Transcriptomic Response of Rhizobium leguminosarum to Acidic Stress and Nutrient Limitation Is Versatile and Substantially Influenced by Extrachromosomal Gene Pool
Abstract
:1. Introduction
2. Results and Discussion
2.1. The ECR Pool in the Rhizobium Genus Is Enriched in COG Categories Related to Carbohydrate and Amino Acid Transport and Metabolism, Transcription, and Signal Transduction
2.2. Transcriptome Response of R. leguminosarum Under Acidic Conditions and Nutrient Limitation
2.3. Pattern of DEG Distribution Among RtTA1 Replicons—ECRs Contribute Significantly to Stress Response
2.4. Assignment of DEGs in RtTA1 Grown Under Stress Conditions to COG Categories and KEGG Pathways
2.5. COG and KEGG Categories for Up- and Downregulated Genes: pH 5 vs. pH 7
2.6. Production and Consumption of Ammonia as a Key Mechanism to Cope with Acid Stress
2.7. Acidic pH Stress Induces Significant Protein Turnover
2.8. The Cell Envelope Is Crucial for Protecting Cells Against Harmful Environmental Conditions and Acts as a Barrier to Stress
2.9. Numerous Downregulated Genes Under Low pH Are Linked to Carbohydrate Transport and Metabolism, Signal Transduction, and DNA Replication, Recombination, and Repair
2.10. COG and KEGG Categories for Up- and Downregulated Genes: Minimal vs. Complete Medium
2.11. Limited Nutrient Availability Results in Downregulation of Genes Related to Amino Acid Transport and Metabolism, Especially Those Located on ECRs
2.12. Numerous Genes Related to Carbohydrate Transport, Metabolism, and Energy Conversion Were Upregulated During Growth in Minimal Medium
2.13. Predominant Downregulation of Transcription-Related Genes and Moderate Activation of Signaling Mechanisms as Key Elements of the Response to Nutrient Limitation
3. Materials and Methods
3.1. Construction of the Rhizobium Pangenome
3.2. Comparison of COG Category Abundance in the Accessory Pangenome
3.3. Bacterial Strain Growth Conditions
3.4. Total RNA Isolation
3.5. RNA Sequencing and Data Analysis
3.6. Exopolysaccharide Extraction and Quantification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- diCenzo, G.C.; Finan, T.M. The Divided Bacterial Genome: Structure, Function, and Evolution. Microbiol. Mol. Biol. Rev. 2017, 81, e00019-17. [Google Scholar] [CrossRef]
- Harrison, P.W.; Lower, R.P.J.; Kim, N.K.D.; Young, J.P.W. Introducing the Bacterial ‘Chromid’: Not a Chromosome, Not a Plasmid. Trends. Microbiol. 2010, 18, 141–148. [Google Scholar] [CrossRef] [PubMed]
- diCenzo, G.C.; Mengoni, A.; Perrin, E. Chromids Aid Genome Expansion and Functional Diversification in the Family Burkholderiaceae. Mol. Biol. Evol. 2019, 36, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, C.; Koper, P.; Innocenti, G.; diCenzo, G.C.; Fondi, M.; Mengoni, A.; Perrin, E. Independent Origins and Evolution of the Secondary Replicons of the Class Gammaproteobacteria. Microb. Genom. 2023, 9, 001025. [Google Scholar] [CrossRef]
- Chain, P.S.G.; Denef, V.J.; Konstantinidis, K.T.; Vergez, L.M.; Agulló, L.; Reyes, V.L.; Hauser, L.; Córdova, M.; Gómez, L.; González, M.; et al. Burkholderia xenovorans LB400 Harbors a Multi-Replicon, 9.73-Mbp Genome Shaped for Versatility. Proc. Natl. Acad. Sci. USA 2006, 103, 15280–15287. [Google Scholar] [CrossRef]
- Galardini, M.; Pini, F.; Bazzicalupo, M.; Biondi, E.G.; Mengoni, A. Replicon-Dependent Bacterial Genome Evolution: The Case of Sinorhizobium meliloti. Genome Biol. Evol. 2013, 5, 542–558. [Google Scholar] [CrossRef]
