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Abstract: Cardiovascular diseases and cancer represent the largest disease burden worldwide. Previ-
ously, these two conditions were considered independent, except in terms of cardiotoxicity, which
links cancer treatment to subsequent cardiovascular issues. However, recent studies suggest that
there are further connections between cancer and heart disease beyond cardiotoxicity. It has been
revealed that myocardial dysfunction may promote carcinogenesis, indicating that additional com-
mon pathophysiological mechanisms might be involved in the relationship between cardiology
and oncology, rather than simply a connection through cardiotoxic effects. These mechanisms may
include shared risk factors and common molecular pathways, such as persistent inflammation and
neurohormonal activation. This review explores the connection between myocardial dysfunction and
cancer, emphasizing their shared risk factors, similar biological mechanisms, and causative factors
like cardiotoxicity, along with their clinical implications.

Keywords: myocardial dysfunction; cancer; molecular pathways

1. Introduction

Cardiovascular diseases and cancer represent the largest disease burden worldwide.
Heart failure is a clinical syndrome resulting from structural and/or functional changes in
the heart that impair its ability to fill with and pump out blood effectively [1]. The most
common cause of heart failure is ischemic heart disease. However, cardiotoxicity due to
cancer treatment is also a significant contributing factor [2]. Cancer is characterized by the
uncontrolled growth of abnormal cells, which have unstable genomes that lead to unlimited
division [3]. These cells can proliferate independently of normal growth factor regulation,
replicate indefinitely, evade programmed cell death, spread to other areas, form metastases,
and promote angiogenesis [3]. Heart failure and cancer were considered independent.
However, as the cardiovascular and cancer-specific mortality decreases and the surviving
population ages, the overlap between cardiac disease and cancer patients is increasing [4].
Patient care in this cardio-oncological population has primarily focused on the cardiotoxic
side effects of oncological treatment, including myocardial dysfunction and heart failure [4].
This is a causative mechanism of cancer treatment that leads to cardiovascular disease.
It represents one of the most studied fields in cardio-oncology and is defined as cancer
treatment-related cardiotoxicity [2]. Nonetheless, recent publications have shown that
myocardial dysfunction can also lead to concomitant or subsequent cancer, suggesting
common pathophysiological mechanisms beyond the causative link between cancer and
myocardial dysfunction. These may include shared risk factors and common molecular
pathways, such as persistent inflammation and neurohormonal activation [4,5]. While
significant progress has been made in understanding these molecular pathways, the early
clinical detection of both diseases may still be difficult. Previous studies have revealed that
cardiac biomarkers and imaging techniques are sensitive tools to detect early myocardial
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damage [2]. The 2022 European Society of Cardiology Guidelines on cardio-oncology
provide guidance on the diagnosis and management of cardiovascular disease caused
by cancer treatment [2]. This review discusses the link between myocardial dysfunction
and cancer, highlighting common pathological pathways such as shared risk factors and
similar biological mechanisms, as well as causative factors like cardiotoxicity and their
clinical implications.

2. Common Pathological Pathways in Myocardial Dysfunction and Cancer
2.1. Shared Risk Factors

Epidemiological studies have shown that shared risk factors, such as aging, obesity,
hyperlipidemia, smoking, hypertension, and an unhealthy diet, are associated with both
cardiovascular diseases and cancer [6-8]. Furthermore, aging is associated with the accu-
mulation of acquired genetic mutations, such as mutations in hematopoietic stem cells,
leading to clonal hematopoiesis of indeterminate potential (CHIP) and clonal leucocytes
with impaired function [9].

Hypertension is a common condition that significantly increases the risk of heart fail-
ure and cancer [6,10,11]. Recent meta-analyses have shown that hypertension is associated
with a higher risk of various cancers, including kidney, breast, colorectal, endometrial,
and bladder cancer. However, the mechanisms by which hypertension contributes to
organ-specific cancers remain unclear [12]. Belgore and coworkers’ research found ele-
vated plasma levels of vascular endothelial growth factor (VEGF) and its soluble receptor
Fms-like tyrosine kinase-1 (Flt-1) in patients with hypertension [13]. This suggests that
abnormal angiogenesis may play a role in the complications associated with hypertension
by increasing blood vessel permeability, promoting cell proliferation, and influencing the
migration and differentiation of endothelial cells [12,13]. Additionally, VEGF is a key
factor in tumor progression [12]. Furthermore, hypertension is closely associated with
the renin-angiotensin—aldosterone system (RAAS), which may also influence the risk of
renal cell carcinoma [14]. Deckers and colleagues identified two single-nucleotide polymor-
phisms (SNPs) in the angiotensin II receptor linked to renal cell carcinoma [14]. Moreover,
hypertension increases the expression and activity of matrix metalloproteinase (MMP)-2
in endothelial cells and vascular smooth muscle cells (VSMCs), due to both mechanical
stress on the vascular wall and elevated levels of angiotensin II [15]. MMP-2 is essential in
extracellular matrix (ECM) degradation and vascular remodeling [15]. Notably, MMP-2
and MMP-9 were upregulated in breast cancer but not in the adjacent normal tissue [16].

Obesity has been associated with both cardiovascular diseases and cancer, particularly
hormone-driven cancers like breast and ovarian cancer [17,18]. The INTERHEART study
revealed that truncal obesity is an independent risk factor for coronary artery disease [19].
Fatty tissue functions as an endocrine organ that produces estrogen and adipokines (e.g.,
adiponectin and leptin), which play a role in regulating cell growth and consequently
increase the risk of hormone-driven cancers [17]. Adipose tissue produces various bioac-
tive proteins, including pro-inflammatory cytokines such as tumor necrosis factor-alpha
(TNF-«), interleukin (IL)-6, and plasminogen activator inhibitor-1 (PAI-1) [20]. These pro-
teins activate the phosphatidylinositol-3-kinase (PI3K), mitogen-activated protein kinase
(MAPK), and signal transducer and activator of transcription (STAT) 3 pathways, which
are significant in atherosclerosis, angiogenesis, and tumor growth [20,21]. As a result,
obesity is associated with chronic pro-inflammatory states that can lead to DNA damage
and mutations, potentially contributing to cancer. Leptin dysregulation is particularly
critical in carcinogenesis and metastasis. It alters the tumor microenvironment, enhances
the migration of endothelial cells, and facilitates the recruitment of macrophages and
monocytes, secreting VEGF and pro-inflammatory cytokines that further promote tumor
angiogenesis [20]. Additionally, leptin has been found to cause endothelial dysfunction by
reducing the bioavailability of nitric oxide, increasing the secretion of endothelin-1, and
activating the Jun-activating kinase II (JAK)/STAT pathway, along with enhancing the
extracellular signal-regulated kinase (ERK) signaling [20,22]. Furthermore, it induces the
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osteoblastic differentiation of vascular cells, promotes platelet aggregation, and triggers
cholesterol accumulation in macrophages under hyperglycemic conditions, contributing to
cardiovascular disease [20,22].

