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Abstract: Multiple cis-acting elements are present in promoter sequences that play critical regulatory
roles in gene transcription and expression. In this study, we isolated the cotton FDH (Fiddlehead) gene
promoter (pGhFDH) using a real-time reverse transcription-PCR (qRT-PCR) expression analysis and
performed a cis-acting elements prediction analysis. The plant expression vector pGhFDH::GUS was
constructed using the Gateway approach and was used for the genetic transformation of Arabidopsis
and upland cotton plants to obtain transgenic lines. Histochemical staining and a β-glucuronidase
(GUS) activity assay showed that the GUS protein was detected in the roots, stems, leaves, inflores-
cences, and pods of transgenic Arabidopsis thaliana lines. Notably, high GUS activity was observed
in different tissues. In the transgenic lines, high GUS activity was detected in different tissues
such as leaves, stalks, buds, petals, androecium, endosperm, and fibers, where the pGhFDH-driven
GUS expression levels were 3–10-fold higher compared to those under the CaMV 35S promoter at
10–30 days post-anthesis (DPA) during fiber development. The results indicate that pGhFDH can
be used as an endogenous constitutive promoter to drive the expression of target genes in various
cotton tissues to facilitate functional genomic studies and accelerate cotton molecular breeding.

Keywords: Gossypium hirsutum L.; GUS; constitutive promoter

1. Introduction

A promoter is a region of DNA located upstream of the 5’ end of a gene, where RNA
polymerase II and transcription factors bind to drive gene transcription and regulate gene
expression [1]. Plant gene promoters are classified into constitutive, inducible, and tissue-
specific promoters [2]. In plant genetic engineering, constitutive promoters are widely used
due to their simplicity and convenience. They are advantageous and desirable in driving
the stable expression of target genes across different growth and development stages and
tissues and organs in the recipient plants [3].

The most frequently used constitutive promoters are CaMV 35S, isolated from cauliflower
mosaic virus [4], the bacterial nopaline synthase (NOS) promoter [5], and the Actin1 pro-
moter of rice actin [6]. Compared with the heterologous expression of target genes, homol-
ogous or near-origin promoters are more conducive to increasing the expression intensity
of target genes in the genome, resulting in a more stable and reproducible transgene expres-
sion [7–9]. Endogenous promoters are more advantageous than exogenous promoters in
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driving the efficient and stable expression of exogenous genes in salt algae [10]. Moreover,
transgenic plants with the pKNOX1 endogenous promoter had approximately 2.2-fold
higher survival rates at the T3 stage than the p35S promoter [11]. Endogenous promoter
and codon optimization resulted in a 6-fold increase in protein expression in moss [12]. The
lettuce LsU6-10 promoter could drive the single guide RNA (sgRNA) of a CRISPR/Cas9
system more efficiently than the AtU6-26 promoter, improving gene editing efficiency with-
out any deleterious effects on lettuce plant growth [13]. Therefore, it is crucial to isolate,
characterize, and further employ endogenous plant constitutive promoters in transgenic
plant research.