- diCenzo, G.C.; MacLean, A.M.; Milunovic, B.; Golding, G.B.; Finan, T.M. Examination of Prokaryotic Multipartite Genome Evolution through Experimental Genome Reduction. PLoS Genet. 2014, 10, e1004742. [Google Scholar] [CrossRef]
- Liu, S.; Jiao, J.; Tian, C.-F. Adaptive Evolution of Rhizobial Symbiosis Beyond Horizontal Gene Transfer: From Genome Innovation to Regulation Reconstruction. Genes 2023, 14, 274. [Google Scholar] [CrossRef] [PubMed]
- Geddes, B.A.; Kearsley, J.; Morton, R.; diCenzo, G.C.; Finan, T.M. The Genomes of Rhizobia. In Regulation of Nitrogen-Fixing Symbioses in Legumes; Frendo, P., Frugier, F., Masson-Boivin, C., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 94, pp. 213–249. [Google Scholar] [CrossRef]
- Young, J.P.W.; Crossman, L.C.; Johnston, A.W.; Thomson, N.R.; Ghazoui, Z.F.; Hull, K.H.; Wexler, M.; Curson, A.R.; Todd, J.D.; Poole, P.S.; et al. The Genome of Rhizobium leguminosarum Has Recognizable Core and Accessory Components. Genome Biol. 2006, 7, R34. [Google Scholar] [CrossRef]
- González, V.; Santamaría, R.I.; Bustos, P.; Hernández-González, I.; Medrano-Soto, A.; Moreno-Hagelsieb, G.; Janga, S.C.; Ramírez, M.A.; Jiménez-Jacinto, V.; Collado-Vides, J.; et al. The Partitioned Rhizobium etli Genome: Genetic and Metabolic Redundancy in Seven Interacting Replicons. Proc. Natl. Acad. Sci. USA 2006, 103, 3834–3839. [Google Scholar] [CrossRef]
- Mazur, A.; Stasiak, G.; Wielbo, J.; Kubik-Komar, A.; Marek-Kozaczuk, M.; Skorupska, A. Intragenomic Diversity of Rhizobium leguminosarum Bv. trifolii Clover Nodule Isolates. BMC Microbiol. 2011, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.; Bergès, H.; Krol, E.; Bruand, C.; Rüberg, S.; Capela, D.; Lauber, E.; Meilhoc, E.; Ampe, F.; de Bruijn, F.J.; et al. Global Changes in Gene Expression in Sinorhizobium meliloti 1021 under Microoxic and Symbiotic Conditions. Mol. Plant Microbe Interact. 2004, 17, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Barnett, M.J.; Toman, C.J.; Fisher, R.F.; Long, S.R. A Dual-Genome Symbiosis Chip for Coordinate Study of Signal Exchange and Development in a Prokaryote–Host Interaction. Proc. Natl. Acad. Sci. USA 2004, 101, 16636–16641. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.K.; East, A.K.; Karunakaran, R.; Downie, J.A.; Poole, P.S. Adaptation of Rhizobium leguminosarum to Pea, Alfalfa and Sugar Beet Rhizospheres Investigated by Comparative Transcriptomics. Genome Biol. 2011, 12, R106. [Google Scholar] [CrossRef]
- López-Guerrero, M.G.; Ormeño-Orrillo, E.; Acosta, J.L.; Mendoza-Vargas, A.; Rogel, M.A.; Ramírez, M.A.; Rosenblueth, M.; Martínez-Romero, J.; Martínez-Romero, E. Rhizobial Extrachromosomal Replicon Variability, Stability and Expression in Natural Niches. Plasmid 2012, 68, 149–158. [Google Scholar] [CrossRef]
- Nilsson, J.F.; Castellani, L.G.; Draghi, W.O.; Mogro, E.G.; Wibberg, D.; Winkler, A.; Hansen, L.H.; Schlüter, A.; Pühler, A.; Kalinowski, J.; et al. Global Transcriptome Analysis of Rhizobium favelukesii LPU83 in Response to Acid Stress. FEMS Microbiol. Ecol. 2021, 97, fiaa235. [Google Scholar] [CrossRef]
- Atieno, M.; Lesueur, D. Opportunities for improved legume inoculants: Enhanced stress tolerance of rhizobia and benefits to agroecosystems. Symbiosis 2019, 77, 191–205. [Google Scholar] [CrossRef]
