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Abstract: α-Hydroxy ketones are a class of vital organic skeletons that generally exist in a variety
of natural products and high-value chemicals. However, the traditional synthetic route for their
production involves toxic Hg salts and corrosive H2SO4 as catalysts, resulting in harsh conditions
and the undesired side reaction of Meyer–Schuster rearrangement. In this study, CO2-promoted
hydration of propargylic alcohols was achieved for the synthesis of various α-hydroxy ketones.
Notably, this process was catalyzed using an environmentally friendly and cost-effective biomass-
based ionic liquids/CuCl system, which effectively eliminated the side reaction. The ionic liquids
utilized in this system are derived from natural biomass materials, which exhibited recyclability
and catalytic activity under 1 bar of CO2 pressure without volatile organic solvents or additives.
Evaluation of the green metrics revealed the superiority of this CuCl/ionic liquid system in terms of
environmental sustainability. Further mechanistic investigation attributed the excellent performance
to the ionic liquid component, which exhibited multifunctionality in activating substrates, CO2 and
the Cu component.

Keywords: ionic liquid; CO2; biomass; catalysis; α-hydroxy ketones

1. Introduction

Nowadays, the excessive emission of CO2 has led to a range of environmental and
social problems such as global warming, glaciers melting and sea levels rising [1–4]. As a
result, the effective and efficient management of CO2 has become an urgent concern for
scientists and engineers. From the perspective of synthetic chemistry, CO2 is regarded as
an ideal substitute for traditional phosgene and carbon monoxide [5–8] due to its wide
availability, low cost, easy accessibility, non-toxicity and environmental friendliness [9].
This has prompted the exploration of CO2 for the production of fine chemicals, as it
holds the potential to not only create economic value but also mitigate the greenhouse
effect [10]. However, due to the thermodynamic stability and kinetic inertness of CO2, its
effective activation still remains a significant challenge. Consequently, the exploration of
effective catalysts for CO2 activation and the designation of feasible reaction routes for
CO2 conversion have accordingly emerged as critical focal points in the pursuit of CO2
utilization.

In recent years, considerable progress has been achieved in this area [11–19], including
effective routes for utilizing CO2 in the production of methyl urea, urea, salicylic acid,
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organic carbonate, methanol, polycarbonate, etc. Among them, α-hydroxy ketones are
crucial organic skeletons that generally exist in a variety of natural products and are
frequently used as synthetic precursors for high-value chemicals [20,21]. The hydration
of propargyl alcohols was an ideal method for the production of α-hydroxy ketones due
to its 100% atom economy and the accessibility of diverse starting materials. However,
the direct hydration of propargyl alcohols typically required catalysts involving strong
acids like H2SO4 [22,23] and rare, toxic metal salts such as Au [24–34], Ag [35–40] and
Ru [41], which resulted in harsh conditions and the undesired side reaction of the Meyer–
Schuster rearrangement [42]. Based on this, the indirect hydration of propargyl alcohols has
emerged, in which the cyclization of CO2 and propargyl alcohols firstly occurred to obtain
the α-alkylidene cyclic carbonates, followed by an in situ hydration of these carbonates to
give the desired α-hydroxy ketones [43]. This CO2-promoted indirect hydration generally
proceeded under basic conditions, thus eliminating the Meyer–Schuster rearrangement in
essence. Moreover, the reaction conditions were relatively milder than those for the direct
process and thus have attracted great attention from researchers and engineers.

