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Abstract: The growing recognition of the association between maternal chronic kidney disease
(CKD) and fetal programming highlights the increased vulnerability of hypertension in offspring.
Potential mechanisms involve oxidative stress, dysbiosis in gut microbiota, and activation of the
renin–angiotensin system (RAS). Our prior investigation showed that the administration of adenine
to pregnant rats resulted in the development of CKD, ultimately causing hypertension in their adult
offspring. Citrulline, known for enhancing nitric oxide (NO) production and possessing antioxidant
and antihypertensive properties, was explored for its potential to reverse high blood pressure (BP)
in offspring born to CKD dams. Male rat offspring, both from normal and adenine-induced CKD
models, were randomly assigned to four groups (8 animals each): (1) control, (2) CKD, (3) citrulline-
treated control rats, and (4) citrulline-treated CKD rats. Citrulline supplementation successfully
reversed elevated BP in male progeny born to uremic mothers. The protective effects of perinatal
citrulline supplementation were linked to an enhanced NO pathway, decreased expression of renal
(pro)renin receptor, and changes in gut microbiota composition. Citrulline supplementation led to a
reduction in the abundance of Monoglobus and Streptococcus genera and an increase in Agothobacterium
Butyriciproducens. Citrulline’s ability to influence taxa associated with hypertension may be linked to
its protective effects against maternal CKD-induced offspring hypertension. In conclusion, perinatal
citrulline treatment increased NO availability and mitigated elevated BP in rat offspring from uremic
mother rats.

Keywords: chronic kidney disease; citrulline; nitric oxide; developmental origins of health and
disease (DOHaD); asymmetric dimethylarginine; gut microbiota; hypertension

1. Introduction

Hypertension affects one in three adults worldwide, and its roots may begin in early
life [1,2]. Identifying and addressing hypertension early on could be a cost-effective strategy
to globally reduce its burden. The connection between early-life environmental influences
and later-life diseases is known as the “developmental origins of health and disease (DO-
HaD)” [3]. Adverse maternal conditions during gestation can impact fetal programming,
potentially resulting in offspring hypertension [4]. Previous research demonstrated that
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pregnant rats fed adenine exhibited reduced kidney function along with glomerular and
tubulointerstitial damage, hypertension, and increased uremic toxins [5]. These character-
istics closely mirror the complex nature of human CKD. Maternal adenine-induced CKD
affects fetal programming, leading to offspring hypertension. This hypertension is associ-
ated with deficient nitric oxide (NO) signaling, abnormal activation of the renin–angiotensin
system (RAS), and alterations in the composition of gut microbiota [5].

Dietary antioxidants play a significant role in the treatment and prevention of various
human diseases [6]. Citrulline, a non-essential amino acid initially identified in watermelon,
has emerged as a potential antioxidant supplement that contributes to the improvement of
cardiometabolic health [7,8]. Evidence suggests that citrulline derived from watermelon
serves as an antioxidant by supporting the synthesis of NO along with arginine [9]. Orally
ingested citrulline is absorbed by enterocytes and efficiently transported to the kidneys,
where it is transformed to arginine. Citrulline supplementation offers pharmacokinetic
advantages over arginine by bypassing hepatic first-pass metabolism, leading to increased
NO production [10]. As NO is a well-known vasodilator, oral supplementation of arginine
or citrulline is believed to effectively reduce blood pressure (BP) [11].

Evidence suggests that early-life oxidative stress increases the future risk of hyperten-
sion [12]. Conversely, the perinatal use of dietary antioxidants has been shown to protect
adult offspring from hypertension in various animal models [13]. Previously, we found that
supplementing citrulline during pregnancy in rats with NO deficiency improved offspring
hypertension by enhancing NO production [14]. Nevertheless, the impact of perinatal
citrulline supplementation on offspring hypertension programmed by maternal uremia is
still unknown.

The objective of this study was to investigate the protective role of citrulline in hy-
pertension with developmental origins. In vivo, this was accomplished by administering
perinatal citrulline supplementation in a maternal uremia rat model to delve into potential
underlying mechanisms, including NO, the RAS, and gut microbiota.