Type II diabetes mellitus is widely recognized as a significant cardiovascular risk factor.
However, research has shown that diabetes may also contribute to the development of
cancer, likely due to hyperglycemia [23]. Additionally, the chronic inflammation associated
with diabetes could further affect carcinogenesis [23]. Insulin acts as a powerful growth
factor that can promote cell growth and may induce cancer, either directly or through
insulin-like growth factor-1 (IGF-1). IGF-1 is known to encourage cell proliferation and has
been linked to an increased risk of colorectal cancer, prostate cancer, and premenopausal
breast cancer [6,24,25]. The link between smoking, cancer, and cardiovascular disease is
well known [6,26]. Active and passive cigarette smoke increases inflammation, thrombo-
sis, oxidative stress, and the oxidation of low-density lipoprotein cholesterol, initiating
atherosclerosis [27].

Genetic alterations have been associated with both cardiovascular and cancer diseases.
Notable examples include missense mutations in the lipoprotein receptor-related protein 6
(LRP6) coding region located on chromosome 12p, mutations in the transcription factor
7-like 2 (TCF7L2) gene found on chromosome 10q25.3, mutations in the dual-specificity
tyrosine-phosphorylation-regulated kinase 1B (DYRK1B) gene, and polymorphisms in the
methylenetetrahydrofolate reductase (MTHFR) C677T gene [20]. Mutations in the LRP6
gene may lead to metabolic syndrome, coronary artery disease, and osteoporosis and can
promote the development of cancers such as fibrosarcoma, hepatocellular carcinoma, breast
cancer, and colorectal carcinoma [20,28-30]. The TCF7L2 gene acts as a transcription cofac-
tor in the canonical wingless-related integration site (Wnt) signaling pathway. It is linked to
an increased risk of several cancers, including breast, endometrial, colorectal, and recurrent
prostate cancer, as well as diabetes mellitus and coronary artery disease [20,31-33]. The
DYRK1B gene encodes a protein kinase that plays a role in cell differentiation, survival,
and proliferation. This gene has been associated with hypertension, coronary artery dis-
ease, obesity, type II diabetes mellitus, and various cancers, including ovarian, lung, and
pancreatic cancer [20,34]. Polymorphisms in the MTHEFR gene C677T result in increased
levels of plasma homocysteine, which have been associated with coronary artery disease,
stroke, and several types of cancer [20,35].

2.2. Similar Biological Mechanisms

Various pathological mechanisms may underlie cardiovascular disease and cancer [5].
These mechanisms include inflammation, immunopathology, oxidative stress, and neuro-
hormonal activation, which are interconnected and can lead to self-reinforcing cycles that
contribute to either or both diseases [4,5].

2.2.1. Inflammation and Immune System

Cardiovascular risk factors and genetic predispositions can lead to low-grade chronic
inflammation, which contributes to atherosclerosis, coronary heart disease, myocardial
infarction, and heart failure [5,36]. In the area affected by a heart attack, resident immune
cells can recognize extracellular DNA and histones from necrotic myocardial tissue. This
recognition triggers the release of pro-inflammatory cytokines by activating the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-«B). NF-«B is a key regulator
of the myocardial response to ischemia-reperfusion, mediating the transcription of over
150 target genes [37]. Additionally, NF-«kB can activate genes involved in cell proliferation,
survival, angiogenesis, and metastasis [38]. Moreover, pro-inflammatory cytokines can
lead to myocardial remodeling and impair heart function, ultimately resulting in heart
failure [39]. Heart failure itself also increases the levels of circulating pro-inflammatory
cytokines, contributing to mild chronic systemic inflammation [40—43]. Chronic inflam-
mation plays a critical role in the neoplastic process [44]. Inflammatory cells can induce
DNA damage in proliferating cells by generating reactive oxygen and nitrogen species,
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resulting in genomic point mutations, deletions, or rearrangements [44]. Furthermore,
pro-inflammatory cytokines inhibit p53 tumor suppressor activity, which can enhance
cell proliferation [44,45]. Chronic inflammatory bowel diseases, such as ulcerative colitis
and Crohn’s disease, frequently lead to colon carcinogenesis, which points out the strong
relation between inflammation and cancer [44]. Notably, the potential interaction between
pro-inflammatory cytokines of cardiac origin and malignant processes is still under debate.
However, the CANTOS trial unveiled the crucial role of inflammation in determining
cardiovascular and cancer disease [46]. The study aimed to investigate the inflammatory
potential of atherothrombosis in patients with a history of myocardial infarction using
a human, monoclonal anti-IL-1p antibody: canakinumab [46]. Canakinumab emerged
with a significantly lower incidence of recurrent cardiovascular events and a reduced level
of high-sensitivity C-reactive protein than the placebo [46]. Meanwhile, IL-1§3 inhibition
significantly reduced the incidence and mortality of non-small-cell lung cancer (NSCLC) in
the CANTOS study population [46]. It was supposed that canakinumab might enhance the
effect of immune checkpoint inhibitors (ICI) and chemotherapy by inhibiting pro-tumor
inflammation [47]. However, the CANOPY-1 phase III, randomized, double-blind study
revealed that adding canakinumab to the first-line oncological treatment did not prolong
the progression-free survival and overall survival in patients with NSCLC [47].

Notably, Meijers and coworkers proved the causal relationship between myocardial
dysfunction and tumor growth in a mouse model of colon polyps [48]. SerpinA3 emerged
as an acute-phase protein with pleiotropic effects on cardiac remodeling and colon tumor
cell proliferation via an Akt-dependent pathway [48]. The working group highlighted that
the diagnosis of heart failure may be considered a risk factor for incident cancer [48].

Immune cells play a crucial role in the tumor microenvironment by enabling cell
communication and creating a supportive environment for tumor growth [49,50]. These
immune cells consist of monocytes, macrophages, neutrophils, dendritic cells, and T cells,
all of which also express RAAS [49]. Apart from its cardiovascular effects, it is known
that the angiotensin II/type 1 angiotensin II receptor (AT1R) pathway promotes local
inflammation within the tumor microenvironment by affecting immune cells, mesangial
cells, and vascular smooth muscle cells [51,52]. Angiotensin II stimulates the production
of the monocyte chemoattractant protein-1 (MCP-1) and its receptor, the C-C chemokine
receptor 2 (CCR2), which results in the infiltration of macrophages [52,53]. M1 macrophages
can inhibit tumor growth, while M2 macrophages can enhance the proliferation of cancer
stem cells through the IL-6-induced activation of STAT3. This leads to the release of
cytokines that support cancer stem cell renewal and the secretion of inhibitory immune
checkpoint proteins by T cells, facilitating metastasis [51,54]. In summary, M2 macrophages
create an environment that suppresses the immune system and supports the development
of tumors, as well as the formation of new blood vessels and the invasion and spread of
cancer cells [4,54,55]. Angiotensin II enhances the migration, maturation, and antigen-
presenting ability of dendritic cells. It also stimulates the expression of Toll-like receptors
(TLR-4) on mesangial and vascular smooth muscle cells, promoting cellular oxidative injury,
apoptosis, and inflammation [52,56-58]. The endogenous RAAS of T cells can modify T-cell
proliferation, migration, nicotinamide adenine dinucleotide phosphate (NADPH) activity,
reactive oxygen species (ROS) production, and cytoskeletal rearrangement in T cells. This
modification stimulates the release of cytokines and chemokines, which triggers T-cell
recruitment at sites of inflammation [59-61].