Over the past decade, numerous catalysts have been investigated for this CO2-promoted
indirect hydration. In 2014, Jiang et al. introduced a AgOAc/1,8-diazabicyclo [5.4.0]undec-
7-ene (DBU) system, which successfully catalyzed this CO2-promoted hydration of internal
and terminal propargyl alcohols, yielding the target products in high yield [44]. How-
ever, this system necessitated a high loading of Ag salts, traditional volatile solvents and
strong bases. Moreover, its working pressure reached 20 bar of CO2. In 2015, Liu et al.
presented a range of task-specific ionic liquids (ILs) for this hydration, operating effectively
under 1 to 10 bar of pressure and offering a recycling and reusing ability [45]. In 2019,
He et al. developed a Cu2O/DBU catalytic system composed of Cu2O (20 mol%), DBU
(50 mol%) and phosphine ligands (20 mol%), which efficiently converted various types
of terminal propargyl alcohols into the corresponding target products in CH3CN under
1 bar of CO2 [46]. In 2020, Yuan et al. developed a AgOAc/ILs system for this reaction,
which operated under atmospheric CO2 pressure and solvent-free conditions to produce
α-hydroxy ketones [47]. Furthermore, they established a Zn-based catalytic system that
exhibited excellent catalytic activity for the target reaction under simulated flue gases, with
the Zn species generated from pigment wastes [48]. More recently, two heterogeneous cata-
lysts, namely a silver-anchored porous aromatic framework catalyst (Ag@PAF-DAB) and
an amino-functionalized organic polymer Cu@Co-PIL-N4 loaded with highly dispersed
CuI, have also been reported [49,50].

In the context of the aforementioned work, IL-involved systems have emerged as
pivotal roles. ILs are composed of anions and cations with melting points below 100 ◦C,
which have been widely applied in CO2 capture and catalytic conversion due to their
advantages of designability, stability and catalytic activity [51]. However, the utilization of
ILs for the CO2-promoted hydration of propargyl alcohols remains relatively uncommon
and costly to date. Furthermore, some IL catalysts still required elevated CO2 pressure to
reach high activity, which largely limited their further applications.

Biomass compounds are natural organic substances such as cellulose, wood chips and
fructose. Nowadays, these materials have been utilized in numerous emerging areas due
to their greenness, abundance, renewability, etc. [52,53]. These compounds can be further
disassembled into biomass-based platform compounds [54,55], such as the 12 biomass
molecules of succinic acid, 2,5-furan dicarboxylic acid, 3-hydroxypropionic acid, itaconic
acid and levulinic acid, proposed by the US Department of Energy [56]. These derived
compounds typically contain carboxylic or hydroxyl groups, indicating their great potential
for ionization and application as the anions of ILs. Importantly, ILs containing carboxylic or
hydroxyl ions have been proven to exhibit significant interaction with CO2 molecules [57].
As a result, the biomass-based ILs have the potential to demonstrate catalytic activity for
CO2 capture and activation. In addition, these ILs are derived from biomass, which indi-
cates their economical, renewable and eco-friendly nature, aligning with the requirements
of modern green and sustainable development.
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Herein, a series of biomass-based ILs were designed and synthesized, which were fur-
ther combined with the economical CuCl for the catalysis of the CO2-promoted hydration
reaction of propargyl alcohols. Particularly, this catalytic system worked under 0.1 MPa of
CO2 with a low metal loading of CuCl (1 mol%) without any traditional organic solvents or
ligands. Further evaluation of the green metrics revealed the superiority of this CuCl/IL
system in terms of environmental sustainability.

2. Results

In this section, the catalytic performance of various biomass-based ILs for the CO2-
promoted reaction was investigated, with the employment of 2-methyl-3-butyn-2-ol (1a) as
the initial substrate (Table 1). The screening of ILs commenced with the blank experiments,
demonstrating that the reaction could not proceed without catalysts (entry 1). Subsequently,
it was observed that neither the metal salts nor the ILs alone could catalyze the target
reaction (entries 2, 3). Notably, the absence of CO2 hindered the target reaction, indicating
the crucial role of CO2 (entry 4). After the blank experiments, the investigation of the
catalytic activity of different ILs was performed with the metal salt component fixed as
CuCl. The screening was initially focused on the optimization of various anions (Figure 1),
derived from levulinic acid (Lev), lactic acid (La), itaconic acid (ITa) and succinic acid (Sa).
Experimental results revealed that [Lev] obtained the highest yield (entries 5–8), which was
consequently identified as the optimal anion. Subsequently, the effects of cations (Figure 1)
on the activity of ILs were explored, with the catalytic performance order revealed as
[C2C1im] > [N4444] > [P4444] > [C4C1im] > [DBUH] > [DBNH] (entries 5, 9–13). The slight
difference between [C2C1im] and [C4C1im] cations in catalytic activity can be attributed to
the physical properties of the corresponding ILs. Generally, [C4C1im][Lev] exhibited higher
viscosity than [C2C1im][Lev], resulting in a thicker reaction system that was more difficult
to blend and stir. Consequently, the best choice of ILs was identified as [C2C1im][Lev]. With
the optimal IL in hand, the metal salts in the catalytic system were further explored, which
was mainly focused on economical Cu salts due to their inherent affinity to triple bonds,
such as CuCl, CuBr, CuI, Cu2O, Cu2S, CuCl2, Cu(OAc)2, and CuSO4 (entries 13–20). It was
found that both Cu (I) and Cu (II) salts exhibited considerable catalytic activity towards the
target reaction, with CuCl achieving the highest yield of 95% (entry 13). Consequently, the
optimal catalytic system was determined as CuCl/[ C2C1im][Lev].