- da-Silva, J.R.; Alexandre, A.; Brígido, C.; Oliveira, S. Can stress response genes be used to improve the symbiotic performance of rhizobia? AIMS Microbiol. 2017, 3, 365–382. [Google Scholar] [CrossRef]
- Hawkins, J.P.; Oresnik, I.J. The Rhizobium-Legume Symbiosis: Co-Opting Successful Stress Management. Front. Plant Sci. 2022, 12, 796045. [Google Scholar] [CrossRef]
- Draghi, W.O.; Del Papa, M.F.; Hellweg, C.; Watt, S.A.; Watt, T.F.; Barsch, A.; Lozano, M.J.; Lagares, A.; Salas, M.E.; López, J.L.; et al. A Consolidated Analysis of the Physiologic and Molecular Responses Induced under Acid Stress in the Legume-Symbiont Model-Soil Bacterium Sinorhizobium meliloti. Sci. Rep. 2016, 6, 29278. [Google Scholar] [CrossRef]
- Vercruysse, M.; Fauvart, M.; Jans, A.; Beullens, S.; Braeken, K.; Cloots, L.; Engelen, K.; Marchal, K.; Michiels, J. Stress Response Regulators Identified through Genome-Wide Transcriptome Analysis of the (p)ppGpp-Dependent Response in Rhizobium etli. Genome Biol. 2011, 12, R17. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Guerrero, I.; Acosta-Jurado, S.; Del Cerro, P.; Navarro-Gómez, P.; López-Baena, F.J.; Ollero, F.J.; Vinardell, J.M.; Pérez-Montaño, F. Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose. Genes 2018, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, G.W. Nutritional Constraints on Root Nodule Bacteria Affecting Symbiotic Nitrogen Fixation: A Review. Aust. J. Exp. Agric. 2001, 41, 417–433. [Google Scholar] [CrossRef]
- Yuan, Z.-C.; Liu, P.; Saenkham, P.; Kerr, K.; Nester, E.W. Transcriptome Profiling and Functional Analysis of Agrobacterium tumefaciens Reveals a General Conserved Response to Acidic Conditions (pH 5.5) and a Complex Acid-Mediated Signaling Involved in Agrobacterium-Plant Interactions. J. Bacteriol. 2008, 190, 494–507. [Google Scholar] [CrossRef]
- Hellweg, C.; Pühler, A.; Weidner, S. The Time Course of the Transcriptomic Response of Sinorhizobium meliloti 1021 Following a Shift to Acidic pH. BMC Microbiol. 2009, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Laranjo, M.; Alexandre, A.; Oliveira, S. Genes Commonly Involved in Acid Tolerance Are Not Overexpressed in the Plant Microsymbiont Mesorhizobium loti MAFF303099 upon Acidic Shock. Appl. Microbiol. Biotechnol. 2014, 98, 7137–7147. [Google Scholar] [CrossRef]
- Guerrero-Castro, J.; Lozano, L.; Sohlenkamp, C. Dissecting the Acid Stress Response of Rhizobium tropici CIAT 899. Front. Microbiol. 2018, 9, 846. [Google Scholar] [CrossRef] [PubMed]
- Nemergut, D.R.; Schmidt, S.K.; Fukami, T.; O’Neill, S.P.; Bilinski, T.M.; Stanish, L.F.; Knelman, J.E.; Darcy, J.L.; Lynch, R.C.; Wickey, P.; et al. Patterns and Processes of Microbial Community Assembly. Microbiol. Mol. Biol. Rev. 2013, 77, 342–356. [Google Scholar] [CrossRef]
- Reeve, W.; Tian, R.; De Meyer, S.; Melino, V.; Terpolilli, J.; Ardley, J.; Tiwari, R.; Howieson, J.; Yates, R.; O’Hara, G.; et al. Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain TA1. Stand. Genom. Sci. 2013, 9, 243–253. [Google Scholar] [CrossRef]
- Mazur, A.; Majewska, B.; Stasiak, G.; Wielbo, J.; Skorupska, A. repABC-Based Replication Systems of Rhizobium leguminosarum Bv. trifolii TA1 Plasmids: Incompatibility and Evolutionary Analyses. Plasmid 2011, 66, 53–66. [Google Scholar] [CrossRef]