Cotton is a globally grown and economically important fiber crop. Cotton fiber is
among the main natural resources used by the textile industry, and its fiber quality directly
affects the quality of cotton-based textiles [14]. Cotton fibers are unicellular protrusions
from the epidermal layer of the ovule. Their differentiation and development can be divided
into four stages: initiation, elongation, secondary cell wall thickening, and dehydration
and maturation [15]. Cotton fiber formation is a complex process involving the functions
and interactions of multiple genes at different stages. Cell-wall-associated transcription
factors, as well as expansin, cellulose synthase, sucrose synthase, and actin genes, have
been successfully transformed into cotton, resulting in increased production and improved
strength and quality of fiber [16–20]. In addition to genes, the roles of promoters in
translational research should not be overlooked. The GhEXPA2 promoter, isolated from
Sea Island Cotton 3-79, could drive a strong and tissue-specific GUS gene expression in the
fibers during their development, but not in roots, stems, or leaves [21]. The cotton GhPDF1
gene is highly expressed during fiber initiation and elongation, with the highest transcript
levels observed in fibers at 5 days post-anthesis (DPA) [22]. The GhSCFP gene was isolated
from a cotton fiber cDNA library, and its promoter transformation with the GUS reporter
gene resulted in strong GUS activity in the fibers of transgenic cotton, while no GUS signal
was detected in other tissues [23]. Based on a transcriptomics data analysis, the GhACO1
promoter has strong activity and results in high GhACO1 gene expression during fiber
elongation in upland cotton [24]. The GhROP6 promoter has very strong activity in cotton
fiber, and pGhROP6 could regulate gene expression in fiber and ovule epidermis [25].
Molecular breeding approaches are faster and more efficient in improving cotton fiber
quality than traditional breeding. However, only a few cotton endogenous constitutive
promoters that could stably and efficiently express downstream target genes have been
obtained so far, limiting the efficacy and practical applications of cotton genetic engineering.
The use of the exogenous 35S viral promoter has aggravated consumers’ doubts about
the safety of genetic modification. Therefore, the investigation and characterization of
endogenous constitutive promoters in cotton are important for its genetic improvement
and downstream applications.

GhFDH encodes a protein involved in the synthesis of long-chain lipids found in
the cuticle. It is a member of the 3-ketoacyl-CoA synthetase (KCS) family, which in-
cludes key rate-limiting enzymes in the biosynthetic pathways of very-long-chain fatty
acids (VLCFA). Numerous studies have demonstrated that VLCFAs promote cotton fiber
elongation [26–29]. The cotton FDH gene is expressed in developing fibers and repressed
in hairless mutants, suggesting that it is involved in cotton fiber development [30]. In this
study, the GhFDH gene promoter was isolated and functionally characterized, revealing
that pGhFDH exhibited strong constitutive expression activity. High GUS activity was
observed in the roots, stalks, leaves, inflorescences, and pods in the pGhFDH::GUS and
CaMV 35S::GUS transgenic Arabidopsis plants. Moreover, transgenic cotton plants express-
ing GUS driven by pGhFDH demonstrated high GUS activity levels in their leaves, stalks,
buds, petals, androecium, and endosperm, with enhanced activity, especially during fiber
development (10–30 DPA). These findings clearly demonstrate that pGhFDH is a promoter
that can drive a strong constitutive expression of downstream genes. Such properties
offer valuable application prospects in transgenic cotton breeding and the expression and
functional characterization of genes from wild cotton relatives.
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2. Results
2.1. Expression Patterns of GhFDH in Upland Cotton

Based on previously published RNA-seq data [31], a cotton fiber tissue-specific ex-
pressed gene GhFDH was identified and selected, and its expression profiles in cotton fibers
at different developmental periods were examined by qRT-PCR.

The peak expression of the GhFDH gene in fiber cells occurred at 5 DPA and 10 DPA,
followed by a rapid decrease after 15 DPA (Figure 1). These observations suggested that
GhFDH is involved in cotton fiber development, and it is highly expressed, especially during
the early stages of fiber development. The GhFDH expression levels varied significantly
during the different development stages of cotton fiber, with the highest expression levels
being observed during the rapid fiber elongation stage (5–10 DPA).
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Figure 1. Expression of the GhFDH gene at different time points during cotton fiber development.
Three technical and biological repeats were performed for each time point. The cotton endogenous
gene GhUb7 was used as a reference standard.

2.2. Isolation and Sequence Analysis of the GhFDH Promoter

Specific primers with BP junctions were designed based on the pGhFDH sequence [31].
An 821 bp fragment of the pGhFDH DNA sequence was isolated from the upland cotton
cultivar Jin668. The plant expression vectors pGhFDH::GUS and CaMV 35S::GUS were
constructed using the GATEWAY [32] method (Figure 2A,B).