After identifying the optimal catalytic system as CuCl/[C2C1im][Lev], the reaction
conditions were subsequently explored (Table 2). The amount of [C2C1im][Lev] was
gradually increased from 0.5 to 1 equiv., resulting in the highest yield of 95% (entries
1–3). A similar trend was observed for the amount of CuCl, with the yields increasing as
the amount of CuCl rose from 0.25 to 1 mol%. (entries 3–6). Subsequent investigations
focused on the reaction temperature. An increase in reaction temperature from 40 to
80 ◦C significantly improved the catalytic yield from 5% to 95%. However, at a higher
temperature of 100 ◦C, the reaction could not proceed further, leading to the identification
of 80 ◦C as the optimal temperature (entries 3, 7–9). Furthermore, the influence of reaction
time was investigated, and the yield increased gradually as the reaction time extended
(entries 3, 10–12). At a reaction time of 12 h, the yield of the product reached 95% (entry 3).
Since the target reaction proceeded smoothly under 1 bar of CO2, experiments for higher
pressure were not performed. Consequently, the final reaction conditions were determined
as CuCl (1 mol%), [C2C1im][Lev] (1 equiv.), 80 ◦C, CO2 (0.1 MPa) and 12 h.
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Table 1. Screening of catalytic systems a.
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After determining the reaction conditions, the substrate scope of the CuCl/[C2C1im][Lev]
system was explored (Table 3). The experimental results revealed that the majority of tertiary
propargylic alcohols with various substituents effectively produced the corresponding products
(1a–1g). Notably, the steric effects of the substituents significantly influenced the reactivity of
substrates during the formation process of α-hydroxy ketones. Substrates with less sterically
hindered substituted groups such as methyl and ethyl provided high yields of 85–95% within
12 h. However, for the propargylic alcohol 1g containing a bulky phenyl group, the yield was
only 33% under the same conditions, which could be improved via extending the reaction
time. Additionally, attempts were made to react primary and secondary propargylic alcohols
(1h, 1i), but the corresponding products could not be produced. This might be attributed to
the lack of gem-dialkyl effects in these substrates, resulting in the failure of cyclizing CO2 and
propargylic alcohol [58,59]. Subsequently, the recyclability of the CuCl/[C2C1im][Lev] system
was investigated. After being recycled and reused three times, the catalytic system could still
catalyze the target reaction to produce the α-hydroxy ketones with a yield of 90%, demonstrating
its considerable stability and recyclability.

In addition to substrate scope and recyclability, the greenness of the reaction process
is another important aspect of modern sustainable development, which can be quantified
by utilizing the “green metrics”, including atom economy (AE), E-factor, carbon efficiency
(CE), reaction mass efficiency (RME), mass intensity (MI) and mass productivity (MP) [60].
These well-defined and objective metrics provide quantitative standards for the greenness
evaluation (Part 2, supporting information). In this context, the green metrics of the
CuCl/[C2C1im][Lev] system and the calculable systems reported by other researchers were
compared, based on the hydration of 1a (Table 4). Upon evaluating a total of six green
metrics, the CuCl/[C2C1im][Lev] system provided superior values in four aspects (AE,
E-factor, MI, MP). This result indicated that the CuCl/[C2C1im][Lev]-catalyzed hydration
of propargyl alcohols was a relatively greener process.
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These well-defined and objective metrics provide quantitative standards for the greenness 
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CuCl/[C2C1im][Lev] system and the calculable systems reported by other researchers were 
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2019 [46] 
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cyclohexyldiphenylphosph

ine 
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2021 [61] [P4444][2-OP] / 100 4.9 83 83.0 5.9 16.9 