- Mazur, A.; Stasiak, G.; Wielbo, J.; Koper, P.; Kubik-Komar, A.; Skorupska, A. Phenotype Profiling of Rhizobium leguminosarum Bv. trifolii Clover Nodule Isolates Reveal Their Both Versatile and Specialized Metabolic Capabilities. Arch. Microbiol. 2013, 195, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Gartner, E.; Rolfe, B.G. Involvement of Genes on a Megaplasmid in the Acid-Tolerant Phenotype of Rhizobium leguminosarum Biovar Trifolii. Appl. Environ. Microbiol. 1993, 59, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, K.; Gelhausen, R.; Kion-Crosby, W.; Barquist, L.; Backofen, R.; Jung, K. Ribosome Profiling Reveals the Fine-Tuned Response of Escherichia coli to Mild and Severe Acid Stress. mSystems 2023, 8, e0103723. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, D.; Kito, K.; Maeda, T.; Rai, V.; Cha-Um, S.; Tanaka, Y.; Fukaya, M.; Takabe, T. Functional Characterization of Aminotransferase Involved in Serine and Aspartate Metabolism in a Halotolerant Cyanobacterium, Aphanothece halophytica. Protoplasma 2019, 256, 1727–1736. [Google Scholar] [CrossRef]
- Forchhammer, K. Glutamine Signalling in Bacteria. Front. Biosci. 2007, 12, 358–370. [Google Scholar] [CrossRef]
- Charlier, D.; Bervoets, I. Regulation of Arginine Biosynthesis, Catabolism and Transport in Escherichia coli. Amino Acids 2019, 51, 1103–1127. [Google Scholar] [CrossRef]
- Thomson, C.M.; Alphey, M.S.; Fisher, G.; da Silva, R.G. Mapping the Structural Path for Allosteric Inhibition of a Short-Form ATP Phosphoribosyltransferase by Histidine. Biochemistry 2019, 58, 3078–3086. [Google Scholar] [CrossRef]
- Omata, T. Structure, Function and Regulation of the Nitrate Transport System of the Cyanobacterium Synechococcus sp. PCC7942. Plant. Cell Physiol. 1995, 36, 207–213. [Google Scholar] [CrossRef]
- B Besson, S.; Almeida, M.G.; Silveira, C.M. Nitrite Reduction in Bacteria: A Comprehensive View of Nitrite Reductases. Coord. Chem. Rev. 2022, 464, 214560. [Google Scholar] [CrossRef]
- Henkin, T.M. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases. In Bacillus subtilis and Its Closest Relatives; Sonenshein, A.L., Hoch, J.A., Losick, R., Eds.; ASM Press: Washington, DC, USA, 2001; pp. 313–322. [Google Scholar] [CrossRef]
- Brígido, C.; Oliveira, S. Most Acid-Tolerant Chickpea Mesorhizobia Show Induction of Major Chaperone Genes upon Acid Shock. Microb. Ecol. 2013, 65, 145–153. [Google Scholar] [CrossRef]
- Jang, H.; Do, H.; Kim, C.M.; Kim, G.E.; Lee, J.H.; Park, H.H. Molecular Basis of Dimerization of Lytic Transglycosylase Revealed by the Crystal Structure of MltA from Acinetobacter baumannii. IUCrJ 2021, 8, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, C.H.; Wallis, R.; Allcock, N.; Barnes, K.B.; Richards, M.I.; Auty, J.M.; Galyov, E.E.; Harding, S.V.; Mukamolova, G.V. The Lytic Transglycosylase, LtgG, Controls Cell Morphology and Virulence in Burkholderia pseudomallei. Sci. Rep. 2019, 9, 11060. [Google Scholar] [CrossRef] [PubMed]
- Cipolla, L.; Polissi, A.; Airoldi, C.; Gabrielli, L.; Merlo, S.; Nicotra, F. New Targets for Antibacterial Design: Kdo Biosynthesis and LPS Machinery Transport to the Cell Surface. Curr. Med. Chem. 2011, 18, 830–852. [Google Scholar] [CrossRef]
- Chakravorty, S.; Banerjee, P.; Joseph, J.P.; Pathak, S.; Verma, T.; Das, M.; Nandi, D. Functional Loss of rffG and rfbB, Encoding dTDP-Glucose 4,6-Dehydratase, Changes Colony Morphology, Cell Shape, Motility and Virulence in Salmonella Typhimurium. bioRxiv 2023. [Google Scholar] [CrossRef]