The cis-acting elements of the isolated GhFDH promoter fragments were identified
and annotated using the online software Plant Care [33] (http://bioinformatics.psb.ugent.
be/Webtools/plantcare/html/ (accessed on 31 January 2024)) and PLACE [34] (https:
//www.dna.affrc.go.jp/PLACE/?action=newplace (accessed on 31 January 2024)), finding
several cis-elements related to enhancing gene expression in the promoter regions of
GhFDH (Figure 2C, Tables S1 and S2). Nine TATA boxes and eight CAAT boxes were found
in these promoter regions, with the closest TATA box being found at −48 from the start
codon of GhFDH.
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Figure 2. Schematic illustrations of the expression vector constructs and the putative cis-acting
elements of the GhFDH promoter. (A): Schematic illustration of the pGhFDH::GUS expression vector;
(B): schematic illustration of the CaMV 35S::GUS expression vector; and (C): the location of putative
cis-acting elements in the GhFDH promoter predicted by the PlantCARE and PLACE database.

2.3. Spatiotemporal Expression Patterns of pGhFDH in Arabidopsis

CaMV 35S::GUS and pGhFDH::GUS were transformed into Arabidopsis thaliana by
inflorescence infiltration [35], and the pGhFDH-driven GUS expression in different tissues
and at different stages of fiber development was observed by histochemical staining of
the transformed plants [36]. GUS expression was detected in the roots, stalks, leaves,
inflorescences, and pods of the transgenic Arabidopsis lines (Figure 3). To assess the pro-
moter activity during plant development, we chose different tissues of two T3-generation
homozygous Arabidopsis lines for the detection of GUS activity. The results revealed that
the pGhFDH::GUS protein had high expression activity in the leaves, stalks, roots, inflo-
rescences, and pods. Notably, the pGhFDH::GUS expression in inflorescences was higher
than that of CaMV 35S::GUS (Figure 4). These results suggested that pGhFDH drives the
constitutive expression of the GUS gene in Arabidopsis. The assay resulted in different
lines further confirming the stable and strong expression driven by the GhFDH promoter
(Figure 4).



Int. J. Mol. Sci. 2024, 25, 1917 5 of 13
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 3. β-glucuronidase (GUS) staining of transgenic Arabidopsis thaliana tissues. (A–D): The seed-
lings, flowers, leaves, and seeds of wild-type Arabidopsis plants; (E–H): the seedlings, flowers, leaves, 
and seeds of CaMV35S::GUS T3-generation transgenic Arabidopsis lines; and (I–L): the seedlings, 
flowers, leaves, and seeds of pGhFDH::GUS T3-generation transgenic Arabidopsis lines. 

 
Figure 4. β-glucuronidase (GUS) activity in different tissues of CaMV 35S::GUS and pGhFDH::GUS 
transgenic Arabidopsis lines. GUS activity was expressed as pmol 4-MU per μg protein. 4-MU, 4-
methylumbelliferone. 

2.4. Spatiotemporal Expression Patterns of pGhFDH in Transgenic Upland Cotton Plants 
To analyze the properties of the pGhFDH promoter driving downstream gene ex-

pression in cotton, we transfected the constructed plant expression vectors pGhFDH::GUS 
and CaMV 35S::GUS into cotton by Agrobacterium [37]. After the PCR verification target-
ing the NPTII, GUS, and promoter sequences (Table S3), different tissues of transgenic 
plants were assessed for localized GUS activity. GUS staining was detected in the 
pGhFDH::GUS and CaMV 35S::GUS cotton leaves, stalks, buds, petals, androgynophore, 
endosperm, and fibers at different developmental stages (Figures 5 and 6). The pGhFDH-
driven GUS was thus expressed across different cotton tissues. 
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2.4. Spatiotemporal Expression Patterns of pGhFDH in Transgenic Upland Cotton Plants

