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Abstract: Sirtuins (SIRTs) belong to the family of nicotine adenine dinucleotide (NAD+)-dependent
class III histone deacetylases, which come into play in the regulation of epigenetic processes through
the deacetylation of histones and other substrates. The human genome encodes for seven homologs
(SIRT1-7), which are localized into the nucleus, cytoplasm, and mitochondria, with different enzymatic
activities and regulatory mechanisms. Indeed, SIRTs are involved in different physio-pathological
processes responsible for the onset of several human illnesses, such as cardiovascular and neurodegen-
erative diseases, obesity and diabetes, age-related disorders, and cancer. Nowadays, it is well-known
that Citrus fruits, typical of the Mediterranean diet, are an important source of bioactive compounds,
such as polyphenols. Among these, flavonoids are recognized as potential agents endowed with a
wide range of beneficial properties, including antioxidant, anti-inflammatory, hypolipidemic, and
antitumoral ones. On these bases, we offer a comprehensive overview on biological effects exerted
by Citrus flavonoids via targeting SIRTs, which acted as modulator of several signaling pathways.
According to the reported studies, Citrus flavonoids appear to be promising SIRT modulators in
many different pathologies, a role which might be potentially evaluated in future therapies, along
with encouraging the study of those SIRT members which still lack proper evidence on their support.
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1. Introduction

Sirtuins, known as silent information regulator proteins (SIRTs), are nicotine adenine
dinucleotide (NAD+)-dependent class III histone deacetylases, able to regulate epigenetic
processes by removing the acetylated groups from histones and other substrates [1,2].
Indeed, in recent decades, SIRTs emerged for their capability to also target transcription
factors and metabolic enzymes, playing a pivotal role in the regulation of cellular home-
ostasis [3]. The chemical reaction promoted by SIRTs consists initially of the cleavage of the
N-glycosidic bond of NAD+, forming an imidate intermediate, which can either combine
with nicotinamide, regenerating NAD+, or proceed forward until deacetylation. The latter
is favored by the formation of a bicyclic intermediate through the nucleophilic bond be-
tween the imidate and the 2′-OH group. Finally, the collapse of the bicyclic intermediate
leads to the deacetylated lysine product (Figure 1) [4].

Interestingly, SIRTs are found in all living organisms, phylogenetically conserved in
eubacteria, archaea, and eukaryotes [5,6]. In this regard, the first member of this family was
the silent information regulator 2 (Sir2p), originally known as mating type regulator 1 pro-
tein (MAR1), discovered more than 40 years ago by Karl and collaborators in the budding
of Saccharomyces cerevisiae [7]. The human genome encodes for seven homologs (SIRT1-7)
with different enzymatic activities, regulatory mechanisms, subcellular localizations, and
targets [8]. In particular, SIRT1 is localized in the nucleus, where it interacts with several
transcription regulator factors, while SIRT2 is predominant in the cytosol, although it can
also translocate into the nucleus [5,9]. SIRT3, SIRT4, and SIRT5 are mitochondrial enzymes
and play a key role in a wide range of mitochondrial metabolic processes, whereas SIRT6
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and SIRT7 are located in the nucleus and nucleolus, respectively [10]. From a structural
point of view, human SIRTs are characterized by a common core of about 250 amino acids
with N- and C-terminal regions of different length acquiring diverse conformational states,
which permit bonds with multiple substrates exerting different features in the cells [11].
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The SIRT family plays a biological role in the human organism as well as in specific dis-
ease cases. Physiologically, SIRTs are implied in several processes which take place within
the cell, such as energy metabolism, through regulation of mitochondrial (i.e., SIRT1, SIRT3)
and ribosome (SIRT7) biogenesis and maintaining lipid (i.e., SIRT1, SIRT5, and SIRT6), glu-
cose (i.e., SIRT4 and SIRT6), and protein (i.e., SIRT5) homeostasis. Growth, differentiation,
and cell death are also subjected to the control of SIRTs, through regulation of the cell cycle
(i.e., SIRT2) and chromatin formation (i.e., SIRT1). SIRTs are also able to guarantee genomic
stability, to monitor biological processes such as those of DNA transcription and repair,
and microtubule organization (i.e., SIRT6) [12]. In addition, mechanisms of neurogenesis
and protective effects against oxidative (i.e., SIRT3) and inflammatory (i.e., SIRT6) events
depend on SIRT activity as well [13]. On these bases, SIRTs act as “cellular sensors” since,
in response to stress phenomena caused by metabolic deficits or oxidative damage, they
counteract aging by contributing to cell survival [14] (Figure 2). Consistent with this,
changes in SIRT expression and activity are associated with pathological conditions, rang-
ing from insulin resistance and type 2 diabetes (T2D) [15], to oxidative stress and kidney
damage [16], cardiovascular and gynecological diseases [2,17,18], rheumatoid arthritis [19],
neuro-inflammation [20,21], and various types of cancer [22–24]. In this light, a regulation
of SIRT activity might support the treatment of the above-mentioned diseases.