2023 [49] 

Silver-anchored porous 

aromatic framework  

Ag@PAF-DAB 

CH3CN 100 17.7 99 86.3 18.7 5.4 

this 

work 
CuCl/[C2C1im][Lev] / 100 3.0 95 80.8 4.0 24.7 

3. Discussion 

3.1. Identification of Tandem Mechanism 

Based on previous reports [47], the CO2-promoted hydration of propargyl alcohols 

may proceed via a two-step tandem reaction mechanism. Substrates and CO2 may first 

undergo cyclization to form α-alkylidene cyclic carbonates, followed by the in situ 
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3. Discussion
3.1. Identification of Tandem Mechanism

Based on previous reports [47], the CO2-promoted hydration of propargyl alcohols
may proceed via a two-step tandem reaction mechanism. Substrates and CO2 may first
undergo cyclization to form α-alkylidene cyclic carbonates, followed by the in situ hydra-
tion of these carbonates with the release of CO2 during the process. To investigate whether
the CuCl/[C2C1im][Lev]-catalyzed reaction aligns with this proposed mechanism, a series
of control experiments were conducted. Initially, 1a, CO2 and CuCl/[C2C1im][Lev] were
introduced into the system under the optimal reaction conditions, with the omission of H2O.
After 12 h, the reaction was terminated, and the sample was analyzed using 1H NMR. Com-
paring the spectrum of the reaction mixture with that of pure α-alkylidene cyclic carbonate,
the characteristic peaks of α-alkylidene cyclic carbonates appeared on the spectrum of the
reaction mixture (Figure 2a), indicating the generation of these carbonates in this process.
Subsequently, the pure α-alkylidene cyclic carbonates were added with H2O and allowed
to react for 12 h under the catalysis of [C2C1im][Lev]. Upon completion of the reaction,
the sample was analyzed using 1H NMR. The result showed that the desired α-hydroxy
ketones were successfully obtained (Figure 2b). These experiments demonstrated that the
CuCl/[C2C1im][Lev]-catalyzed CO2-promoted hydration of propargyl alcohols followed
the proposed tandem reaction mechanism, and the ILs act as the pivotal catalyst for the
hydration process.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 15 
 

 

hydration of these carbonates with the release of CO2 during the process. To investigate 

whether the CuCl/[C2C1im][Lev]-catalyzed reaction aligns with this proposed mecha-

nism, a series of control experiments were conducted. Initially, 1a, CO2 and 

CuCl/[C2C1im][Lev] were introduced into the system under the optimal reaction condi-

tions, with the omission of H2O. After 12 h, the reaction was terminated, and the sample 

was analyzed using 1H NMR. Comparing the spectrum of the reaction mixture with that 

of pure α-alkylidene cyclic carbonate, the characteristic peaks of α-alkylidene cyclic car-

bonates appeared on the spectrum of the reaction mixture (Figure 2a), indicating the gen-

eration of these carbonates in this process. Subsequently, the pure α-alkylidene cyclic car-

bonates were added with H2O and allowed to react for 12 h under the catalysis of 

[C2C1im][Lev]. Upon completion of the reaction, the sample was analyzed using 1H NMR. 

The result showed that the desired α-hydroxy ketones were successfully obtained (Figure 

2b). These experiments demonstrated that the CuCl/[C2C1im][Lev]-catalyzed CO2-pro-

moted hydration of propargyl alcohols followed the proposed tandem reaction mecha-

nism, and the ILs act as the pivotal catalyst for the hydration process. 