2.2.2. Oxidative Stress

Increased oxidative stress is a potentially common etiology in cardiovascular diseases
and cancer. ROS are generated by mitochondrial metabolism and specific enzymes, such
as NADPH oxidase, nitric oxide synthase, and xanthine oxidase [62]. It can be promoted
by smoking, alcohol consumption, or radiation [62]. ROS production is harmful when
it exceeds the antioxidant capacities, leading to oxidative stress and contributing to car-
diovascular and cancer diseases [62]. Importantly, oxidative stress and inflammation are
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interconnected in both diseases [63]. Myocardial ischemia—reperfusion injury triggers the
production of ROS and subsequent inflammation. This occurs through the upregulation of
chemokines, the activation of neutrophil integrins, and the expression of surface adhesion
molecules by endothelial cells [63,64]. Increased ROS production leads to DNA damage
in cardiomyocytes, which activates the nuclear enzyme poly(ADP-ribose) polymerase 1,
promoting the expression of inflammatory mediators [63]. These processes result in a
subclinical inflammatory state, contributing to cardiac remodeling and heart failure [63].
Additionally, the circulating inflammatory mediator TNF-« leads to mitochondrial DNA
damage and alters the activity of mitochondrial complex III, thereby increasing ROS gen-
eration [63]. Furthermore, transforming growth factor-beta (TGF-f3) can also enhance
mitochondrial ROS generation, facilitating ROS-mediated fibrosis in heart failure [63,65].
In conclusion, elevated ROS levels result in protein oxidation, lipid peroxidation, DNA
damage, and oxidative changes in microRNAs, all of which can induce myocardial cel-
lular dysfunction, necrosis, and apoptosis [66—-68]. Additionally, ROS play a role in both
cancer-promoting and suppressing pathways by activating transcription factors such as
NEF-kB, activator protein-1 (AP-1), hypoxia-inducible factor (HIF)-1«, and STAT3, while
also regulating tumor suppressor genes like p53, Rb, and phosphatase and tensin homolog
(PTEN) [69]. The activation of these transcription factors can lead to tumor cell proliferation,
angiogenesis, and inflammation [69]. Notably, anticancer treatments achieve their effects
partly through the production of ROS [69].

2.2.3. Neurohormonal Activation

Sympathetic nervous system. The sympathetic nervous system plays a crucial role in
regulatory functions by releasing catecholamine neurotransmitters that bind to adrenergic
receptors [70]. There are two primary types of adrenergic receptors, alpha (o) and beta
(B), along with various subtypes [70]. Numerous clinical and epidemiological studies
have shown that chronic stress and the sympathetic nervous system can promote cancer
progression through adrenergic receptors via multiple intracellular mechanisms [71,72].
Moreover, previous studies showed that cancer patients treated with (3-blockers for other
medical conditions tended to have lower mortality rates [73,74]. A systematic review and
meta-analysis conducted by Wang ] and colleagues found that 3-blockade was associated
with reduced cancer-specific mortality and significantly improved progression-free sur-
vival in patients with stage IV colorectal cancer [75]. Notably, most cancer types express
both B1- and 2-adrenergic receptors [71]. Activating the sympathetic nervous system
via B-adrenergic receptors increases the levels of 3'-5'-cyclic adenosine monophosphate
(cAMP), which initiates two major downstream signaling pathways: the protein kinase
A (PKA) and the MAPK pathways [71,76] (Figure 1). The activation of PKA leads to the
phosphorylation of transcription factors such as cAMP response element-binding protein
(CREB) in members of the GATA family. Additionally, 3-adrenergic receptor kinase is
recruited, inhibiting -adrenergic receptor signaling while activating Src kinase. This
sequence activates transcription factors like STAT3 and downstream kinases, leading to cel-
lular resistance to apoptosis [76,77]. In the second major effector pathway, cAMP activates
the exchange protein stimulated by adenylyl cyclase (EPAC), activating the B-Raf/MAPK
signaling pathway (Figure 1). This has downstream effects on diverse cellular processes,
including gene transcription, resulting in the upregulation of metastasis-associated genes
involved in inflammation, angiogenesis, tissue invasion, and epithelial-mesenchymal tran-
sition (EMT), while downregulating genes that facilitate anti-tumor immune responses [76].
Additionally, PKA activates phospholipase A2 (PLA2), which releases prostaglandins and
leukotrienes, further inducing cell proliferation [78]. The research by Zhang D and col-
leagues demonstrated that the inactivation of 1- or 32-adrenergic receptors in pancreatic
cancer cells led to the inactivation of CREB, AP-1, NF-«B, and their target genes, including
matrix MMP-9, MMP-2, and VEGEF. This inhibition reduced cancer cell invasion, metastasis,
neoangiogenesis, and proliferation [78]. Notably, sympathetic nervous system activation
can occur as a consequence of heart failure, which may influence cancer progression [5].
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Additionally, 32-adrenergic receptors are extensively expressed on most immune cells.
They modulate antigen presentation, reduce T-cell responses, and alter type 2 immune
responses [70,79]. Previous studies suggest that the upregulation of 32-adrenergic signaling
can suppress anti-tumor immune responses within the tumor microenvironment [70,79].
CD8+ T cells play a crucial role in eliminating cancer cells; however, the activation of
the sympathetic nervous system may lead to T-cell exhaustion through (31-adrenergic
receptors [80]. Despite these findings, the understanding of the cellular and molecular
mechanisms by which the 32-adrenergic pathway affects immune responses in the tumor
microenvironment remains limited.

ANG 1-7
Circulation ANG 1-9
SNS nerve fiber
ACE2 NEP
1 ACE2
Epinephrine
Norepinephrine AGT ——— ATI ——— ATII
PRORENIN RENIN ACE1
CHLMEMIGNE - BR PRR AT1R AT2R AT7R  MasR
ADENYLYL CYCLASE
X
ATP cAMP PIBK RAS
PKA EPAC P Raf
— l Anti-proliferation
ATE-P Rap-1a MEK
l mTOR
CREB-P
B-Raf ERK
GATA1-P l
MEK 1/2
B-arrestin . BARK-P l Cellular proliferation
v ERK 1/2
Src-kinase - STAT-3-P l
AP-1
ETS