To analyze the properties of the pGhFDH promoter driving downstream gene expres-
sion in cotton, we transfected the constructed plant expression vectors pGhFDH::GUS and
CaMV 35S::GUS into cotton by Agrobacterium [37]. After the PCR verification targeting
the NPTII, GUS, and promoter sequences (Table S3), different tissues of transgenic plants
were assessed for localized GUS activity. GUS staining was detected in the pGhFDH::GUS
and CaMV 35S::GUS cotton leaves, stalks, buds, petals, androgynophore, endosperm, and
fibers at different developmental stages (Figures 5 and 6). The pGhFDH-driven GUS was
thus expressed across different cotton tissues.
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Figure 5. β-glucuronidase (GUS) staining of transgenic cotton plants expressing the CaMV35S::GUS
gene. (A–G): Leaf blades, stem longitudinal sections, stem transverse sections, bud longitudinal
sections, petals, androgynophore, and embryo of the CaMV35S::GUS-expressing cotton plants;
(H–M): 0 days post-anthesis (DPA), 5 DPA, 10 DPA, 20 DPA, 30 DPA, and mature fibers of the
CaMV35S::GUS-expressing cotton plants.

Histochemical analyses were performed on cotton fibers and tissues across different
developmental stages to assess the pGhFDH-driven GUS gene activity in different tissues
of the transgenic cotton plants. The pGhFDH-driven GUS gene was more highly expressed
in all tissues in cotton except for the stalk, bud, and shoot tip, compared to its expression
driven by the constitutive promoter CaMV 35S::GUS, with the highest GUS activity levels
measured in the anthers and the lowest in the buds (Figure 7, Table S4). To clarify the
patterns of downstream expression regulated by pGhFDH in cotton fibers at different
developmental periods, we measured the GUS activity on the day of flowering, 5 DPA,
10 DPA, 20 DPA, 30 DPA, and in mature fibers. The pGhFDH-driven GUS activity was
higher than the CaMV 35S-driven GUS activity at all stages. In particular, the highest GUS
activity was observed at the fiber elongation stage (10 DPA–30 DPA), which was 6–10-fold
higher than that of the CaMV 35S::GUS, followed by a GUS activity decrease at the fiber
maturation stage (Figure 7, Table S4). These results suggest that the pGhFDH promoter is a
constitutive promoter with a strong expression-driving ability across all cotton tissues, and
has a particularly stronger downstream expression activity than the CaMV 35S promoter in
fibers during their development.
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3. Discussion

Cotton is an economically important fiber crop, and cotton fiber, with its large produc-
tion and low cost, is the most versatile natural fiber raw material in the textile industry.
Cotton fiber quality is mainly controlled by genotype, so it is of great significance to isolate
and identify the key genes regulating cotton fiber development. Combined bioinformatics
and functional analyses can be adopted to mine the genes that regulate superior fiber
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quality, which can then be introgressed using transgenic engineering to increase the cotton
yield and improve the fiber quality [16,38]. In this study, GhFDH, a member of the GhKCSs
family, was selected due to its involvement in the regulation of cotton fiber elongation
based on transcriptomic data [39]. KCS is the rate-limiting enzyme that catalyzes the
condensation reaction in the first step of the VLCFA pathway and determines the final
carbon chain length of synthesized VLCFAs [40]. VLCFAs and their derived lipids play
important roles in cotton fiber development [29]. The FDH subfamily gene KCS10/FDH
is mainly expressed in flowers and young leaves and is involved in VLCFA biosynthesis
in epidermal cells [41]. KCS7, KCS15, and KCS19 are characterized by variable expression
levels in Arabidopsis flowers [42]. We examined the GhFDH gene expression levels in cotton
fibers at different developmental periods using qRT-PCR, which revealed high expression
levels during the 5–10 DPA period. Thus, GhFDH is a gene that is highly expressed and
active during fiber elongation.