- Maldonado, R.F.; Sá-Correia, I.; Valvano, M.A. Lipopolysaccharide Modification in Gram-Negative Bacteria during Chronic Infection. FEMS Microbiol. Rev. 2016, 40, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Bonnington, K.E.; Kuehn, M.J. Outer Membrane Vesicle Production Facilitates LPS Remodeling and Outer Membrane Maintenance in Salmonella during Environmental Transitions. mBio 2016, 7, e01532-16. [Google Scholar] [CrossRef]
- Marczak, M.; Mazur, A.; Koper, P.; Żebracki, K.; Skorupska, A. Synthesis of Rhizobial Exopolysaccharides and Their Importance for Symbiosis with Legume Plants. Genes 2017, 8, 360. [Google Scholar] [CrossRef]
- Nilsson, J.F.; Castellani, L.G.; Draghi, W.O.; Pérez-Giménez, J.; Torres Tejerizo, G.A.; Pistorio, M. Proteomic Analysis of Rhizobium favelukesii LPU83 in Response to Acid Stress. J. Proteome Res. 2019, 18, 3615–3629. [Google Scholar] [CrossRef]
- Geddes, B.A.; Oresnik, I.J. Physiology, Genetics, and Biochemistry of Carbon Metabolism in the Alphaproteobacterium Sinorhizobium meliloti. Can. J. Microbiol. 2014, 60, 491–507. [Google Scholar] [CrossRef]
- Tiwari, R.P.; Reeve, W.G.; Fenner, B.J.; Dilworth, M.J.; Glenn, A.R.; Howieson, J.G. Probing for pH-Regulated Genes in Sinorhizobium medicae Using Transcriptional Analysis. J. Mol. Microbiol. Biotechnol. 2004, 7, 133–139. [Google Scholar] [CrossRef]
- Spaans, S.K.; Weusthuis, R.A.; van der Oost, J.; Kengen, S.W.M. NADPH-Generating Systems in Bacteria and Archaea. Front. Microbiol. 2015, 6, 742. [Google Scholar] [CrossRef] [PubMed]
- Bowra, B.J.; Dilworth, M.J. Motility and Chemotaxis towards Sugars in Rhizobium leguminosarum. Microbiology 1981, 126, 231–235. [Google Scholar] [CrossRef]
- Schmidt, A.J.; Ryjenkov, D.A.; Gomelsky, M. The Ubiquitous Protein Domain EAL Is a Cyclic Diguanylate-Specific Phosphodiesterase: Enzymatically Active and Inactive EAL Domains. J. Bacteriol. 2005, 187, 4774–4781. [Google Scholar] [CrossRef]
- Whiteley, C.G.; Lee, D.-J. Bacterial Diguanylate Cyclases: Structure, Function and Mechanism in Exopolysaccharide Biofilm Development. Biotechnol. Adv. 2015, 33, 124–141. [Google Scholar] [CrossRef] [PubMed]
- Hölz, K.; Pavlic, A.; Lietard, J.; Somoza, M.M. Specificity and Efficiency of the Uracil DNA Glycosylase-Mediated Strand Cleavage Surveyed on Large Sequence Libraries. Sci. Rep. 2019, 9, 17822. [Google Scholar] [CrossRef]
- Casadesús, J.; Low, D. Epigenetic Gene Regulation in the Bacterial World. Microbiol. Mol. Biol. Rev. 2006, 70, 830–856. [Google Scholar] [CrossRef]
- Maddocks, S.E.; Oyston, P.C.F. Structure and Function of the LysR-Type Transcriptional Regulator (LTTR) Family Proteins. Microbiology 2008, 154, 3609–3623. [Google Scholar] [CrossRef]
- Deng, W.; Li, C.; Xie, J. The Underling Mechanism of Bacterial TetR/AcrR Family Transcriptional Repressors. Cell. Signal. 2013, 25, 1608–1613. [Google Scholar] [CrossRef]
- Lee, C.; Kim, M.I.; Park, J.; Oh, H.; Kim, J.; Hong, J.; Jeon, B.-Y.; Ka, H.; Hong, M. Structure-Based Functional Analysis of a PadR Transcription Factor from Streptococcus pneumoniae and Characteristic Features in the PadR Subfamily-2. Biochem. Biophys. Res. Commun. 2020, 532, 251–257. [Google Scholar] [CrossRef]
- Jain, D. Allosteric Control of Transcription in GntR Family of Transcription Regulators: A Structural Overview. IUBMB Life 2015, 67, 556–563. [Google Scholar] [CrossRef]
- Jaeger, T.; Mayer, C. The Transcriptional Factors MurR and Catabolite Activator Protein Regulate N-Acetylmuramic Acid Catabolism in Escherichia coli. J. Bacteriol. 2008, 190, 6598–6608. [Google Scholar] [CrossRef] [PubMed]