Upregulation of genes involved in
inflammation

Downregulation of genes involved in
anti-tumor inflammation

Figure 1. Schematic illustration showing the effects of the sympathetic nervous system (SNS) and
the renin—angiotensin system (RAS) on cancer development. The binding of epinephrine and nore-
pinephrine to the $-adrenergic receptor leads to the activation of adenylyl cyclase and the conversion
of ATP into cAMP, which activates two major pathways. In the first pathway, the PKA pathway
phosphorylates multiple target proteins, including transcription factors of the CREB/ATF and GATA
families and (3-adrenergic receptor kinase (BARK). The phosphorylation of BARK leads to the re-
cruitment of B-arrestin, which activates Src kinase, resulting in the activation of transcription factors
such as STAT3. In the second pathway, the cAMP activation of the exchange protein activated by
adenylyl cyclase (EPAC) leads to the Rapl1A-mediated stimulation of the B-Raf/mitogen-activated
protein kinase signaling pathway, affecting gene transcription. Overall, $-adrenergic signaling results
in the upregulation of genes involved in inflammation and the downregulation of genes involved
in anti-tumor immune responses. The RAS pathway interacts with two main downstream routes,
the Ras/RAF/MEK/ERK pathway and the PI3K/AKT/mTOR pathway, both promoting cellular
proliferation. Angiotensin II binds to the AT1 receptor (AT1R), initiating processes that promote
cancer development. In contrast, the angiotensin II/ AT2 receptor (AT2R) and angiotensin 1-7/Mas
receptor (MasR) pathways support anti-cancer activity by inhibiting cell proliferation.
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RAAS. The chronic activation of RAAS in heart failure leads to a systemic increase
in the levels of angiotensin II, a peptide with pleiotropic functions [4]. This peptide is
crucial in regulating blood pressure and maintaining the salt balance. During myocardial
infarction, the activation of RAAS leads to the accumulation, differentiation, and migration
of hematopoietic precursor cells from the bone marrow. This activation also triggers
the phosphorylation of NF-kB, resulting in an inflammatory response. Prolonged RAAS
activation can intensify the inflammatory response and result in the loss of cardiomyocytes.
Consequently, this can lead to adverse changes in the structure of the heart, contributing
to myocardial dysfunction and, ultimately, heart failure [81,82]. Previous studies have
suggested that RAAS is involved in tumorigenesis, leading to a proposed association
between heart failure and cancer development [4]. Increased RAAS activity has been
observed in various types of cancer, including breast, kidney, pancreatic, prostate, stomach,
bladder, cervix, brain, lung, liver, colon, skin, and hematopoietic cells [81].

RAAS activation involves both classical and non-classical pathways. In the classical
pathway, renin converts angiotensinogen to angiotensin I, which is then converted to the
effector peptide angiotensin II by the angiotensin-converting enzyme (ACE) [4]. The pre-
cursor of renin is prorenin, which was previously considered an inactive molecule until
the discovery of the prorenin receptor (PRR) [83]. PRR is recognized for its crucial role in
regulating RAAS [81,84] (Figure 1). It enhances the conversion of angiotensinogen into
angiotensin I by boosting the activity of membrane-bound renin. This makes PRR an
essential co-factor in the production of angiotensin II [81,85]. In addition to its functions
in cardiovascular and renal physiology and pathophysiology, PRR has also been linked
to tumorigenesis through various pathways [86]. PRR can exert cellular effects indepen-
dently of angiotensin II by activating the PI3K/AKT/mammalian target of rapamycin
(mTOR) and MAPK/ERK signaling pathways, thereby influencing cancer development
and metastasis [85,86]. Moreover, PRR is part of the Wnt receptor complex, which also
plays a role in oncogenesis without the involvement of renin [51,86,87]. It assists in binding
Wnt ligands and the internalization of the receptor complex as a signalosome, thereby
protecting 3-catenin from inactivation [86]. Once activated, 3-catenin translocates to the
nucleus and binds to the transcription factor T-cell factor/lymphoid enhancer-binding
factor (TCF/LEF), enhancing the expression of target oncogenes, such as cMyc, AXIN2
(which encodes axis inhibition protein 2), and CCND1 (which encodes Cyclin D1) [86]. PRR
is found to be overexpressed in various types of cancer, including breast cancer, glioma,
pancreatic ductal adenocarcinoma, adrenocortical cancer, prostate cancer, gastric cancer,
and colorectal cancer [81,88-95].

There are two types of angiotensin II receptors: AT1R and the type 2 angiotensin II re-
ceptor (AT2R) [4,96,97]. In the classical ACE/angiotensin II/AT1R pathway, the activation
of AT1R increases the aldosterone levels, promotes cell proliferation, and stimulates angio-
genesis [4,81,97] (Figure 1). The non-classical pathway includes the angiotensin II/ AT2R
and ACE2/angiotensin 1-7/AT7R axes, which counteract the effects of the classical ACE/
angiotensin II/AT1R pathway by promoting vasodilation, natriuresis, and diuresis and
reducing oxidative stress through increased nitric oxide and prostaglandins [98]. The
angiotensin II/AT2R pathway is linked to anti-fibrotic and anti-inflammatory effects in
heart failure, as well as anti-proliferative, anti-angiogenic, and pro-apoptotic effects in can-
cer [4,97,99,100]. ACE2 is a metallopeptidase that is similar to ACE. It cleaves angiotensin I
into the small peptide angiotensin 1-9 and converts angiotensin II into angiotensin 1-7 [98].
Neprilysin is also a metallopeptidase; it converts angiotensin I into angiotensin 1-7 and
other vasoactive peptides, including kinins, endothelins, atrial natriuretic peptide (ANP),
and brain natriuretic peptide (BNP) [98]. Angiotensin 1-9 activates AT2R, while angiotensin
1-7 binds to the proto-oncogene Mas receptor (MasR). This receptor has been associated
with anti-fibrotic and anti-inflammatory effects in the heart, as well as anti-proliferative
and anti-angiogenic effects in cancer due to a local decrease in angiotensin II levels or
AT1R blockade, which results from high concentrations of angiotensin 1-7 at the tumor
site [4,101] (Figure 1). The balance between the ACE/angiotensin II/AT1IR pathway and
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the ACE2/angiotensin 1-7/MasR pathway may influence cancer development [81]. The
binding of angiotensin II to AT1R activates several pathways involved in cancer develop-
ment, including the PI3K/AKT/mTOR pathway, the RAS/RAF/ERK1/2 pathway, and
the JAK/STAT3 pathway [81,102]. Consequently, the AT1R pathway promotes tumor
cell proliferation, oxidative stress, DNA damage, hypoxia, and inflammatory processes
within the tumor microenvironment [51]. Furthermore, the activation of PI3K/AKT by
AT1R stimulates NF-«B, which plays a role in cell migration, increases the production of
VEGEF, and enhances angiogenesis and tumor growth [81,102]. Hypoxia can also stimulate
angiogenesis through VEGF and upregulate ACE, HIF-1«, and HIF-2«, potentially promot-
ing tumor progression and resistance to therapy [51]. RAAS triggers inflammation and
cytokine release within the tumor microenvironment, supporting cancer cell renewal in a
positive feedback loop [51].

Apart from cancer cells, RAAS is also expressed widely within other tumor cells, in-
cluding epithelial cells, stromal cancer-associated fibroblasts, endothelial cells of the tumor
blood vessels, and tumor-infiltrating immune cells [49,103]. As a result, it is unsurprising
that paracrine RAAS’ effects play an essential role in the intercellular communication
between cancer cells and their surrounding environment [49,103]. The AT1R pathway
can induce EMT, facilitating cell migration and metastasis. Furthermore, AT1R can stim-
ulate the production of cytokines that promote M2 macrophage polarization, support
myeloid-derived suppressor cell maturation, and suppress the cytolytic activity of CD8+ T
cells [103].