Nowadays, we are observing an ever-increasing interest in phytochemicals from
several plant sources. This is due mainly to their beneficial effects in counteracting a
wide plethora of illnesses such as obesity and its related comorbidities [25,26], inflamma-
tion [27,28], cancer [29,30] and neurodegeneration [31,32]. Phytochemicals are organic
metabolites produced by plants and fungi and can be classified in two groups according
to their functions. The first group includes primary metabolites involved in plant growth,
development, reproduction, and metabolism, while the second one consists of secondary
metabolites, which are able to protect plants from injury and diseases [33]. Among the
latter, flavonoids are largely studied for their capability to protect and mitigate several
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diseases, exerting many different biological effects such as cardio-protective [34], anti-
cancer [35,36], neuroprotective [37], antioxidant [38], and anti-obesity effects, as well as
their role in the management of insulin resistance [39,40]. Interestingly, several scientific
reports highlighted the beneficial effects of flavonoids contained in both Citrus fruits and
their juices that, together with their byproducts [41], represent a real treasure for human
health [42,43], for their capability to target multiple molecular targets [44–47].
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This review collects the most relevant evidence on the potential of Citrus flavonoids to
target and modulate human SIRTs, thus shedding light on the key role of these proteins in
several physio-pathological processes for eventual future therapeutic approaches.

2. Citrus Fruits and their Flavonoids

Citrus fruits are typical of the Mediterranean diet and represent one of the pillars of
many other dietary patterns. According to several studies, Citrus derivatives play a pivotal
role in the prevention and/or management of different diseases [48–50]. The actors of these
effects are acknowledged to be the flavonoids present in Citrus fruits. The biosynthesis
of these compounds arises from the oxidative deamination of the aromatic amino acid
phenylalanine and tyrosine in plants. The originated coumaroyl derivative can either
undergo oxidation to give molecules such as caffeic and ferulic acids, or condensate with
hydroxybenzyl derivatives (i.e., gallic acid), coming from the shikimate pathway, to give
chalcones. The cyclization of these latter compounds creates the backbone of flavonoids,
which is a benzo-pyrone moiety. Depending on the presence of unsaturation in the pyrone
ring, flavonoids may be divided into flavones and flavanones [38]. In addition, the presence
of a hydroxy group in the pyrone ring characterizes two other subclasses, namely flavonols
(3-hydroxyflavones) and flavanonols (3-hydroxyflavanone). The most representative ones
in Citrus fruits are flavones, flavanones, and flavonols (Figure 3). This basic structure can
be variously substituted with both hydroxy and methoxy groups. In particular, in Citrus
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fruits, polyhydroxy flavonoids are generally present in juice and pulp, while polymethoxy
flavonoids are present in the peel, and hence in the essential oils [51]. The aglycones can be
also linked to sugar residues, which are commonly D-glucose and L-rhamnose in Citrus
fruits, via the hydroxy groups (O-glycosides) or, less commonly for Citrus fruits, via the
carbons of the benzopyrone moiety (C-glycosides).
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Among the Citrus species mainly cultivated, Citrus sinensis (orange) represents the
most relevant fruit crop worldwide. An interesting anti-anxiety property has been as-
cribed to the essential oil of this fruit [52]. It has been reported that orange juice in-
take improves lipid metabolism by reducing triglycerides and cholesterol levels in obese
and insulin-resistant subjects [53]. Interestingly, it is the flavonoid content in orange
juice that is crucial in its effects. Indeed, several studies reported that the flavonoid-rich
extract from orange juice (OJe) exerts, among other things, anti-inflammatory [54] and
anti-convulsant [55] effects.