- Hobman, J.L. MerR Family Transcription Activators: Similar Designs, Different Specificities. Mol. Microbiol. 2007, 63, 1275–1278. [Google Scholar] [CrossRef] [PubMed]
- Deochand, D.K.; Grove, A. MarR Family Transcription Factors: Dynamic Variations on a Common Scaffold. Crit. Rev. Biochem. Mol. Biol. 2017, 52, 595–613. [Google Scholar] [CrossRef]
- Martin, J.H.; Sherwood Rawls, K.; Chan, J.C.; Hwang, S.; Martinez-Pastor, M.; McMillan, L.J.; Prunetti, L.; Schmid, A.K.; Maupin-Furlow, J.A. GlpR Is a Direct Transcriptional Repressor of Fructose Metabolic Genes in Haloferax volcanii. J. Bacteriol. 2018, 200, e00244-18. [Google Scholar] [CrossRef]
- Beach, N.K.; Myers, K.S.; Owen, B.R.; Seib, M.; Donohue, T.J.; Noguera, D.R. Exploring the Meta-Regulon of the CRP/FNR Family of Global Transcriptional Regulators in a Partial-Nitritation Anammox Microbiome. mSystems 2021, 6, e0090621. [Google Scholar] [CrossRef]
- Ravcheev, D.A.; Khoroshkin, M.S.; Laikova, O.N.; Tsoy, O.V.; Sernova, N.V.; Petrova, S.A.; Rakhmaninova, A.B.; Novichkov, P.S.; Gelfand, M.S.; Rodionov, D.A. Comparative Genomics and Evolution of Regulons of the LacI-Family Transcription Factors. Front. Microbiol. 2014, 5, 294. [Google Scholar] [CrossRef]
- Deng, W.; Wang, H.; Xie, J. Regulatory and Pathogenesis Roles of Mycobacterium Lrp/AsnC Family Transcriptional Factors. J. Cell. Biochem. 2011, 112, 2655–2662. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.G.; Rosner, J.L. The AraC Transcriptional Activators. Curr. Opin. Microbiol. 2001, 4, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Favrot, L.; Blanchard, J.S.; Vergnolle, O. Bacterial GCN5-Related N-Acetyltransferases: From Resistance to Regulation. Biochemistry 2016, 55, 989–1002. [Google Scholar] [CrossRef]
- Bathke, J.; Konzer, A.; Remes, B.; McIntosh, M.; Klug, G. Comparative Analyses of the Variation of the Transcriptome and Proteome of Rhodobacter sphaeroides throughout Growth. BMC Genom. 2019, 20, 358. [Google Scholar] [CrossRef]
- Krulwich, T.A.; Sachs, G.; Padan, E. Molecular Aspects of Bacterial pH Sensing and Homeostasis. Nat. Rev. Microbiol. 2011, 9, 330–343. [Google Scholar] [CrossRef] [PubMed]
- Lund, P.; Tramonti, A.; De Biase, D. Coping with Low pH: Molecular Strategies in Neutralophilic Bacteria. FEMS Microbiol. Rev. 2014, 38, 1091–1125. [Google Scholar] [CrossRef] [PubMed]
- Capasso, C.; Supuran, C.T. Carbonic Anhydrase and Bacterial Metabolism: A Chance for Antibacterial Drug Discovery. Expert Opin. Ther. Pat. 2024, 34, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Sellés Vidal, L.; Kelly, C.L.; Mordaka, P.M.; Heap, J.T. Review of NAD(P)H-Dependent Oxidoreductases: Properties, Engineering and Application. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 327–347. [Google Scholar] [CrossRef]
- Ide, A.A.; Hernández, V.M.; Medina-Aparicio, L.; Carcamo-Noriega, E.; Girard, L.; Hernández-Lucas, I.; Dunn, M.F. Genetic Regulation, Biochemical Properties and Physiological Importance of Arginase from Sinorhizobium meliloti. Microbiology 2020, 166, 484–497. [Google Scholar] [CrossRef]
- Valladares, A.; Montesinos, M.L.; Herrero, A.; Flores, E. An ABC-Type, High-Affinity Urea Permease Identified in Cyanobacteria. Mol. Microbiol. 2002, 43, 703–715. [Google Scholar] [CrossRef]
- Allaway, D.; Lodwig, E.M.; Crompton, L.A.; Wood, M.; Parsons, R.; Wheeler, T.R.; Poole, P.S. Identification of Alanine Dehydrogenase and Its Role in Mixed Secretion of Ammonium and Alanine by Pea Bacteroids. Mol. Microbiol. 2000, 36, 508–515. [Google Scholar] [CrossRef]