2. Results
2.1. Body Weight and BP

Figure 1 depicts that at 12 weeks of age, there were no discernible differences in body
weight (Figure 1A) and the kidney weight-to-body weight ratio (Figure 1B) among the
four groups. Additionally, the plasma creatinine levels, serving as an indicator of kidney
function in the CKD group, were comparable to those in the remaining groups (Figure 1C).
BP measurements were conducted longitudinally from weeks 3 to 12 (Figure 1D). Notably,
during weeks 8–12, maternal CKD resulted in an increase in offspring’s systolic BP, which
was reversed by perinatal citrulline treatment (Figure 1D).

2.2. NO Pathway

Table 1 presents the findings regarding NO parameters in the plasma, including cit-
rulline, arginine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine
(SDMA). Following perinatal citrulline supplementation, the citrulline concentration ex-
hibited a significant increase in the NC group as opposed to the CKD and CKDC groups.
Plasma concentrations of arginine were notably higher in the NC and CKDC groups when
compared to the CKD group. The levels of ADMA and SDMA were elevated due to mater-
nal CKD, and citrulline supplementation mitigated the increase in ADMA in the CKDC
group. A noteworthy reduction in the arginine-to-ADMA ratio was observed in the CKD
group, which was a trend that was counteracted by citrulline treatment (Table 1).
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Figure 1. (A) Offspring body weight, (B) ratio of kidney weight-to-body weight, and (C) plasma 
creatinine concentration at 12 weeks of age. (D) Systolic blood pressure in offspring from 3 to 12 
weeks of age with a sample size of n = 8 per group. * p < 0.05 vs. N; # p < 0.05 vs. CKD. 
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lustrated in Figure 2. Maternal rats with CKD led to a decrease in renal protein levels of 
eNOS and nNOS, which is an effect that was prevented by maternal citrulline treatment 
(Figure 2B,C). Figure 2D,E show that the renal expression of ADMA-metabolizing en-
zymes DDAH-1 and -2 was comparable across the four experimental groups. 

Figure 1. (A) Offspring body weight, (B) ratio of kidney weight-to-body weight, and (C) plasma
creatinine concentration at 12 weeks of age. (D) Systolic blood pressure in offspring from 3 to 12 weeks
of age with a sample size of n = 8 per group. * p < 0.05 vs. N; # p < 0.05 vs. CKD.

Table 1. NO parameters in the plasma of 12-week-old offspring.

Groups N CKD NC CKDC

Citrulline, µM 65.6 ± 3.1 63.4 ± 1.9 74.1 ± 3 # 63.3 ± 1.8 †
Arginine, µM 173.6 ± 15.3 154.3 ± 3.5 191.7 ± 7.6 # 172.4 ± 3.7 #†
ADMA, µM 2.04 ± 0.09 2.65 ± 0.09 * 1.81 ± 0.19 # 2.07 ± 0.04 #†
SDMA, µM 1.5 ± 0.08 2.16 ± 0.12 * 1.7 ± 0.16 # 1.91 ± 0.09

Ratio of
arginine-to-ADMA 84.6 ± 5.3 57.7 ± 3.2 * 111.1 ± 7.5 *# 83.6 ± 2.9 #†

N = 8/group. * p < 0.05 vs. N; # p < 0.05 vs. CKD; † p < 0.05 vs. NC.

We next analyzed protein levels of dimethylarginine dimethylaminohydrolase-1 and
-2 (DDAH1 and DDAH2; ADMA-metabolizing enzymes), endothelial NOS (eNOS), and
neuronal NOS (nNOS) by Western blot. Their expression in the offspring’s kidneys is
illustrated in Figure 2. Maternal rats with CKD led to a decrease in renal protein levels of
eNOS and nNOS, which is an effect that was prevented by maternal citrulline treatment
(Figure 2B,C). Figure 2D,E show that the renal expression of ADMA-metabolizing enzymes
DDAH-1 and -2 was comparable across the four experimental groups.

