the host
TENT4-mediated tailing process [58].

A recent study found that the post-transcriptional regulatory element (PRE) in the 3’
untranslated region (UTR) of HBV mRNA contains a characteristic stem-loop structure,
also known as the pentaloop or HBV stem-loop alpha (SL«), which includes a specific
CNGGN sequence that ZCCHC14 recognizes and binds to this structure [61]. The study
further revealed that TENT4 regulates mRNA tails through a cis-acting RNA element and
proposed a mechanism for its interaction with ZCCHC14. While HBV contains this stem-
loop structure near its 3" end (PRE: 1297-1320; WPRE: 1426-1445), human cytomegalovirus
(HCMV) also possesses a similar SLa-like CNGGN pentaloop in its sub-RNA2.7 genome
(referred to here as SL2.7) near the 5" end (429-451) [61]. The sterile alpha motif (SAM)
domain in the central region of ZCCHC14 recognizes and binds to these stem—loop struc-
tures, subsequently recruiting TENT4, which elongates the viral RNA 3’ tail through mixed
tailing, thereby enhancing viral RNA stability [61].

While TENT4's role in extending the 3’ poly(A) tail, enhancing stability via guanyla-
tion, and promoting viral replication has been confirmed in both HBV and HCMV RNA,
its mechanism in hepatitis A virus (HAV) RNA appears to differ slightly. HAV, unlike
HBV or HCMYV, synthesizes RNA from the positive strand to the negative strand using
its own RNA-dependent RNA polymerase (3Dpol) rather than relying on the host’s poly-
merases [62]. Despite this distinction, the ZCCHC14-TENT4 complex also interacts with
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HAV RNA [63-65]. Similar to HCMV subRNA2.7 (SL2.7), HAV RNA contains a pentaloop
structure within its 5" UTR, particularly within the Vb stem-loop of the internal ribosome
entry site (IRES), where the ZCCHC14-TENT4 complex binds [64].

The inhibition study using RG7834 treatment showed that TENT4 did not alter the 3’
end tail length of HAV RNA, suggesting that the ZCCHC14-TENT4 complex is essential
for cap-independent translation initiated by HAV IRES [66]. However, another study found
that the synthesis of viral RNA was significantly reduced when ZCCHC14 was knocked out,
while HAV IRES’s translation-initiating activity remained unaffected [65]. This implies that
the ZCCHC14-TENT4 complex plays a critical role in the late stage of the RNA replication
cycle, just before protein translation [65].

There are two distinct TENT4-binding sites within ZCCHC14, located at the N-terminal
(Z14-N) and C-terminal (Z14-C) regions. These sites, named D1 near the N-terminal and
D4 near the C-terminal, respectively, bind with TENT4. According to this study, D4, an
unstructured downstream domain, is essential for ZCCHC14’s RNA-binding activity with
SAM [64]. This suggests that the D4 domain plays a role in the interaction with both RNA
and TENT4, leading researchers to hypothesize that RNA binding to ZCCHC14 triggers a
conformational change in the D4 domain, facilitating TENT4 binding, or vice versa [64]. In
addition to ZCCHC14, ZCCHC?2 also functions as an adapter protein for recruiting and
interacting with TENT4 [64]. ZCCHC2 contains a PX domain, long intrinsically disordered
regions, and a CCHC-type zinc finger domain [67]. While ZCCHC2 and ZCCHC14 are
related, a key difference is that ZCCHC2 lacks the SAM domain required for interaction
with the CNGGN pentaloop [67]. ZCCHC2's zinc finger motif at the C-terminal binds to the
K5 element, which contains a conserved RNA motif in the 3’ UTR of Aichi virus 1 (AIV-1)
viral RNA [67]. This study also revealed that TENT4 is recruited to the N-terminal of
ZCCHC2, regulating mixed tailing at the viral RNA’s 3’ end, which enhances RNA stability
by preventing deadenylation. The K5 motif, which contains a three-hairpin structure, is
critical for maintaining viral RNA stability [67].