- Lodwig, E.; Kumar, S.; Allaway, D.; Bourdes, A.; Prell, J.; Priefer, U.; Poole, P. Regulation of L-Alanine Dehydrogenase in Rhizobium leguminosarum Bv. viciae and Its Role in Pea Nodules. J. Bacteriol. 2004, 186, 842–849. [Google Scholar] [CrossRef]
- Resendis-Antonio, O.; Reed, J.L.; Encarnación, S.; Collado-Vides, J.; Palsson, B.Ø. Metabolic Reconstruction and Modeling of Nitrogen Fixation in Rhizobium etli. PLoS Comput. Biol. 2007, 3, 1887–1895. [Google Scholar] [CrossRef]
- Li, S.-W.; Wen, Y.; Leng, Y. Transcriptome Analysis Provides New Insights into the Tolerance and Reduction of Lysinibacillus fusiformis 15-4 to Hexavalent Chromium. Appl. Microbiol. Biotechnol. 2021, 105, 7841–7855. [Google Scholar] [CrossRef]
- Burckhardt, R.M.; Escalante-Semerena, J.C. Small-Molecule Acetylation by GCN5-Related N-Acetyltransferases in Bacteria. Microbiol. Mol. Biol. Rev. 2020, 84, e00090-19. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Li, M.; Wang, Q.; Wang, M.; Liu, L.; Ma, C.; Xiang, X.; Zhou, Q.; Liu, Z.; Gong, Z. Structures, Functions, and Regulatory Networks of Universal Stress Proteins in Clinically Relevant Pathogenic Bacteria. Cell. Signal. 2024, 116, 111032. [Google Scholar] [CrossRef] [PubMed]
- Kehry, M.R.; Dahlquist, F.W. The Methyl-Accepting Chemotaxis Proteins of Escherichia coli. Identification of the Multiple Methylation Sites on Methyl-Accepting Chemotaxis Protein I. J. Biol. Chem. 1982, 257, 10378–10386. [Google Scholar] [CrossRef] [PubMed]
- Parshin, A.; Shiver, A.L.; Lee, J.; Ozerova, M.; Schneidman-Duhovny, D.; Gross, C.A.; Borukhov, S. DksA Regulates RNA Polymerase in Escherichia coli through a Network of Interactions in the Secondary Channel That Includes Sequence Insertion 1. Proc. Natl. Acad. Sci. USA 2015, 112, E6862–E6871. [Google Scholar] [CrossRef]
- Eren, A.M.; Kiefl, E.; Shaiber, A.; Veseli, I.; Miller, S.E.; Schechter, M.S.; Fink, I.; Pan, J.N.; Yousef, M.; Fogarty, E.C.; et al. Community-Led, Integrated, Reproducible Multi-Omics with Anvi’o. Nat. Microbiol. 2021, 6, 3–6. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A Hierarchical, Functionally and Phylogenetically Annotated Orthology Resource Based on 5090 Organisms and 2502 Viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef]
- Kowalczuk, E.; Lorkiewicz, Z. Transfer of RP4 and R68.45 Factors to Rhizobium. Acta Microbiol. Pol. 1979, 28, 221–229. [Google Scholar]
- Brown, C.M.; Dilworth, M.J. Ammonia Assimilation by Rhizobium Cultures and Bacteroids. Microbiology 1975, 86, 39–48. [Google Scholar] [CrossRef]
- Graham, P.H.; Draeger, K.J.; Ferrey, M.L.; Conroy, M.J.; Hammer, B.E.; Martinez, E.; Aarons, S.R.; Quinto, C. Acid pH Tolerance in Strains of Rhizobium and Bradyrhizobium, and Initial Studies on the Basis for Acid Tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol. 1994, 40, 198–207. [Google Scholar] [CrossRef]
- Marczak, M.; Żebracki, K.; Koper, P.; Horbowicz, A.; Wójcik, M.; Mazur, A. A New Face of the Old Gene: Deletion of the pssA, Encoding Monotopic Inner Membrane Phosphoglycosyl Transferase in Rhizobium leguminosarum, Leads to Diverse Phenotypes That Could Be Attributable to Downstream Effects of the Lack of Exopolysaccharide. Int. J. Mol. Sci. 2023, 24, 1035. [Google Scholar] [CrossRef]