The findings suggest that maternal CKD hinders the NO pathway by reducing eNOS
and nNOS protein levels, the ratio of arginine to ADMA, and by elevating ADMA and
SDMA concentrations. Maternal citrulline supplementation appears to counteract these
effects, restoring NO availability by increasing arginine, the ratio of arginine to ADMA,
eNOS, and nNOS, and decreasing ADMA.
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Figure 2. The results of Western blot analyses for (A) endothelial nitric oxide synthase (eNOS),
neuronal NOS (nNOS), dimethylarginine dimethylaminohydrolase-1 (DDAH1), and -2 (DDAH2)
in the offspring’s kidneys, with Ponceau S staining employed as a loading control. The relative
abundance of (B) eNOS, (C) nNOS, (D) DDAH1, and (E) DDAH2 was quantified and presented.
* p < 0.05 vs. N; # p < 0.05 vs. CKD.

2.3. RAS

Quantitative real-time polymerase chain reaction (qPCR) was employed to analyze
various components of the RAS system. The components assessed included (pro)renin
receptor (PRR), renin, angiotensin-converting enzyme (ACE), angiotensinogen (AGT), and
angiotensin II type 1 receptor (AT1R). Renal mRNA content of renin, PRR, AGT, ACE, and
AT1R did not differ between the N and CKD groups (Figure 3). Among the four groups,
CKDC rats exhibited the lowest renal expression of PRR.
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2.4. Gut Microbiota Composition

Alpha diversity, representing the species richness and evenness within each sample,
was assessed using Pielou’s evenness and the Shannon index. Both alpha-diversity indices
exhibited no notable differences among the four groups (Figure 4A,B).
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rats exhibited a noteworthy rise in the abundance of genera Turicibacter, Alistipes, and Ne-
glectibacter. Citrulline treatment led to an increased level of genera Murimonas, Faecalimo-
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Figure 4. (A) Pielou’s evenness and (B) Shannon index, illustrating alpha diversity across the four
groups. (C) The Partial Least Squares Discriminant Analysis (PLS-DA) plots depict the clustering of
fecal microbiota from the four groups. Each dot represents an individual’s microbiota, with color
indicating the respective group.

The Partial Least Squares Discriminant Analysis (PLS-DA) revealed distinct clustering
of gut samples in the N group compared to the other groups. This indicated differences in
gut microbiota between the N group and CKD group (p = 0.001 by ANOSIM), between the
N group and NC group (p = 0.02 by ANOSIM), and between the N group and CKDC group
(p = 0.016 by ANOSIM) (Figure 4C). However, when comparing the CKD group with the
CKDC group, the observed differences did not reach statistical significance (p = 0.069 by
ANOSIM).

To further assess the distinctions in gut microflora among the four groups, linear
discriminant analysis effect size (LEfSe) analysis was conducted (Figure 5). CKD offspring
rats exhibited a noteworthy rise in the abundance of genera Turicibacter, Alistipes, and Ne-
glectibacter. Citrulline treatment led to an increased level of genera Murimonas, Faecalimonas,
Sinanaerobacter, and Breznakia in the NC group. Additionally, Figure 5 highlighted that the
genus Peptococcus was overrepresented in the CKDC group. Among these, certain taxa
were found to be correlated with hypertension, including Turicibacter, Alistipes, Faecalimonas,
and Peptococcus [14,15].
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Figure 5. Linear discriminant analysis effect size (LEfSe) illustration. Different colors denote groups of
microbes that have significant effects in different groups with linear discriminant analysis (LDA) > 3.
* indicates taxa that are linked to hypertension.