3.2.2. ZCCHC?7

While ZCCHC14 forms a complex with TENT4 in the cytoplasm, ZCCHC7 (AIR1)
interacts with TENT4 (specifically TENT4B) and hMTR4 in the nucleolus to form the
nuclear TRAMP complex [68,69]. This complex is primarily involved in the adenylation of
host rRNA degradation products [70,71]. Upon the invasion of cytoplasmic RNA viruses
such as VSV, SINV, or RVFV into host cells, the proteins ZCCHC7, TENT4B, and MTR4,
are exported from the nucleus to the cytoplasm via the nuclear export protein CRMI.
ZCCHCY selectively binds to viral RNA in the cytoplasm, and the helicase MTR4 unwinds
the secondary structures of viral RNA, feeding it into RNA exosome complexes such as
RRP6 and DIS3 for degradation [69,72,73].

ZCCHCY binds to TENT4 via its zinc finger domain [64] and plays a role in the
degradation of viral RNA, positioning it as a potential antiviral target. Research has shown
viral RNA levels increase when ZCCHC?7 is deleted, though further investigation is required
to fully understand its mechanism and potential applications in antiviral therapy.

3.3. ZCCHC6 and ZCCHC11

RNA stability and degradation are regulated through several pathways. The tradi-
tional mRNA poly(A) tailing method, where RNA polymerase adds adenosines to the 3’
end of mRNA to increase RNA stability, is well known. However, with advancements in
3’ end sequencing technologies, it has been discovered that non-adenosine nucleotides
can also be added to the poly(A) tail [54]. The addition of non-templated nucleotides by
TENT proteins is an important mechanism controlling RNA decay. TENT polymerizing
activities are classified into two types: poly(A) polymerases (PAPs), which mainly add
adenosines [74], and terminal uridylyltransferases (TUTs), which add uridines [75,76].
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TENT3A (TUT4, ZCCHC11, and PAPD3) and TENT3B (TUT7 and ZCCHC®6) are
mammalian proteins that are homologous to CDE-1 in C. elegans and Cid1 in Schizosac-
charomyces pombe [77-80]. ZCCHC6 and ZCCHC11 play a key role in regulating the
degradation of histone mRNA in normal cells [81] and maternal mRNA during early zygotic
development [82]. However, during infection with single-stranded RNA viruses—whether
positive or negative strand—ZCCHC6 and ZCCHC11 induce untemplated uridylation
at the 3/ end of viral RNA, leading to antiviral effects. This mechanism involves recruit-
ing the 3'-5" exoribonuclease DIS3L2, which degrades viral mRNA and prevents virus
replication [83].

This process mirrors how CDE-1 promotes viral RNA degradation by uridylating the
3" end of OrV’s RNA genome in C. elegans when infected with OrV. Similarly, ZCCHC6
and ZCCHC11 in mammalian cells uridylate influenza A virus (IAV) mRNA, particularly
targeting mRNA with a poly(A) tail shorter than 25 nucleotides during infection [84].
Experiments results suggest that the UU site in viral mRNA synthesized by uridylation
becomes a signal for uridylation-dependent RNA decay [84], and degradation occurs via
XRN1 and other RNA exosome components. This indicates that ZCCHC6 and ZCCHC11
act as an early barrier, blocking viral mRNA expression during the early stages of IAV
infection [76].

Another study demonstrated that ZCCHC6 and ZCCHC11 uridylate only subgenomic
transcripts with poly(A) tails shorter than 22 nucleotides during mouse embryonic fibroblast
(MEEF) cell infection with mouse hepatitis virus (MHYV), triggering transcript decay [85].
DIS3L2 also mediates the degradation of polyuridylated mRNA, leading to decreased gene
expression. However, further research is needed to clarify the precise interactions between
TUTs, including ZCCHC6 and ZCCHC11, and viral RNA [84,86].

3.4. ZCCHC21

ZCCHC21, also known as RNA-binding motif protein 4 (RBM4) or LARK, was first
identified in Drosophila. It contains a CCHC-type zinc finger motif and two consensus
RNA recognition motifs (RRMs) [87]. Proteins in the RBM family, including ZCCHC21, are
implicated in viral replication and antibacterial activity [88-90]. The key roles of ZCCHC21
in viral infection include influencing the cellular production of certain cytokines and
inflammatory-response-related proteins, and directly binding to viral genomes to suppress
viral replication [91-95].

ZCCHC21 regulates the inflammatory response by affecting the expression of genes
involved in inflammation. This regulation occurs via alternative splicing patterns of
regulatory factors, including transcription factors and co-activators, during inflammatory
conditions such as lipopolysaccharide (LPS) stimulation or cancer [95].