Citrus limon (lemon) is the other uncontested member of the Citrus genus and several
studies report its beneficial effects on human health [56]. Indeed, it has been shown that
in lemon juice nanovesicles, plenty of flavonoids hampered the proliferation of different
tumor cell lines by activating TRAIL-mediated apoptotic cell death [57]. These flavonoid-
rich nanovesicles have been also shown to inhibit redox imbalance in H2O2-stressed human
dermal fibroblasts, via the AhR/nuclear transcription factor 2 (Nrf2) signaling pathway, as
well as in LPS-stressed zebrafish [58].

Other scientific reports investigated the beneficial effects of Citrus reticulata (mandarin)
juice (MJ) in both in vitro and in vivo experimental models. In particular, Testai and
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collaborators highlighted MJ capability to counteract metabolic syndrome, improving
mitochondrial membrane potential in high-fat diet-fed rats [59]. On the other hand, it
has been found that MJ is able to restore mitochondrial membrane potential, exerting
antioxidant effects [60], as well as to hamper the proliferation and migration of anaplastic
thyroid cancer cells [61].

Citrus bergamia Risso (bergamot) is cultivated to retrieve its essential oil (BEO), mainly
employed in the perfume industry and aromatherapy [62]. Moreover, it has been found that
BEO is able to exert anti-inflammatory and analgesic properties [63], while its coumarin
fraction at low concentration hinders cancer cell proliferation [64]. Bergamot juice (BJ),
which was considered as an industrial byproduct until the last decade, has been recently
considered together with its flavonoid-rich extract (BJe), for its anti-inflammatory [65],
anticancer [66,67], and anti-infective [68,69] properties, and in association with resveratrol
and curcumin, it was shown to be able to mitigate cadmium-induced kidney damage [70].
Furthermore, recent studies highlighted that bergamot flavonoid fraction can be employed
in the management of metabolic syndrome and against non-alcoholic fatty liver diseases
(NAFLDs) [71,72].

3. SIRT1

SIRT1 is found in the cellular nucleus, and it is encoded by the SIRT1 gene located
on chromosome 10q22.1. It is characterized by a catalytic core containing a fold with a
larger NAD+ binding sub-domain of Rossman and a smaller subdomain containing a Zn2+

binding site [73] (Figure 4). Moreover, SIRT1 is able to deacetylate histones (H1, H3, and H4)
and transcriptional factors such as p53 and NF-κB by employing NAD+. This mechanism
permits the attachment of ADP-ribose with the acetylic moiety of the substrate, releasing
nicotinamide (NAM) and 2′-O-acetyl-adenosine diphosphate-ribose [74].
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Several studies reported the involvement of SIRT1 in the pathogenesis, development,
and treatment of different illnesses, including inflammation [75], cancer [74], and neuro-
logical and metabolic diseases [76–78]. The modulation of SIRT1 is one of the multiple
mechanisms by which Citrus flavonoids exert their biological properties.