To test further whether certain microorganisms are involved in the protective role of
citrulline against maternal CKD-primed offspring hypertension, we examined different
compositions and abundance between the CKD group and CKDC group. At the genus
level, compared with the CKD group, the proportions of Monoglobus and Streptococcus were
lower in the CKDC group (Figure 6A,B). Species-based comparison showed the abundance
of Agothobacterium Butyriciproducens was amplified by maternal citrulline supplementation
in the CKDC rats in comparison to the CKD rats (Figure 6C).
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3. Discussion

Early-life oxidative stress serves as a critical mechanism in the developmental pro-
gramming of hypertension, and antioxidant therapy emerges as a potential preventive
strategy [12,13]. Our study presents the first evidence that offspring hypertension induced
by maternal CKD can be prevented through perinatal citrulline supplementation. Key
findings include: (1) maternal CKD induces offspring hypertension, which is a condition
prevented by perinatal citrulline treatment; (2) hypertension in offspring primed by ma-
ternal CKD is linked to an inhibited NO pathway characterized by reduced eNOS and
nNOS protein levels, a diminished ratio of arginine to ADMA, and increased ADMA and
SDMA concentrations; (3) maternal citrulline treatment safeguards adult offspring from
hypertension by restoring NO, decreasing renal PRR expression, and influencing gut micro-
biota; (4) the protective action of citrulline aligns with a decreased abundance of the genera
Monoglobus and Streptococcus and an increase in Agathobacterium Butyriciproducens.

Previous research suggests that citrulline, functioning as an antioxidant, modulates
NO and prevents oxidative stress-induced cardiovascular disease [8–10]. Our study ex-
tends the application of citrulline during gestation and lactation to mitigate offspring
hypertension associated with maternal CKD. In alignment with previous studies involving
models of maternal NO deficiency [16] and prenatal dexamethasone exposure [17], our
data suggests that maternal citrulline supplementation enhances NO availability, averting
offspring hypertension.

Our study’s results demonstrate that maternal CKD diminishes eNOS and nNOS
protein levels in offspring kidneys, reduces the ratio of arginine to ADMA, and increases
ADMA and SDMA, thus limiting NO production. Maternal citrulline therapy effectively
reverses the inhibitory effects on NOS protein abundance and restores the balance be-
tween arginine and ADMA to enhance the NO pathway. Considering the dysregulated
ADMA/NO pathway as a mediator of oxidative stress in hypertension [13], the beneficial
action of citrulline may be linked to its ability to improve NO availability.

An activated classic RAS axis is known to increase BP through increased oxidative
stress [18]. While the imbalance between NO and RAS is closely linked to hypertension
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pathophysiology [19], little is known about whether citrulline treatment can modulate the
RAS to control BP. Activating PRR promotes vasoconstriction [20], and maternal citrulline
supplementation reduces PRR, favoring lower BP. Although not statistically significant,
our results suggest that citrulline treatment tends to reduce most classic RAS compo-
nents. Future studies may explore whether citrulline’s protective effect against offspring
hypertension correlates with RAS blockade.

Another potential protective mechanism of citrulline against maternal uremia-
programmed hypertension may be associated with alterations in gut microbiota. The
redox status influences gut health [21], and dietary antioxidants may benefit health by
modulating gut microbiota [22]. Citrulline has been demonstrated to contribute to the
maintenance of both the integrity of the intestinal barrier and the balance of microbiota [23].
However, there are no reports on the impacts of citrulline on gut microbiota in hypertension.

The PLS-DA analysis in our study did not reveal distinct clustering patterns between
the CKD and CKDC groups, suggesting that citrulline supplementation may have a limited
role in shaping offspring’s gut microbiota compared to maternal CKD. Nevertheless, cit-
rulline still contributes to the low relative abundance of Monoglobus and Streptococcus and a
high proportion of Agathobacterium Butyriciproducens in the gut microbiota of the CKDC
group. The genus Monoglobus has been associated with hypertension [24], and Streptococcus
spp., opportunistic pathogenic taxa, are often found in hypertensive gut microbiomes [25].
Our findings indicate that the protective effects of citrulline against hypertension in the
offspring of uremic dams may be associated with its capacity to impact taxa associated with
hypertension. Agathobaculum butyriciproducens, a butyrate-producing probiotic, has shown
beneficial effects on cognitive deficits and Alzheimer’s disease pathologies [26]. Butyrate, a
short-chain fatty acid (SCFA), can regulate BP through the activation of its receptors [27].
Previously, we observed that butyrate supplementation throughout gestation and lactation
prevented offspring hypertension programmed by maternal CKD [28]. Citrulline likely
has the potential to enhance SCFA-producing probiotics and, consequently, reduce BP.
A previous study identified Peptococcus as bacteria depleted in subjects with metabolic
syndrome [29]. Based on our LEfSe analysis, citrulline supplementation, which enhances
Peptococcus abundance, may be attributed to its beneficial action in preventing hypertension.