Plant gene expression regulation mainly occurs at the transcriptional level and is regu-
lated by various cis- and trans-acting elements. Promoters are important factors controlling
the regulation of gene expression. Plant promoters contain many cis-acting elements that
act in coordination with transcription factors to regulate downstream gene expression [2].
Therefore, the comprehensive characterization of the structure and function of plant pro-
moters is conducive to elucidating the regulatory mechanism of gene transcription. It
also provides a practical basis for applying genetic engineering approaches to alter the
expressions of endogenous or foreign target genes based on the predictive analysis for
cis-acting elements present in the 821 bp pGhFDH sequence. The CAAT-box is a common
cis-acting element in promoter and enhancer regions that typically exhibits a putative effect
in enhancing gene expression. In addition, fifteen DOFCOREZM motifs could be found by
PLACE. DOFCOREZM is one of the binding sites of Dof proteins [43,44], and Dof1 and
Dof2 have been found to regulate the expression of multiple genes involved in carbon
metabolism in maize, such as Dof1 being able to bind to the promoter of both cytosolic
orthophosphate kinase (CyPPDK) and a non-photosynthetic PEPC gene to enhance their
expression [45]. It has been confirmed that the Dof factor binding sites in subdomain B4 of
the CaMV35S promoter are important and contribute to its promoter activity [46]. Although
the above cis-elements are only bioinformatically predicted ones, some of them may be
truly functional and they may serve as a bases for further experimental characterization
and validation [47].

Gene promoters can be classified into three categories based on their spatiotemporal
activity: constitutive, tissue-specific, and inducible promoters. In most transgenic plants,
constitutive promoters are used to drive the expression of exogenous genes because they
are not affected by spatial and temporal constraints and have the advantages of a high
efficiency and stability [48]. As a typical constitutive promoter, CaMV35S has been widely
used in transgenic crop breeding. CaMV-35S resulted in increased GUS activity in trans-
genic tobacco [49] and a high expression of downstream genes in transgenic strawberry
pollen [50]. Due to its high activity in most tissues throughout the developmental stages of
plants, CaMV35S can constitutively induce a high expression of downstream genes, and
it is easy to implement by cloning [4,51]. However, certain drawbacks tend to lead to an
immune response in host cells in some cases, which can trigger the phenomenon of gene
silencing. The PcUbi promoter exhibited higher activity in all tissues of chrysanthemum
compared to CaMV 35S [52]. An endogenous constitutive promoter, pOsCon1, identified in
rice, was more active than the 35S promoter in the roots, seeds, and callus, and its activity
was not affected by the developmental stage or environmental factors [53]. The rice en-
dogenous Ubi promoter resulted in a higher GUS gene expression than the commonly used
maize Ubi promoter [54]. Therefore, the availability of endogenous constitutive promoters
in different plant species could be crucial to the success of genetic transformation and
transgene expression. We fused the target promoter to a GUS reporter gene and determined
its expression via GUS activity quantification, with the CaMV 35S::GUS construct as the
control. Different tissues and organs (leaves, stalk, buds, petals, anthers, and shoot tips)
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at six developmental periods (0, 5, 10, 20, 30 DPA, and maturity) were assessed for a com-
prehensive comparison of the CaMV 35S::GUS and pGhFDH::GUS promoters’ expression
activities. Based on the results, pGhFDH drove the constitutive expression of the GUS
gene in various Arabidopsis tissues (leaves, stems, roots, inflorescence, and pods). A higher
expression was observed in the inflorescence under the pGhFDH promoter compared to
CaMV 35S. In transgenic cotton, pGhFDH and CaMV 35S resulted in high GUS activity
being detected in different tissues at different fiber periods, with pGhFDH resulting in
higher GUS activity in all tissues except the stalk, buds, and shoot tips. This indicates that
the pGhFDH-driven GUS gene was highly expressed in a stable manner in different tissues
at different stages in transgenic Arabidopsis thaliana and cotton plants. In this study, the
highest expression of the GhFDH gene was at 5–10 DPA, but the highest expression of GUS
in transgenic material was at 10–20 DPA, and there was some difference between the expres-
sions of GhFDH and GUS. This might have been due to the fact that the highest expression
was at 5–20 DPA during the elongation period of fiber development, and, as an exogenous
gene, the expression activity of the GUS gene might have differed at this stage. In addition,
this promoter functions mainly in constitutive expression, indicating its potential as a new
endogenous constitutive promoter in cotton. Notably, it has been demonstrated that the
same constitutive promoter repeatedly driving the expression of multiple exogenous genes
may cause gene silencing or the co-repression phenomenon. In this study, we found that
the pGhFDH promoter could be a novel option for constructing multi-gene expression
vectors, valuable for the application of molecular breeding approaches in improving cotton
yield and quality.