In conclusion, angiotensin II binds to AT1R, triggering processes that promote cancer
development. Conversely, the angiotensin II/AT2R and angiotensin 1-7/MasR pathways
support anti-cancer activity by inhibiting cell proliferation, migration, and angiogenesis [81].
It is important to note that alternative RAAS pathways can bypass ACE. For instance,
cathepsins can directly convert angiotensinogen to angiotensin II, which then binds to
AT1R and promotes cancer progression [51,104].

Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor block-
ers (ARBs) may have a role in impeding carcinogenesis [103]. These drugs were initially
developed for the management of cardiovascular diseases; ACEIs work by inhibiting
the synthesis of angiotensin II, while ARBs block the binding of angiotensin II to AT1R.
Therefore, ARBs promote the activity of the anti-proliferative Ang 1-7/MasR and AT2R
pathways, which counteract the effects of angiotensin II and the ATIR signaling [103].
Previous studies have revealed conflicting results regarding the effects of ACEIs and ARBs
on cancer. However, some evidence suggests that these medications may have benefi-
cial effects on cancer control [103,105]. Numerous studies indicate that ACEIs and ARBs
can influence tumor growth by affecting tumor cells and their microenvironments, in-
cluding T-lymphocyte populations, myeloid cells, tumor-associated macrophages, and
cancer-associated fibroblasts.

3. The Causative Mechanism Between Myocardial Dysfunction and Cancer
3.1. Myocardial Dysfunction Triggers Subsequent Cancer

A substantial body of literature suggests that patients with heart failure have a higher
risk of developing new-onset cancer and have a poorer prognosis compared to individuals
without heart failure. This may be due to the combined mortality risks associated with both
cancer and heart failure [106-111]. A meta-analysis conducted by Zhang and colleagues
found that a history of myocardial infarction increases the risk of cancer in heart failure
patients [112]. Furthermore, this meta-analysis indicated that the presence of cancer in heart
failure patients leads to higher mortality rates [112]. A retrospective cohort analysis of the
National Health and Nutrition Examination Survey (NHANES) data in the United States
revealed that heart failure is associated with a 37% increased risk of mortality in patients
without cancer and a 73% increased risk in participants with cancer, compared to those
without heart failure [113]. Interestingly, conditions such as hypertension, diabetes mellitus,
and coronary heart disease were not significantly associated with increased cancer mortal-
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ity [113]. Chronic inflammation, neurohormonal activation, and factors released from the
failing heart may stimulate tumor progression, as discussed above [6,43,48,113-115]. Addi-
tionally, patients with atherosclerosis face an increased risk of developing malignancies,
including lung, liver, colon, and hematologic cancers [116].

Cancer progression is determined not only by genetics but also by the tumor and
systemic environment [117]. Acute myocardial infarction causes pain and anxiety, which
temporarily increases the sympathetic outflow from the central nervous system [118]. The
heightened sympathetic activity mobilizes white blood cell progenitors from the bone
marrow through beta-3 adrenergic stimulation [118]. These cells then migrate to the spleen,
where pro-inflammatory monocytes are released into the circulation [118]. Monocytes
are key regulators of the tumor microenvironment and have several oncogenic functions,
including tumor immune evasion and angiogenesis, as well as tumor cell proliferation,
migration, invasion, metastasis, and angiogenesis [118,119]. Koelwyn and colleagues dis-
covered that myocardial infarction is a pathological stressor that can promote the growth of
breast cancer in mice and humans, even in the absence of clinical signs of heart failure [120].

3.2. Cancer and Cancer Treatment Triggers Myocardial Dysfunction

Cancer survivors are a growing population at higher risk of developing subsequent
cardiovascular disease. This increased risk stems from shared risk factors, the biological
processes discussed earlier, and the cardiotoxic effects of cancer treatments [121]. A large
population-based study involving 18714 participants, with an average follow-up period
of 12 years, found that cancer survivors had a higher cardiovascular risk compared to
individuals without a cancer history. One-third of cancer survivors went on to develop
cardiovascular disease, with the highest rates observed in those with lung and hemato-
logical cancers [121]. The most common types of cardiovascular disease among these
survivors were ischemic heart disease, arrhythmia, and heart failure [121]. Traditional
cancer treatments like anthracyclines and radiation have been connected to dose-dependent
cardiotoxicity, including symptoms of heart failure. Meanwhile, radiation therapy, partic-
ularly when targeting the chest, has been linked to harmful effects on the myocardium,
valves, pericardium, and blood vessels. Over the past few decades, cardio-oncology has
advanced due to the increase in cancer treatments and the associated risk of heart-related
complications. A deeper understanding of the molecular pathways has resulted in the
development of more targeted and selective cancer therapies (such as human epidermal
growth factor receptor (HER) 2 inhibitors and VEGF signaling pathway inhibitors), mul-
titargeted tyrosine kinase inhibitors, immunomodulatory drugs, proteasome inhibitors,
and ICIs [122]. As a result, the long-term survival rates have improved, leading to a higher
incidence of cardiovascular disease related to cancer therapies [123].