In the context of oxidative pathogenesis, flavonoids were shown to exert a positive
modulation on SIRT1. Indeed, in oxidative stress conditions such as those caused by expo-
sure to environmental contaminants, Helmy and co-workers demonstrated that hesperidin
(HES) exerts antioxidant effects through SIRT1 activation. This counteracted the aberration
of miR-126-3p and miR-181a observed in testicular damage and promoted their expres-
sion [79]. In addition, the flavonoid fisetin (FIS) was able to improve the quality of sperm
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in Wistar rats, by counteracting oxidative toxicity induced by glutamate at the testicular
level [80], via an increase in SIRT1 and p-AMPK. Similarly, a common Citrus flavonoid,
naringenin (NGN), was able to activate the AMPKα/SIRT1 axis, thus restoring mitochon-
drial Ca2+ balance and lowering radical oxygen species (ROS) levels in in vitro and in vivo
models of ROS-induced endothelial damage [81]. Consistently, the same flavonoid pro-
tected against pain sensitivity caused by chronically disturbed sleep, through the activation
of SIRT1, hampering both oxidative stress and inflammation [82].

Given the well-known link between inflammation and oxidative stress, it has been
reported that FIS and the quercetin (QUE) glycoside, rutin (RU), mitigated both inflamma-
tion and oxidative stress in nucleus pulposus of mesenchymal stem cells (NPMSCs) and in
chondrocytes, respectively, by activating SIRT1 [83,84]. Along the same line, an increase in
SIRT1 deacetylase activity mediated by myricetin (MYR) was associated with NF-κB inhibi-
tion in A549 cells according to an in vitro model of chronic obstructive pulmonary diseases
and asthma [85]. This flavonoid has been largely studied for its antioxidant, antifungal [86],
antiviral [87], neuroprotective [88], and anticancer [89] properties. Interestingly, Wang and
colleagues proved that HES was capable of counteracting both inflammation and oxidative
stress, via SIRT1/peroxisome proliferator-activated receptor-gamma coactivator 1-alpha
(PGC-1α)/NF-κB signaling pathways [90]. Remarkably, through the same mechanism
of action, NGN was able to regulate ovarian function in polycystic ovary syndrome [91].
Another molecular mechanism underlying the anti-inflammatory and antioxidant effects
of Citrus flavonoids leading to SIRT1 upregulation was investigated by Abo El-Magd. In
this study, HES was able to hamper both inflammation and oxidative stress through the
activation of the FOXO/SIRT1 axis in a murine model of hepatic encephalopathy [92].
Interestingly, the flavone luteolin (LU), largely found in Citrus fruits, revealed its capability
to hamper renal fibrosis acting on the same SIRT1/FOXO3 pathway [93].

Several studies supported the involvement of the AMPK/SIRT1 axis in the anti-
inflammatory effects observed for flavonoids. Remarkably, Risitano and co-workers re-
ported that BJe was able to mitigate the inflammatory response in LPS-stimulated THP-1
cells, through SIRT1-mediated NF-κB inhibition [94]. Interestingly, molecular mechanisms
underlying the anti-inflammatory effect of Bje were deeply investigated by Maugeri and col-
leagues. This study reported that this extract and its single flavonoids are direct activators of
SIRT1 in both cell-free and in silico experimental models, and it was able to increase SIRT1
deacetylase activity by a mechanism implying 5′ adenosine monophosphate-activated
protein kinase (AMPK) activation in vitro [95].

This mechanism was common to the other two in vitro studies. Indeed, naringin
(NAR) and hesperetin (HSP) exerted their anti-inflammatory effects in human nucleus pul-
posus cells (NPCs) [96] and hepatocellular carcinoma (HepG2) cell lines [97], via activation
of the SIRT1/AMPK axis. Again, this activation was favored by other Citrus flavonoids,
including LU, orientin (ORI), and tangeretin (TAN). In this way, LU prevented atheroscle-
rosis in LDL receptor-deficient mice by reducing macrophage inflammation [98], while ORI
was able to mitigate mitochondrial dysfunction in rat NPCs [99]. Finally, TAN showed
both anti-inflammatory and antioxidant properties in an in vitro model of neuroprotection,
promoting both the upregulation of SIRT1 and the phosphorylation of AMPK, which hin-
dered NF-κB activation [100]. Similarly, caffeic acid (CA) and its phenethyl ester (CAPE),
activating the AMPK/SIRT1 axis, showed neuroprotective effects against Cd-induced neu-
rotoxicity, by attenuating neuronal apoptosis and neuro-inflammation [101,102]. Therefore,
the activation of AMPKα/SIRT1 pathways can be considered as one of the most important
mechanisms by which Citrus flavonoids exert their biological effects.