 

Figure 2. Comparison of 1H NMR spectra: (a) pure a-alkylidene carbonates vs. mixture of step 1; (b) 

pure a-hydroxy ketones vs. mixture of step 2. 

  

Figure 2. Comparison of 1H NMR spectra: (a) pure a-alkylidene carbonates vs. mixture of step 1;
(b) pure a-hydroxy ketones vs. mixture of step 2.



Int. J. Mol. Sci. 2024, 25, 1937 8 of 14

3.2. Activation of the Propargylic Alcohols

Upon identifying the tandem mechanism of the target reaction, the first cyclization
step was further studied. In this step, the activation of the hydroxyl group in propargyl
alcohols was quite crucial, which would initiate the whole catalytic process. Therefore, the
investigation focused on identifying the component responsible for this crucial activation.
Typically, this activation could be indicated via the shape and chemical shift of the hydroxyl
signal peak in the 1H NMR spectrum. For pure 1a, the hydroxyl proton exhibited a distinct
characteristic peak at δ = 5.29 ppm (Figure 3a), indicating its inactivated state. However,
upon the addition of DBU, a well-established organic base known for its effective hydroxyl
group activation, the signal transformed into a broad peak with a different chemical shift
(Figure 3b). This represented the activated state of the hydroxyl proton. Subsequently, the
two components of the catalytic system were successively scrutinized. The addition of CuCl
to 1a did not produce any discernible change in the 1H NMR results (Figure 3c), suggesting
that CuCl was not capable of activating 1a. Conversely, the combination of [C2C1im][Lev]
and 1a led to a broad and shifted hydroxyl peak similar to that in the DBU/1a system
(Figure 3d). This result implied that [C2C1im][Lev] played a pivotal role in the activation
of the hydroxyl group in 1a.
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DMSO-d6.

3.3. Generation of NHC-CO2 Adducts

It has been reported that under basic conditions, imidazole compounds might interact
with CO2, resulting in the generation of free N-heterocyclic carbenes (NHCs) that are capa-
ble of CO2 capture and activation via the formation of NHC-CO2 adducts (Scheme 1) [62,63].
In the aforementioned investigations, [C2C1im][Lev] was identified to provide suitable
basic conditions for the activation of the hydroxyl group. Therefore, subsequent exploration
focused on whether this imidazole IL could produce NHC-CO2 adducts. In this study, CO2
was introduced into [C2C1im][Lev], and the mixture was allowed to stir for 12 h. It could
be observed that the solution became turbid gradually. Upon completion, the solution
was analyzed using 13C NMR. In the spectrum, a new signal peak at δ = 154.60 ppm was
observed (Figure 4a), which was consistent with the characteristic peak of CO2 adducts
reported in the literature [63], indicating the successful formation of NHC-CO2 adducts.
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3.4. Interaction between [C2C1im][Lev] and Cu Species

Apart from the function in activating hydroxyl groups and generating NHC-CO2
adducts, the [C2C1im][Lev] component was further identified to improve the catalytic activ-
ity of CuCl via the interaction between [Cu] and carbonyl groups in the [Lev] anions. In this
context, an analogous IL to [C2C1im][Lev] was synthesized, differing only in the absence of
a carbonyl group in its anion structure (Scheme 2, entry 1). Subsequent experiments were
designed to compare the catalytic performance of these two ILs. The results illustrated a
significant decrease in catalytic yields in the absence of carbonyl groups, demonstrating
the indispensable roles of carbonyls in ILs. Further evidence of the interaction between
the carbonyl groups and [Cu] was revealed via the 1H NMR of the CuCl/[C2C1im][Lev]
mixture (Figure 5). At 80 ◦C, significant interactions were observed as the signals of CH2
groups adjacent to the carboxyl groups (dashed part, Figure 5) shifted and broadened. This
contrasts with the sharp triplet peaks observed at 25 ◦C, suggesting that the interaction
at lower temperature was less significant. This observation provides a plausible explana-
tion that the CuCl/[C2C1im][Lev] system exhibited better activity at a relatively higher
temperature.
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3.5. Proposed Mechanism for the Catalytic Process