The 2022 ESC Guidelines on cardio-oncology recommend using the term cancer
therapy-related cardiovascular toxicity (CTR-CVT) to refer to conditions such as cardiomy-
opathy, heart failure, myocarditis, vascular toxicity, hypertension, cardiac arrhythmia, a
prolonged corrected QT interval (QTc), and pericardial and valvular heart diseases resulting
from cancer treatment, including chemotherapy, targeted agents, immune therapies, and
radiation therapy [2]. Cancer therapy-related cardiotoxicities significantly contribute to
the development of cardiomyopathy [123]. In addition, myocardial dysfunction can also
be associated with cardiac light chain (AL) amyloidosis, cardiac metastases, accelerated
atherosclerosis, stress cardiomyopathy, and systemic and pulmonary hypertension [123].
The prevalence of myocardial dysfunction in cancer survivors is higher compared to in-
dividuals without malignancy. A study conducted in Rochester, Minnesota found that
survivors of breast cancer and lymphoma were three times more likely to develop new-
onset heart failure compared to individuals without these conditions. This increased risk
was associated with anthracycline treatment. Importantly, the risk remained elevated even
after accounting for various factors, including age, sex, diabetes, hypertension, coronary
artery disease, high cholesterol, obesity, and tobacco use [124]. This review briefly discusses
the most significant cardiotoxic agents in traditional and targeted cancer treatment (Table 1).
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Anthracyclines. In cancer cells, the primary cellular target of anthracyclines is topoiso-
merase II-alpha (TOPO-Ilx), an enzyme that cleaves DNA strands and generates transient
double-strand breaks [125]. Anthracyclines bind to and stabilize TOPO-IIla—DNA cleav-
able complexes, leading to DNA double-strand breaks that result in programmed cell
death [126]. However, in cardiomyocytes, anthracyclines bind to topoisomerase II-beta
(TOPO-IIB), leading to permanent DNA double-strand breaks and thus activating the DNA
damage response. This process involves multiple pathways, including the p53 signaling
pathway, which initiates an apoptosis cascade [126]. Anthracyclines disrupt nuclear DNA
and can cause mutations and mitochondrial defects. They can also bind to cardiolipin, a
crucial lipid in the inner mitochondrial membrane, leading to impaired oxidative phos-
phorylation [127]. Anthracyclines can also cause changes in mitochondria, such as the
accumulation of mitochondrial iron, lipid peroxidation, protein nitrosylation, and abnor-
malities in calcium handling [126]. Despite the significant impact of anthracyclines on
cancer treatment, cardiotoxicity remains a significant challenge in clinical routines [126].
Among all drugs known to cause severe cardiotoxicity, anthracyclines, the oldest chemother-
apeutic drugs, are still widely used in the treatment of solid and hematological tumors [127].
In a meta-analysis of 22,815 cancer patients treated with anthracyclines, 17.9% exhibited
early signs of cardiotoxicity, 6.3% developed clinically relevant cardiotoxicity, and 10.9%
experienced cardiac events [128]. Anthracycline-induced cardiotoxicity is a dose-dependent
and cumulative process that can lead to various issues, such as myocardial dysfunction,
arrhythmias, and, rarely, acute myocarditis [126,127]. It can be diagnosed in up to 20% of all
patients receiving anthracyclines and 48% treated with high doses of anthracyclines [129].
Combining anthracycline therapy with radiotherapy and/or monoclonal antibodies can
worsen toxicity [127]. This process starts at the level of myocardial cells and gradually
progresses to heart failure [126,130,131]. Acute complications are rare and occur during
treatment or a few weeks later, mainly as arrhythmias [127,132]. However, chronic compli-
cations are more significant and characterized mainly by asymptomatic or symptomatic
left ventricular systolic dysfunction in the early (within one year after treatment) or late
stages [127,132]. It can eventually progress to dilated cardiomyopathy and congestive heart
failure [127].

Fluoropyrimidines. Fluoropyrimidines, such as 5-fluorouracil (5-FU) and capecitabine,
have been widely used as traditional chemotherapeutic agents for the treatment of head,
neck, and gastrointestinal tumors for over half a century [133,134]. However, 5-FU is the
second most common drug associated with cardiotoxicity after anthracyclines [133]. It
is linked to myocardial ischemia and heart failure [132,135,136]. Less commonly, it can
lead to arrhythmias, myocarditis, pericarditis, and Takotsubo cardiomyopathy [133,137].
Capecitabine, an orally administered chemotherapeutic agent, is metabolized at the tumor
site to 5-FU and is thought to have less significant cardiac toxicity. In a systematic review
and meta-analysis involving 63,186 patients, the incidence of fluoropyrimidine-associated
cardiotoxicity was 5.04%, with myocardial ischemia (2.24%) and arrhythmia (1.85%) being
the most frequent [134]. In a retrospective analysis from the CAIRO studies and Dutch
Colorectal Cancer Group, the incidence of capecitabine-related cardiotoxicity in metastatic
colorectal cancer was found to be 5.9% of patients, with severe cardiotoxicity in 2.3% of
patients [138]. The two primary mechanisms of 5-FU-related cardiotoxicity are myocardial
ischemia, mainly due to coronary vasospasm, and the direct toxic effect on cardiomy-
ocytes [133]. Vasospasm can be related to endothelial and smooth muscle cell dysfunction,
affecting the coronary macrovasculature and microvasculature [133]. Epicardial coronary
artery vasospasm is usually observed in a single vessel supplying the largest territory of the
myocardium and manifests in segmental myocardial dysfunction. In contrast, diffuse my-
ocardial dysfunction can be detected in the vasospasm of the microvasculature [133]. The
drug activates protein kinase C, leading to the vasospasm of the coronary arteries. Addi-
tionally, it can directly damage vascular endothelial cells, leading to microthrombosis [132].
The pathomechanism of 5-FU-induced direct cardiomyocyte and endothelial damage leads
to apoptosis related to its metabolite (fluoroacetate). This mechanism differs from the effect
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on neoplastic cells [133,139]. Furthermore, 5-FU can lead to cellular damage, either by
reduced aerobic efficacy as a consequence of mitochondrial uncoupling or by oxygen stress
due to increased levels of ROS (such as superoxide anions) or the diminished activity of
antioxidants (such as sodium oxide dismutase and glutathione peroxidase) [133,139,140].
Refaie and coworkers found that fluorouracil elevated the levels of cardiac enzymes, tissue
malondialdehyde (MDA), IL-6, STAT4, and caspase-3 and reduced glutathione (GSH),
total antioxidant capacity, and peroxisome proliferator-activated receptor alpha (PPARx)
expression [141]. Moreover, 5-FU has been associated with transient myocardial dysfunc-
tion, leading to apical ballooning and the hyperdynamic contraction of the basal segments
in the absence of obstructive coronary artery disease, defined as chemotherapy-induced
Takotsubo cardiomyopathy [133].

HER?2-targeted therapies. HER2-targeted therapies are essential in treating patients
with HER2-positive invasive breast cancer and HER2-overexpressing metastatic gastric
adenocarcinomas [2]. HER?2 (also known as ErbB2) is a member of the HER family, which
also includes ErbB1 (epidermal growth factor receptor (EGFR)), ErbB3, and ErbB4. The
most commonly used HER2-targeted drugs are trastuzumab, lapatinib, and neratinib [132].
Trastuzumab is a monoclonal antibody that specifically binds to HER2, inhibiting its down-
stream signaling and activating cell-mediated cytotoxicity. Lapatinib and neratinib are
tyrosine kinase inhibitors that compete with intracellular ATP to block HER?2 signaling.
This action prevents phosphorylation and downstream molecular pathway alterations, ex-
erting anti-tumor effects [132]. Anti-HER?2 therapies may cause left ventricular dysfunction
in 15-20% of patients [142,143]. In breast cancer trials, trastuzumab led to symptomatic
heart failure in 2 to 4% of patients, and the incidence of cardiac dysfunction was 3 to
19% [144-146]. Most patients treated with trastuzumab who develop cardiomyopathy ex-
perience an improvement in their clinical or cardiac function after the cessation of the
treatment. However, approximately one-third of these patients still have some degree of
persistent cardiac dysfunction [122,144]. HER2 inhibitors can impact multiple pathways,
including neuregulin 1 (NRG1), oxidative stress, and ferroptosis, leading to cardiotoxicity.
NRG1 is a regeneration growth factor released by endothelial cells. It is responsible for car-
diac development and protection from stress [147,148]. NRG1 promotes myocardial repair
through the stimulation of cardiomyocyte proliferation, stem cell recruitment, angiogenesis,
and extracellular matrix remodeling [148-150]. Trastuzumab interferes with the NRG1-
ErbB4-ErbB2 axis in the myocardium and inhibits the MAPK and PI3K pathways, leading
to myocardial injury [132,151]. HER2 inhibitors may also cause cardiotoxicity by disrupting
the intracellular antioxidant system, increasing mitochondrial ROS production [152].