- Żebracki, K.; Horbowicz, A.; Marczak, M.; Turska-Szewczuk, A.; Koper, P.; Wójcik, K.; Romańczuk, M.; Wójcik, M.; Mazur, A. Exopolysaccharide Biosynthesis in Rhizobium leguminosarum Bv. trifolii Requires a Complementary Function of Two Homologous Glycosyltransferases PssG and PssI. Int. J. Mol. Sci. 2023, 24, 4248. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Tarazona, S.; Furió-Tarí, P.; Turrà, D.; Pietro, A.D.; Nueda, M.J.; Ferrer, A.; Conesa, A. Data Quality Aware Analysis of Differential Expression in RNA-Seq with NOISeq R/Bioc Package. Nucleic Acids Res. 2015, 43, e140. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Sequeira, J.C.; Rocha, M.; Alves, M.M.; Salvador, A.F. UPIMAPI, reCOGnizer and KEGGCharter: Bioinformatics Tools for Functional Annotation and Visualization of (Meta)-Omics Datasets. Comput. Struct. Biotechnol. J. 2022, 20, 1798–1810. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M. KEGG Mapping Tools for Uncovering Hidden Features in Biological Data. Protein Sci. 2022, 31, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Marczak, M.; Żebracki, K.; Koper, P.; Turska-Szewczuk, A.; Mazur, A.; Wydrych, J.; Wójcik, M.; Skorupska, A. Mgl2 Is a Hypothetical Methyltransferase Involved in Exopolysaccharide Production, Biofilm Formation, and Motility in Rhizobium leguminosarum Bv. trifolii. Mol. Plant Microbe Interact. 2019, 32, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Marczak, M.; Wójcik, M.; Żebracki, K.; Turska-Szewczuk, A.; Talarek, K.; Nowak, D.; Wawiórka, L.; Sieńczyk, M.; Łupicka-Słowik, A.; Bobrek, K.; et al. PssJ Is a Terminal Galactosyltransferase Involved in the Assembly of the Exopolysaccharide Subunit in Rhizobium leguminosarum Bv. trifolii. Int. J. Mol. Sci. 2020, 21, 7764. [Google Scholar] [CrossRef] [PubMed]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
Experimental Variant | Total Number of DEGs/% of Total RtTA1 CDSs | Upregulated DEGs | Downregulated DEGs |
---|---|---|---|
M7vC7 | 1700/24.2% | 880 | 820 |
M5vC5 | 1035/14.7% | 498 | 537 |
C5vC7 | 1129/16.0% | 546 | 583 |
M5vM7 | 1108/15.7% | 508 | 600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żebracki, K.; Koper, P.; Wójcik, M.; Marczak, M.; Mazur, A. Transcriptomic Response of Rhizobium leguminosarum to Acidic Stress and Nutrient Limitation Is Versatile and Substantially Influenced by Extrachromosomal Gene Pool. Int. J. Mol. Sci. 2024, 25, 11734. https://doi.org/10.3390/ijms252111734
Żebracki K, Koper P, Wójcik M, Marczak M, Mazur A. Transcriptomic Response of Rhizobium leguminosarum to Acidic Stress and Nutrient Limitation Is Versatile and Substantially Influenced by Extrachromosomal Gene Pool. International Journal of Molecular Sciences. 2024; 25(21):11734. https://doi.org/10.3390/ijms252111734
Chicago/Turabian StyleŻebracki, Kamil, Piotr Koper, Magdalena Wójcik, Małgorzata Marczak, and Andrzej Mazur. 2024. "Transcriptomic Response of Rhizobium leguminosarum to Acidic Stress and Nutrient Limitation Is Versatile and Substantially Influenced by Extrachromosomal Gene Pool" International Journal of Molecular Sciences 25, no. 21: 11734. https://doi.org/10.3390/ijms252111734
APA StyleŻebracki, K., Koper, P., Wójcik, M., Marczak, M., & Mazur, A. (2024). Transcriptomic Response of Rhizobium leguminosarum to Acidic Stress and Nutrient Limitation Is Versatile and Substantially Influenced by Extrachromosomal Gene Pool. International Journal of Molecular Sciences, 25(21), 11734. https://doi.org/10.3390/ijms252111734