ZCCHC21 activates antiviral and antibacterial responses in shrimp by inducing the
expression of immune-related molecules through NF-kB and JAK-STAT pathways, which
are associated with the activation of humoral immunity. They also showed that silencing
ZCCHC21 (referred to here as LARK) increased shrimp susceptibility to infection with
white spot syndrome virus (WSSV) through an in vivo experiment [95]. After years, a
study investigating whether ZCCHC21 (referred to here as RBM4) could regulate the
innate immune pathway, as well as its role in humoral immunity, has found that ZCCHC21
increased the expression of cytokines, such as IFNB1, CXCL10, and TNFA, in HEK293T cells
transfected with ZCCHC21 expression plasmid following poly(I:C) stimulation compared
to the control group [91]. Based on these findings, they concluded that ZCCHC21 inhibits
viral survival by activating the host cell’s innate immune system [91].

ZCCHC21 directly binds to viral genome sequences, functioning as an antiviral fac-
tor by interfering with viral genome replication. Studies have shown that ZCCHC21
phosphorylation can be induced by cellular stress, such as exposure to arsenite. This
phosphorylation triggers the subcellular relocalization of ZCCHC21 from the nucleus to the
cytoplasm and stress granules (SGs) via the MKK3/6-p38 signaling pathway [93]. In a study
involving the internal ribosome entry site (IRES) of encephalomyocarditis virus (EMCV)), it
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was found that ZCCHC21 could inhibit cap-dependent translation. Conversely, ZCCHC21
activates IRES-mediated translation, likely by promoting the association of the translation
injtiation factor elF4A with IRES-containing mRNAs during cell stress signaling [93]. This
effect is mediated through ZCCHC21’s binding to CU-rich elements in target mRNAs [96].

ZCCHC21 also plays a regulatory role in human endogenous retroviruses (HERVs). It
binds to HERV-derived RNAs and negatively regulates their expression. Loss of ZCCHC21
leads to an increased abundance of HERV transcripts and elevated expression of the HERV
envelope (env) protein [92].

In recent research on Ebola virus (EBOV), ZCCHC21 was found to inhibit viral mRNA
synthesis, thereby suppressing EBOV replication [91]. The EBOV genome consists of single-
stranded negative-sense RNA, organized as 3'-leader-NP-VP35-VP40-GP-VP30-VP24-L-
5'-trailer. The 3'-leader region contains key regulatory elements, including the replication
promoter (RP) and transcription start sequence (TSS), both critical for viral replication and
transcription [97]. RP consists of two key regions, PE1 (1-55 nt) and PE2 (81-128 nt), with
TSS located between them [97].

The interaction between ZCCHC21 and the EBOV RNA genome occurs via ZC-
CHC21’s RNA recognition motif (RRM1) located in its N-terminal region (3-68 aa) and
two CU-rich regions present in the 3’ leader of the EBOV RNA genome. These regions
include the CUUCUU sequence in the PE1 region and the CUCCUUCU sequence in the
PE2 region. The study demonstrated that even the presence of just one of these CU-rich
sequences allows ZCCHC?21 to bind viral RNA, suppress mRNA production, and inhibit
EBOV replication. This highlights ZCCHC21 as a potential novel target for anti-EBOV
therapeutic strategies [91].

4. Conclusions

In this review, we have highlighted the roles of specific zinc finger proteins that regu-
late viral RNA and mediate antiviral signaling, identifying them as potential targets for
the development of antiviral therapies. Additionally, we have summarized the roles of
various zinc finger proteins and their interactions with targeted viruses, as detailed in
Table 2, along with a schematic representation of their positive or negative functions for
viral RNA modulation (Figure 2). This review aims to provide a foundation for future
research directions focused on protecting host cells from viral infections. A major challenge
in developing therapeutics based on zinc finger proteins is achieving selective modulation
without disrupting host cell functions. Therefore, understanding how specific host zinc
finger proteins interact with distinct motifs in viral RNA, as well as elucidating the underly-
ing mechanisms, will significantly enhance our understanding of the fundamental cellular
defense mechanisms against viral infections. The broad involvement of zinc finger proteins
in innate immune responses and their selective binding to viral RNA make them strong
candidates as therapeutic targets for both acute and chronic viral infections. However, more
research is still necessary to translate these findings into therapeutic target development.