VEGEF inhibitors. Inhibitors that target the VEGF signaling pathway include VEGFA
monoclonal antibodies, VEGF receptor 2 (VEGFR2) monoclonal antibodies, and tyrosine
kinase inhibitors with anti-VEGF activity. These inhibitors are used to treat various types of
cancer, such as renal, thyroid, and hepatocellular carcinomas. It is important to note that ty-
rosine kinases are critical in cardiovascular homeostasis, including vascular, metabolic, and
myocardial regulation [153]. Therefore, inhibiting these kinases may result in a wide range
of cardiovascular issues, including hypertension, heart failure, myocardial infarction, QTc
prolongation, and acute vascular events [2,154-156]. A meta-analysis of 10,647 patients
found that 2.39% of patients experienced heart failure [157]. In a small study involv-
ing 40 patients who received VEGF inhibitors, 8% of the patients developed clinically
asymptomatic cancer therapeutic-related cardiac dysfunction, and 30% developed clinically
significant decreases in global longitudinal strain, which is a marker for early subclinical
myocardial dysfunction [158].

Multitargeted tyrosine kinase inhibitors. Tyrosine kinase inhibitors that target BCR-
ABL1 are the primary treatment for chronic myeloid leukemia (CML). A recent study
examined the occurrence of cardiovascular side effects in 531 patients who were treated with
first-line tyrosine kinase inhibitors. The findings revealed that 45% of patients experienced
cardiovascular adverse events, with 9% experiencing atherothrombotic events and 33%
experiencing hypertension [159]. Tyrosine kinase inhibitors can induce cardiomyocyte
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apoptosis by inhibiting pro-survival pathways (AKT and ERK) and upregulating pro-
apoptotic pathways (Bax, Bcl-xL, and caspase) [160].

Proteasome inhibitors. Proteasome inhibitors have been shown to reduce tumor cell
invasion and metastasis, thereby slowing down the progression of malignant tumors.
However, it is important to note that these inhibitors can also lead to adverse cardiac effects,
such as heart failure, atherosclerosis, myocardial infarction, and cardiac arrest [132,161].
According to a meta-analysis, the incidence of high-grade cardiotoxicity associated with
bortezomib was 2.3% [132,162]. The development of proteasome inhibitor-associated
cardiotoxicity is primarily linked to the dysregulation of calcium ion homeostasis and
abnormal energy metabolism in cardiomyocytes, such as a decrease in ATP synthesis,
leading to reduced cardiomyocyte contractility, or increasing protein phosphatase 2A
(PP2A) activity and inhibiting adenosine monophosphate-activated protein kinase-alpha
(AMPKw), leading to a reduction in left ventricular function [132,163,164].

Taxanes. Taxanes, including paclitaxel, docetaxel, and cabazitaxel, work by affecting
the tubulin proteins. This leads to the dysfunction of microtubules, which in turn inhibits
cell division [165]. They are used to treat ovarian, breast, non-small-cell lung, Kaposi’s
sarcoma, prostate, stomach, and head and neck cancers [165]. However, taxanes might lead
to arrhythmias due to abnormal calcium ion concentrations, abnormal energy metabolism,
cardiomyocyte damage, and apoptosis [165,166].

Immune checkpoint inhibitors. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
and programmed cell death protein-1 (PD-1) are proteins that regulate the activity of T cells
and play a role in preventing autoimmune diseases. Nonetheless, they can also hinder the
immune system’s ability to fight cancer cells [167,168]. Monoclonal antibodies targeting
these proteins, known as immune checkpoint inhibitors, are used in cancer treatment.
It is believed that the use of immune checkpoint inhibitors may lead to an increase in
the autoimmune response, resulting in myocarditis [167,168]. While the incidence of ICI-
associated myocarditis is low, the mortality rate is high. In a multicenter registry, the
prevalence of myocarditis was 1.14%, with a median onset time of 34 days after starting
therapy [169]. However, the true incidence of subclinical or smoldering myocarditis might
be even higher as the troponin level is elevated by 10% [170]. A combination of ICI therapy,
hypertension, diabetes, smoking, obesity, and pre-existing autoimmune disease may be a
risk factor for ICI-associated myocarditis [171-173].

Table 1. Brief overview of the most significant cardiotoxic agents in traditional and targeted cancer

treatment.
Class Drugs Potential Cardiotoxicity
TRADITIONAL CANCER THERAPIES
Anthracyclines doxorubicin, epirubicin cardlomyopath}{, arrlr}y.thmla, myocarditis,
pericarditis [128]
Platinum cisplatin, oxaliplatin myocardial ischemia [174,175]
. . . — coronary spasms, myocardial ischemia,
Antimetabolites fluorouracil, capecitabine arthythmias [134,138]
Alkylating agents cyclophosphamide heart failure, myocarditis, pericarditis [176]
Antimicrotubule agents paclitaxel, vinca alkaloids arrhythmias, myocardial ischemia [166]
TARGETED CANCER THERAPIES
HER2 inhibitors trastuzumab, pertuzumab cardiomyopathy [144-146]
hypertension, cardiomyopathy,
VEGF signaling pathway inhibitors bevacizumab, sunitinib thromboembolic events (arterial or venous)

[154-158]
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Table 1. Cont.

Class

Drugs Potential Cardiotoxicity

Multitargeted tyrosine kinase inhibitors

hypertension, atherothrombotic
cardiovascular events, cardiomyopathy,
arrhythmias [159,177,178]

dasatinib, ponatinib, ibrutinib,
trametinib

Immunomodulatory drugs thalidomide, lenalidomide thromboembolic events, arrhythmia [179]

Proteasome inhibitors

cardiomyopathy, hypertension,
bortezomib, carfilzomib thromboembolic events (arterial and
venous) [162]

Immune checkpoint inhibitors pembrolizumab, nivolumab myocarditis [169]