Based on the aforementioned experiments and discussions [44,57,64–66], the follow-
ing mechanism for the CO2-promoted hydration of propargylic alcohols catalyzed via
the CuCl/[C2C1im][Lev] system was proposed, which could be outlined in two steps
(Scheme 3). Firstly, [Lev] activates the hydroxy group of 1a, thereby enhancing the nucle-
ophilicity of the hydroxy oxygen and facilitating its subsequent attack on the CO2 molecule.
Simultaneously, the Cu species coordinates with the unsaturated triple bond of 1a, leading
to the formation of the transition state (TS). In the next stage, the negative hydroxyl oxygen
atom bonds with the positive carbon center of CO2, incorporating the inert CO2 molecule
into the organic skeletons, resulting in the formation of intermediate I. Subsequently, the
negative oxygen of the CO2 moiety continues to attack the triple bond, activated via the
Cu species, leading to intramolecular cyclization and the formation of intermediate II.
Finally, the proton is transferred back to the organic skeletons, resulting in the generation
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of the key α-alkylidene carbonate (intermediate III). In the second step, H2O initiates a
nucleophilic attack on intermediate III with the catalysis of the basic [Lev]. This leads to the
ring-opening reaction and the generation of intermediate IV. Afterwards, this intermediate
undergoes keto–enol isomerization, subsequently releasing the CO2 molecule and yielding
the final target product 2a.
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4. Materials and Methods

The series of biomass-based ILs used in the experiments were synthesized according
to the reported literature (Part 1, supporting information) [57,67,68]. Unless otherwise
specified, all the propargyl alcohol substrates (98%) and biomass acids (95%) used in the
experiments were purchased from Aladdin (Shanghai, China), TCI (Tokyo, Japan), Sigma-
Aldrich (Shanghai, China), Macklin (Shanghai, China), Alfa (Shanghai, China), etc. and
directly used without further purification and drying. The purity of the CO2 used for
purging and reacting was 99.9%, supplied by Wuhan Xiangyun Industry and Trade Co.,
Ltd., (Wuhan, China).

The 1H NMR spectra were recorded on a Bruker Avance III HD 500 MHz spectrometer,
with the internal standard TMS (δ = 0 ppm) serving as the reference. Meanwhile, the
13C NMR spectra were recorded at 126 MHz in CDCl3 (δ = 77.23 ppm) or DMSO-d6
(δ = 39.50 ppm), with the solvent peaks as the internal references. The data were given as
chemical shifts (ppm) and coupling constants (Hz), respectively.

4.1. The CO2-Promoted Hydration of Propargylic Alcohols

CuCl (0.025 mmol), 1-ethyl-3-methylimidazolium levulinic ([C2C1im][Lev], 2.5 mmol),
propargylic alcohols (2.5 mmol) and H2O (5 mmol) were added into a Schlenk tube. Sub-
sequently, the system was purged three times with CO2 and then stirred at 80 ◦C under
0.1 MPa of CO2 for the required time. When the reaction was completed, the mixture was
extracted with diethyl ether (3 × 15 mL). The upper organic phases were concentrated
under a vacuum to give the crude products, which were further purified via column
chromatography on silica gel using petroleum ether/ethyl acetate (v/v, 100:1–20:1) as the
eluent.

4.2. Procedures for Recycling the Catalytic System

After the reaction was completed, the mixture was extracted three times with diethyl
ether (3 × 15 mL). The lower layer was then dried under a vacuum for 4 h to totally remove
the residual solvents, reactants and products. After drying, the catalytic system could be
reused for the next round.
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5. Conclusions

In summary, a CuCl/[C2C1im][Lev] system was developed for the CO2-promoted
hydration of propargylic alcohols under 1 bar of CO2 pressure without the use of organic
volatile solvents or additives. The system demonstrated high activity, a wide substrate
scope and significant recyclability. Notably, the catalytic process was identified as superior
in terms of green metric evaluation. A comprehensive mechanistic investigation revealed
that the exceptional performance of this system can be attributed to the triple function of
the [C2C1im][Lev] component, which encompasses the activation of substrates, generation
of NHC-CO2 adducts and interaction with the Cu component.
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