Moreover, antiviral therapies could have broader applications, particularly in the
context of oncogenic viruses such as Epstein-Barr virus (EBV), human papillomaviruses
(HPV), human T-cell lymphotropic virus type 1 (HTLV-1), human herpesvirus-8 (HHV-8),
Merkel cell polyomavirus (MCPyV), and hepatitis viruses (HBV and HCV) [1]. These
viruses have the potential to induce tumor formation following infection [98]. Therefore,
understanding the host immune responses to these viral RNAs will not only inform strate-
gies for combating viral infections but also provide valuable insights into the development
of cancer therapies targeting virus-induced tumors. There are no antiviral therapies or
vaccines that have been developed using zinc finger protein yet, but we expect the poten-
tial of CCCH-type and CCHC-type zinc finger proteins as antiviral therapy and vaccine
candidates to protect human and animal populations from virus infection and to suppress
cancer with the understanding of the characteristics of zinc finger protein mentioned in
this review. However, further research is required for therapeutic development.
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Figure 2. A schematic representation of the functions of viral RN A-associated host zinc finger proteins.

Two major functions of zinc finger proteins are described. The first involves the degradation of viral

RNA, which blocks transcription and triggers the innate immune response. The second function

enhances viral stability by preventing RNA degradation. The arrows represent downstream signaling

pathways involving these zinc finger proteins and their cofactors, as outlined in the corresponding

sections of the text.

Table 2. Overview of zinc-finger-containing proteins and targeted viruses.

Type of Zinc

Cellular

Viral Nucleic

Finger Protein Name Location Viruses Targeted Acid References
Human immunodeficiency virus type 1 (HIV-1) + ssRNA [15,18,19,23,32]
Enterovirus A71 (EV-A71) + ssRNA [19]
Echovirus 7 (E7) + ssRNA [20]
Newecastle disease virus (NDV) — ssRNA [13]
Influenza A virus (IAV) — ssRNA [13,99,100]
Moloney murine leukaemia virus (MLV) + ssRNA [7]
CCCH-type ZAP Cytoplasm Hepatitis B virus (HBV) dsDNA [101]
Murid gammaherpesvirus 68 (MHV-68) dsDNA [102]
Ebolavirus (EBOV) — ssRNA [103]
Marburg virus (MARV) — ssRNA
Sindbis virus (SINV) + ssRNA [6,9,104,105]
Semliki forest Virus (SFV) + ssRNA [9,104]
Ross River Virus (RRV) + ssRNA [104]
Venezuelan equine encephalitis virus + ssRNA
Encephalomyocarditis virus (EMCV) + ssRNA
Sendai virus (SeV) — ssRNA [39]
Vesicular stomatitis virus (VSV) — ssRNA
Avian influenza virus HIN2 — ssRNA [53]
Herpes simplex virus 1 (HSV-1) dsDNA
CCHC-type ZCCHC3 Cytoplasm Vaccinia virus (VACV) dsDNA [38]
Murine cytomegalovirus (MCMYV) dsDNA
Human immunodeficiency virus type 1 (HIV-1) + ssRNA
Simian immunodeficiency virus (SIV) + ssRNA
Feline immunodeficiency virus (FIV) + ssRNA [37]
Equine infectious anemia virus (EIAV) + ssRNA
Murine leukemia virus (MLV) + ssRNA
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Table 2. Cont.

Type of Zinc Cellular . Viral Nucleic
Finger Protein Name Location Viruses Targeted Acid References
Orsay virus (OrV) + ssRNA [84]
ZCCHC6/ Cytoplasm Influenza A virus (IAV) — ssRNA
ZCCHC11
Mouse hepatitis virus (MHV) + ssRNA [85]
Hepatitis A virus (HAV) + ssRNA [64-66]
ZCCHC14 Cytoplasm Hepatitis B virus (HBV) dsDNA [60,61,106,107]
Human cytomegalovirus (HCMV) dsDNA [61]
CCHC-type ZCCHC2  Cytoplasm Aichi virus 1 (AiV-1) + ssRNA [67]
Nucleus Vesicular stomatitis virus (VSV) — ssRNA
ZCCHC7 Cvtoplasm Sindbis virus (SINV) + ssRNA [72]
ytopias Rift Valley Fever virus (RVFV) — ssRNA
Encephalomyocarditis virus (EMCV) + ssRNA [93]
ZCCHC21 CNtuclfus Endogenous retroviruses (ERVs) + ssRNA [92]
ytopiasm Ebolavirus (EBOV) — ssRNA [91]
White spot syndrome virus (WSSV) dsDNA [95]
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