4. Clinical Aspects of Myocardial Dysfunction in Cancer Patients

The 2022 ESC Guidelines on cardio-oncology recommend using the term cancer
therapy-related cardiac dysfunction (CTRCD) to encompass cardiac injury, cardiomy-
opathy, and heart failure [2]. The clinical assessment of CTRCD relies on symptom:s,
cardiac biomarkers, and left ventricular function [2,180,181]. It is divided into clinically
asymptomatic and symptomatic cardiotoxicity, from very severe to mild grades [2]. Left
ventricular dysfunction is routinely assessed by transthoracic echocardiography, which
includes two-dimensional or three-dimensional left ventricular ejection fraction (LVEF) and
two-dimensional left ventricular global longitudinal strain measurement (LVGLS) [180,181]
(Figure 2). LVEEF is the fraction of the chamber volume ejected in systole divided by the
left ventricular end-diastolic volume; however, it is affected by the loading conditions
and ventricular geometry. LVGLS measures the left ventricular wall deformation in the
tangential base-to-apex direction, which defines left ventricular systolic shortening [182]. It
is a more sensitive imaging tool for the detection of subtle systolic dysfunction than the
ejection fraction, as it can partially overcome the limitations associated with ejection fraction
measurement [182]. Consequently, LVGLS can detect myocardial dysfunction earlier than
the conventional ejection fraction measurement. Previous studies have shown that LVGLS
can effectively detect early subclinical cardiac dysfunction in patients treated with anthra-
cyclines or HER2, VEGF signaling pathway, and immune checkpoint inhibitors [183-185].
Additionally, the global longitudinal strain (GLS) is valuable in demonstrating the tempo-
ral changes in early myocardial damage caused by anthracyclines and HER?2 inhibitors.
This information may assist in ensuring the prevention of late cardiovascular events [184].
Therefore, systolic myocardial strain analysis should be performed whenever available
to detect cardiotoxicity as early as possible [2]. Even in asymptomatic cases, a new LVEF
reduction to <40% is defined as severe CTRCD, whereas moderate CTRCD is described
as at least a 10% reduction in LVEF to 40-49% or a less than 10% LVEF reduction with
a new relative decline in LVGLS by >15% from baseline or a new elevation in cardiac
biomarkers [2]. The most commonly used cardiac biomarkers are natriuretic peptides, such
as BNP or N-terminal prohormone of BNP (NT-proBNP) and troponin. These biomarkers
detect early myocardial injury, particularly in patients undergoing treatment with anthra-
cyclines and/or trastuzumab [2]. Atrial and ventricular cardiomyocytes release BNP and
NT-proBNP in response to increased myocardial wall stress in patients with myocardial dys-
function [36]. Troponin is a protein in thin myocardial filaments that activates myocardial
contraction when calcium binds. Both natriuretic peptides and troponin are of prognostic
value in cardiac diseases. Notably, the 2022 ESC Guidelines on cardio-oncology recommend
evaluating not only the left ventricular systolic function and cardiac biomarkers but also
the diastolic function, left ventricular filling pressures, right ventricular function, and
ventricular diameters [2].
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A3C

Figure 2. Representative image of left ventricular strain analysis using two-dimensional speckle
tracking echocardiography in the case of a normal subject receiving anthracyclines. The absolute
values of the left ventricular global longitudinal strain (GLS) obtained from the apical four-chamber
view (A4C), two-chamber view (A2C), and three-chamber view (A3C) are within the normal range.
LA: left atrium, LV: left ventricle.

The LVEF is primarily responsible for determining the initiation of cardioprotec-
tive therapy in patients at risk of CTRCD [186]. The SUCCOUR (Strain Surveillance
of Chemotherapy for Improving Cardiovascular Outcomes) study aimed to determine
whether using LVGLS-guided cardioprotection could prevent a decrease in LVEF and the
development of CTRCD in high-risk patients undergoing potentially cardiotoxic chemother-
apy, as compared to standard care. The study found the lower occurrence of significant
LVEF reductions in the LVGLS-guided group at the one-year follow-up. Data from the
3-year follow-up showed an even greater improvement in LVEF than at the 1-year follow-
up; however, there was no noticeable difference between the LVGLS-guided and LVEF-
guided groups [186,187].

Cardiovascular surveillance in cancer patients is emphasized in the 2022 ESC Guide-
lines on cardio-oncology and was reviewed by Gao and colleagues [2,132]. The guidelines
outline the assessment of cardiovascular risk factors and myocardial function before and
during cancer treatment to identify cardiotoxicity promptly [2]. The long-term follow-up
of cancer survivors after treatment is recommended to detect and manage potential late
cardiotoxicity [2]. If moderate or severe symptomatic anthracycline-induced cardiotox-
icity is observed, chemotherapy should be temporarily interrupted [2,132]. Similarly,
HER?2 inhibitor chemotherapy should be interrupted in symptomatic or asymptomatic
cases with a decrease in LVEF to <40% [2,132]. In asymptomatic moderate or mild HER2
inhibitor-induced cardiotoxicity, chemotherapy can be administered by ACEI/ARB and/or
B-blockers [2,132]. Meanwhile, 5-FU chemotherapy should be stopped as soon as symp-
toms develop, and calcium channel blockers or nitrates should be used empirically, as
they have been shown to improve coronary artery spasms significantly [2,132]. Daily
home blood pressure monitoring is recommended during the first VEGF inhibitor cycle
and every 2-3 weeks [2,132]. Patients with blood pressure >140/90 mmHg should be
treated according to the guidelines [2,132]. The 2022 ESC Guidelines recommend base-
line electrocardiography in patients treated with second-generation BCR-ABL tyrosine
kinase inhibitors and the discontinuation of chemotherapy if pulmonary hypertension
develops [2,132]. Electrocardiography and cardiac biomarkers are indicated before and
during ICI therapy. In suspected ICI-associated myocarditis, it is recommended to perform
transthoracic echocardiography and cardiac magnetic resonance, and patients should be
immediately withdrawn from ICI therapy [2,132]. For hemodynamically unstable patients,
high-dose methylprednisolone is administered intravenously [2,132].
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5. Conclusions

Cardiovascular disease and cancer are the leading causes of death worldwide. Both
conditions share essential modifiable risk factors, including diet, a sedentary lifestyle,
obesity, and tobacco use. Additionally, non-modifiable factors, such as inflammation,
significantly contribute to their development [20]. While cardiovascular disease and cancer
are diverse clinical conditions, they exhibit overlapping biological mechanisms, including
common genetic, cellular, and signaling pathways. Understanding these pathways could
help to identify new therapeutic and preventive strategies for both diseases [20]. Moreover,
patients with cardiovascular diseases, particularly those with atherosclerosis, face an
increased risk of developing malignancies, such as lung, liver, colon, and hematologic
cancers [116]. Additionally, cancer survivors represent a growing population that is at an
increased risk for subsequent cardiovascular disease due to the cardiotoxic effects of cancer
therapies, biological processes related to cancer, and shared risk factors [121].

6. Limitation

A search strategy using MeSH terms with defined inclusion and exclusion criteria was
not feasible, which introduced potential bias.
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Abbreviations

BR beta-adrenergic receptor

ATP adenosine triphosphate

cAMP cyclic adenosine monophosphate

PKA protein kinase A

ATF-P phosphorylated activating transcription factor

CREB-P phosphorylated cAMP response element-binding protein
GATA1-P  phosphorylated GATA-binding protein 1

BARK-P phosphorylated (3-adrenergic receptor kinase

STAT-3-P  phosphorylated signal transducer and activator of transcription 3

EPAC cAMP activation of exchange protein activated by adenylyl cyclase
ERK extracellular signal-regulated kinase

AP-1 activating protein-1

ETS E26 transformation-specific transcription factor

PRR pro-renin receptor

ACE1 angiotensin-converting enzyme 1

ACE2 angiotensin-converting enzyme 2

AGT angiotensinogen

ANG(1-7) angiotensin (1-7)
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ANG(1-9) angiotensin (1-9)

NEP neutral endopeptidase

ATI angiotensin I

ATII angiotensin II

ATIR angiotensin II receptor 1

AT2R angiotensin II receptor 2

AT7R angiotensin II receptor 7

MasR Mas receptor

PIBK phosphatidylinositol-3-kinase

mTOR mammalian target of rapamycin
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