At a central level, other mechanisms involving SIRT1 accounted for the protective
effects of flavonoids, mainly related to their antioxidant and anti-inflammatory properties.
This is the case of NGN, well-known for its different biological effects [42], some of which
are related to SIRT1 modulation. Indeed, a recent study, carried out both in vitro and
in vivo, revealed that NGN protected from both brain function decline and dry age-related
macular degeneration, by exerting SIRT1-mediated antioxidant effects [103,104]. Further-
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more, the activation of SIRT1 by HES promoted the inhibition of NADPH oxidase-4 (NOX4)
expression and protection against oxidative and inflammatory damage characterizing an
in vivo model of neuropathy [105]. Remarkably, neurological dysfunctions also represent
one of the most relevant age-related disorders. In this regard, Ahmad and co-workers ob-
served that FIS was able to mitigate both inflammation and oxidative stress by modulating
SIRT1/Nrf2 signaling pathways and suppressing the activated c-Jun N-terminal kinase
(p-JNK)/NF-κB pathways in an in vivo model of age-related neurological disorders [106].
Finally, flavanone NAR might be considered as a therapeutic tool in the management of
age-related disorders for its capability to counteract mitochondrial dysfunction in mice,
through the activation of SIRT1 [107].

Interesting SIRT1-mediated anti-inflammatory mechanisms also concern the metabolic
context. Several studies collected in a narrative review highlighted the beneficial effects of
polyphenols on metabolic disease linked to their anti-inflammatory properties [40]. Indeed,
the flavonoid nobiletin (NOB) was able to reduce liver inflammation and fibrosis through
the suppression of the NOD-like receptor thermal protein domain-associated protein 3
(NLRP3) inflammasome in a SIRT1-dependent manner [108]. Liver inflammation was also
mitigated by HSP, another relevant flavonoid found in Citrus fruits, exerting, similar to
HES, antioxidant, anti-inflammatory, and anticancer properties, and also counteracting
lung disorders [109–111]. In particular, HSP acted as a SIRT1 activator, which in turn led to
the suppression of RelA/p65 acetylation, hampering NF-κB activation [112]. In the same
context, Hua and co-workers proposed NGN as an activator of SIRT1 in the liver, leading
to the improvement of non-alcoholic steatohepatitis (NASH). As a SIRT1 activator, NGN
hindered hepatic inflammation and oxidative stress by promoting the deacetylation of liver
kinase B1 (LKB1), PGC-1α, and NF-κB [113]. Interestingly, the same flavonoid was also able
to prevent the pathogenesis of fibrotic disorders in vivo and in vitro through the regulation
of signaling molecules, such as SIRT1, NF-κB, and ROS [114].

Moreover, it was recently reported that treatment with diosmin (DIO) against colitis
counteracted colon oxidative damage and inflammation, through the upregulation of SIRT1
circular RNA (Circ-SIRT1) [115]. Also noteworthy is a study in which the association of
HES and QUE increased SIRT1 levels in the liver and kidneys of diabetic rats, mitigating
oxidative damage and hampering NF-κB activation [116]. Along this line, considering that
one of the most validated methods to evaluate liver and kidney damage is the employ-
ment of lipopolysaccharides (LPSs), Rostami and collaborators demonstrated through this
method the modulatory effect of MYR on SIRT1. Indeed, MYR reduced the serum levels
of hepatic parameters, as well as the oxidative and inflammatory factors, through a mech-
anism characterized by the upregulation of hepatic SIRT1 [117]. Similarly, endotoxemic
kidney injury was mitigated by RU in C57BL/6 mice by suppressing both oxidative and
inflammatory processes via the activation of SIRT1 [118].