4. Materials and Methods
4.1. Plant Materials

Gossypium hirsutum Jin668 and Arabidopsis thaliana Col-0 were kindly donated by the
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University.

4.2. GhFDH Expression Analysis at Different Periods of Cotton Fiber Development

The gene sequence of GhFDH (Gh_A13G1665) was retrieved using the Cotton Genome
Database (https://yanglab.hzau.edu.cn/CottonMD (accessed on 31 January 2024)). Specific
primers were designed according to the gene sequence; the primer sequences are listed in
Table S3.

Tissues from the cotton Jin668 genotype were sampled at the flowering 0 DPA, 5 DPA,
10 DPA, 15 DPA, 20 DPA, and 25 DPA periods. The total RNA was extracted from the
samples using the TRIzol reagent (Tiangen, Beijing, China). The nucleic acid concentration
was measured using an ultra-micro spectrophotometer (ThermoFisher™ NanoDrop One,
Waltham, MA, USA). RNA was reverse transcribed into cDNA using a reverse transcription
kit (Tiangen, Beijing, China), and qRT-PCR reactions were performed on a real-time PCR in-
strument (ABIStepOne™, Foster City, CA, USA). Data were normalized using GhUbiquitin7
as the endogenous control, and the experiment was conducted in three replicates.

4.3. pGhFDH::GUS and CaMV 35S::GUS Expression Vector Construction

Primer-BLAST was used to design primers specific to the GhFDH promoter (Table S2).
Cotton leaf genomic DNA was extracted from the cotton cultivar Jin668 using the polysac-
charide polyphenol plant genomic DNA extraction kit (DP360) and was used as a template
to amplify the fragment of pGhFDH. The plant expression vectors pGhFDH::GUS and
CaMV 35S::GUS were constructed using the Gateway cloning technique [32]. The correctly
sequenced target fragments of pGhFDH and CaMV 35S were ligated into the pDONORzeo
intermediate vector by a BP reaction for transformation. The recombinant plasmids carry-
ing the target fragments were assessed and selected by sequencing. Then, the sequenced
target fragments were excised and ligated into the plant expression vector pGWB433 by an
LR reaction. Finally, the constructed plant expression vectors pGhFDH::GUS and CaMV
35S::GUS were transformed into Agrobacterium tumefaciens strain GV3101.

https://yanglab.hzau.edu.cn/CottonMD
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4.4. Genetic Transformation of Arabidopsis thaliana Plants

Arabidopsis thaliana was transformed by the Agrobacterium-mediated floral-dip trans-
formation method [33]. Wild-type Arabidopsis thaliana (Col-0) seeds were planted in an
illuminated culture chamber (22 ◦C, 14 h light/10 h dark, 50 µmol/m2·s photon flux
density of photosynthetically active radiation light intensity) and transformed with both
pGhFDH::GUS and CaMV 35S::GUS expression vectors. Arabidopsis inflorescences were
inoculated by resuspending the activated Agrobacterium GV3101 carrying the target vector
with infiltration buffer (5% sucrose, 0.01% Silwet L-77). After inoculation, the plants were
left in dark, moist conditions for one day. The inoculation of the nascent inflorescences was
repeated once a week later to increase the number of transformants, and the seeds were
collected when they became ripe. The collected T0 generation seeds were sterilized, placed
on 1/2 MS medium containing kanamycin (Kan), and cultured in an illuminated culture
room. After two weeks, green plants, resistant to Kan, were selected and transplanted
into culture soil (containing vermiculite: nutrient soil: flower soil = 1:1:2). Following this
process, T3 generation plants were generated and used for GUS staining and detection.