Several limitations of the present study need acknowledgment. Firstly, we did not
analyze gut microbiota and derived metabolites in offspring rats at different developmental
stages and their dams. Gut microbial alterations in adult offspring rats may be attributed
to postnatal plasticity rather than primary programmed processes responding to early-life
environmental cues. Secondly, while we understand that the mechanisms mentioned may
not entirely cover the antioxidant actions of citrulline against maternal CKD-programmed
hypertension, a comprehensive examination of the complete mechanisms involved would
aid in the development of novel antioxidant preventive therapies. Finally, our data, al-
though useful in demonstrating that citrulline treatment has beneficial effects on male
rat offspring’s BP, is limited to experimentation in this model. The beneficial effects of
citrulline supplementation were associated with the restoration of the NO pathway and
modifications in gut microbiota, yet additional underlying mechanisms remain to be fully
elucidated. While dietary antioxidants present a promising strategy for oxidative-stress-
induced hypertension, conclusive results in humans are still pending [30,31]. Further
investigations are required in other models of programmed hypertension and in humans
before clinical translation.

4. Materials and Methods
4.1. Animals

We procured female Sprague–Dawley (SD) rats aged 6–8 weeks from BioLASCO
Taiwan Co., Ltd. (Taipei, Taiwan) and housed them in our AAALAC-accredited animal
facility. All procedures adhered to the regulations set by the Institutional Animal Care and
Use Committee (IACUC) at our hospital with the permit number 2022091601.
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Figure 7 illustrates the experimental protocol. Eight-week-old female rats (n = 12)
were randomly divided into two groups. The rats were assigned to either a normal diet or a
0.5% adenine diet for a duration of 3 weeks, as previously described [5]. Individual females
were paired overnight with a proven fertile male until the identification of a copulatory
plug. Pregnant rats were then randomized into four groups: rats receiving a normal
diet (N), adenine-treated rats (CKD), control rats receiving citrulline supplementation
(0.1% citrulline in drinking water) throughout gestation and lactation (NC), and CKD rats
receiving citrulline supplementation (CKDC). The citrulline dosage followed a previously
established protocol [16]. Litter sizes at birth were reduced to eight pups. Given the higher
prevalence of hypertension in males compared to females [32], only male offspring from
each litter were selected for subsequent experiments.
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CKD = dams treated with an adenine diet; NC = dams received a normal diet and received citrulline
supplementation; CKDC = adenine-treated dams received citrulline supplementation.

Rat offspring were assigned to four groups (8 animals each): N, CKD, NC, and CKDC.
To acclimate the rats, we utilized the CODA BP system (a tail-cuff method, Kent Scientific
Corporation, Torrington, CT, USA) for BP measurements every four weeks. At 12 weeks
of age, blood draws and sacrifices were performed to assess kidney weights. Kidney
tissues were snap-frozen and stored accordingly. Prior to sacrifice, fecal samples from each
offspring were stored in a −80 ◦C freezer. The creatinine concentrations in rat offspring
blood were determined using high-performance liquid chromatography (HPLC, HP Agilent
1100, Agilent Technologies Inc., Santa Clara, CA, USA).

4.2. NO Parameters

The HPLC method was employed to analyze plasma levels of NO-related parameters.
The measurements were made on an Agilent 1100 HPLC (Agilent Technologies Inc.) by
using O-phthalaldehyde/3-mercaptopropionic acid (OPA/3-MPA) as a derivatization agent
with fluorescence detection. The ratio of arginine to ADMA was calculated, which provides
information on NO availability [33].

4.3. Western Blot

Equal amounts of 200 µg of kidney cortical proteins were loaded per lane onto a
polyacrylamide gel and subjected to electrophoresis. Following separation, the proteins
were transferred onto nitrocellulose membranes. Membranes underwent treatment with a
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0.1% Ponceau S solution (Sigma-Aldrich, St. Louis, MO, USA) for 10 min on a shaker, which
was followed by rinsing with distilled water to eliminate background staining. Ponceau S
staining served for total protein normalization.