4.5. Genetic Transformation of Cotton

Agrobacterium-mediated genetic transformation of hypocotyls [35] was used to trans-
form the upland cotton genotype Jin668. The seed coat of the cotton seeds was peeled
off. The seeds were then sterilized with a 10% NaClO solution for 15 min and subse-
quently rinsed with sterile water until there was no foam. Then, the sterilized seeds were
germinated in a culture medium. After one week, the hypocotyls were cut and used
as explant material. Agrobacterium containing the recombinant plasmid was centrifuged
and resuspended in the Mannitol Glutamate Luria (MGL) solution. Acetosyringone was
added at a ratio of 4000:3, shaken at 180 rpm at 28 ◦C for 20 min, and then removed for
explant infection. The hypocotyls were impregnated for 10 min and then transferred to a
co-culture medium and incubated at 24 ◦C for 3 days in the dark. Then, the hypocotyls
were transferred to a Murashige and Skoog Provitamin B5 (MSB) screening medium, which
was replaced every 20 days. The formed embryonic calluses were then transferred to a
somatic embryo maturation medium for incubation. After the mature somatic embryos
were grown, the seedlings were transferred to a seedling growth medium and then to the
greenhouse for cultivation when the seedlings reached 3~4 cm in height. They were grown
in sterile pots (containing vermiculite:nutrient soil:flower soil = 1:1:2) in a plant culture
room at a 25 ◦C/21 ◦C day/night temperature under a 75 µmol/m2·s photon flux density
of photosynthetically active radiation, a relative humidity of 60–75%, and a 16 h day/8 h
dark photoperiod, with regular watering. T3 generation plant tissues were collected and
used for GUS staining.

4.6. Determination of GUS Activity and Histochemical Staining

Different tissues and fibers from different periods of transgenic plants were placed
into the GUS staining solution for overnight staining at 37 ◦C and stored in formaldehyde-
alcohol-acetic acid (FAA) fixative. After decolorization in 70% alcohol, the GUS gene
expression was observed under an optical microscope Leika MZFLIII (Hesse, Germany),
and pictures were taken and stored. Each experiment consisted of at least 50 Arabidopsis
plants and 10 cotton plants in three replicates.

The method reported by Jefferson [34] was used to quantify the GUS activity. The GUS
enzyme activity was measured immediately in a 1 mL centrifuge tube by adding 400 µL of
GUS protein extraction buffer, 100 µg of GUS protein, and 10 µL of 40 mmol L−1 4-MUG.
The reaction was terminated by adding 1.6 mL of reaction termination buffer at 37 ◦C for
1 h. The GUS enzyme activity was measured immediately in a 1 mL centrifuge tube. The
sample absorbance was determined at 365 nm excitation light and 455 nm emission light
with 50 nmol L−1 4-MU as the standard. At least three biological replicates were performed
for each sample. The GUS activity was expressed as pmol 4-MU µg−1 min−1.
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5. Conclusions

The pGhFDH promoter is a constitutive promoter with a strong capacity to drive
downstream gene expression in all tissues in cotton. Notably, it exhibited higher activity
in cotton fibers compared to the CaMV 35S promoter during their development. Our
results suggest that pGhFDH has great potential to be implemented in crop molecular
breeding for constitutive gene expression and to avoid gene silencing caused by the use of
exogenous promoters.
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