The transferred proteins were then probed using specific antibodies, including a mouse
eNOS antibody (1:250; BD610297BD, Biosciences, San Jose, CA, USA), a mouse nNOS
antibody (1:200; SC-5302, Santa Cruz, CA, USA), a mouse DDAH1 antibody (1:500; SC-
271337, Santa Cruz), or a rabbit DDAH2 antibody (1:2000; Ab184166, Abcam, Cambridge,
UK). Subsequent to washing, the blots were incubated with the corresponding secondary
antibody conjugated to horseradish peroxidase. Immunopositive bands were scanned
using an imaging densitometer (Quantity One, Bio-Rad, Hercules, CA, USA) to quantify
integrated optical density (IOD). Protein abundance was expressed as IOD normalized
by Ponceau S stain (PonS, representing the total protein loaded). Complete blots and
corresponding images of Ponceau S staining can be found in Supplementary Material.

4.4. Analysis of RAS Components Using qPCR

Total RNA was isolated from renal cortical tissues for qPCR analysis on a thermal
cycler (iCycler, Bio-Rad, Hercules, CA, USA) in duplicate. The internal control utilized
in this study was the 18S ribosomal RNA (R18S). PCR primers for both RAS components
and R18S are detailed in Table 2. Relative quantification was determined through the
comparative 2−∆∆CT method.

Table 2. Primers for qPCR.

Gene Accession No Sense Antisense

AGT XM_032887807.1 5 gcccaggtcgcgatgat 3 5 tgtacaagatgctgagtgaggcaa 3
Renin J02941.1 5 aacattaccagggcaactttcact 3 5 acccccttcatggtgatctg 3
ACE U03734.1 5 caccggcaaggtctgctt 3 5 cttggcatagtttcgtgaggaa 3
PRR AB188298.1 5 gaggcagtgaccctcaacat 3 5 ccctcctcacacaacaaggt 3

AT1R NM_030985.4 5 gctgggcaacgagtttgtct 3 5 cagtccttcagctggatcttca 3
R18S X01117 5 gccgcggtaattccagctcca 3 5 cccgcccgctcccaagatc 3

4.5. 16S rRNA Sequencing

Microbial community DNA was extracted from fecal samples and subsequently un-
derwent 16S rRNA sequencing at Biotools Co., Ltd. (New Taipei City, Taiwan) [5]. The
amplification of the V1–V9 region of the 16S rRNA gene with barcoded primers was
prepared for a multiplexed SMRTbell library (PacBio, Menlo Park, CA, USA) and the se-
quencing procedure. To construct a phylogenetic tree, QIIME2 phylogeny fast tree utilized
a set of sequences representing the amplicon sequence variants (ASVs) [34,35]. Alpha diver-
sity analysis, evaluating microbiota richness and evenness within a single sample, utilized
the Shannon index and Pielou’s evenness. Beta diversity analysis relied on ANOSIM and
PLS-DA. Significantly differential taxa were identified using LEfSe analysis with an LDA
score exceeding 3.

4.6. Statistics

The data are expressed as means ± standard error of the mean (SEM). Group distinc-
tions were evaluated utilizing either one-way ANOVA or two-way ANOVA, depending on
the context. Subsequent to the ANOVA, Tukey post hoc analysis was conducted to elucidate
differences between specific groups. A significance level of p < 0.05 was employed to
determine statistical significance. All statistical analyses were carried out using SPSS 17.0
software (SPSS, Inc., Chicago, IL, USA).

5. Conclusions

This study represents one of the initial observations highlighting the potential of
citrulline supplementation during gestation and lactation to prevent offspring hypertension
complicated by maternal uremia. Given the reversible nature of offspring hypertension
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through citrulline, a deeper understanding of its extent and the involved mechanisms could
contribute to the development of optimal antioxidants as preventive therapies, thereby
mitigating the health burden imposed by elevated BP on future generations.
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