SIRT1-mediated antioxidant and anti-inflammatory activities were also responsible for
cardio-protective effects induced by flavonoids in both in vitro and in vivo models. Along
this line, LU as well as RU counteracted hypoxia/reoxygenation (H/R) in an in vitro model
of myocardial injury [119] as well as in vivo myocardial ischemia/reperfusion (I/R) injury
via activation of the SIRT1/NLRP3/NF-κB pathway [120]. Thanks to its antioxidant and
anti-inflammatory properties, HSP and FIS showed cardio-protective effects by activating
the SIRT1/Nrf2 signaling pathway [121,122].

In addition to the widely discussed antioxidant and anti-inflammatory effects, Citrus
flavonoids were shown to play a relevant role by also hampering metabolic disorders
through several other mechanisms, involving SIRT1 modulation. Overweight and obesity
are becoming one of the major public health problems worldwide. Among the main comor-
bidities related to obesity are insulin resistance and type-2 diabetes (T2D), hypertension
and cardiovascular disease (CVD), dyslipidemia, NAFLD, and renal dysfunctions [25]. A
recent meta-analysis highlighted the beneficial effects of polyphenol supplementation on
NAFLD [123]. Indeed, regarding disorders related to lipid metabolism, it has been demon-
strated that NOB is capable of restoring the expression of SIRT1, blocked by high levels
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of free fatty acids in hepatocytes, thus reprogramming the altered circadian clock [124],
as well as counteracting lipotoxicity in vitro [108]. On the other hand, NEO showed its
therapeutic potential in the regulation of lipid metabolism by hampering lipogenesis in the
liver and activating fatty acid oxidation thanks to the activation of SIRT1 [125]. The increase
in SIRT1 mRNA expression was also observed in the brown adipose tissue of Swiss male
mice treated with gallic acid (GA), leading to the improvement of body metabolism and
glucose homeostasis [126]. In this latter context, Kaempferol 3-O-rutinoside (KOR) caused
the overexpression of SIRT1, which in turn led to the upregulation of insulin-dependent
phospho-insulin receptor substrate (p-IRS), protein kinase B (AKT), and AMPK signaling
pathways, stimulating GLUT4 activation in vitro [127]. On the contrary, as regards liver
dysfunction due to fat accumulation, Li and collaborators proposed kaempferol (KMF)
as an activator of AMPK/SIRT1, in order to mitigate NAFLD [128]. Therefore, it appears
that the activation of SIRT1 plays a pivotal role in the management of hepatic illnesses.
Interestingly, Sayed and co-workers performed molecular docking simulations, suggesting
that flavonoids are able to modulate SIRT1, eliciting pharmacologic activities in different
hepatic diseases [129]. In this regard, both in vitro and in vivo studies promoted NAR as a
modulator of SIRT1 activation, hindering pro-inflammatory, pro-oxidant, and pro-apoptotic
signaling pathways [130].

Other biological effects of Citrus flavonoids mediated by SIRT1 modulation are ex-
erted on endothelial dysfunction and cardiovascular aging [131]. In this context, NOB
protected from myocardial I/R injury through the downregulation of miRNA-433 (miR-
433), which favors SIRT1 upregulation [132], and it also protected against hepatic I/R
injury by SIRT1/forkhead box O3a (FOXO3a) activation [133]. Again, the flavonoid NAR,
isolated from immature dry fruits of Citrus wilsonii, was able to exert anti-apoptotic, anti-
inflammatory, and antioxidant effects, attenuating the severity of myocardial I/R injury
through SIRT1 activation [134]. The myocardial degenerative processes are often associated
with senescence, and in this context, Testai and colleagues reported that NGN was able to
target SIRT1, thus protecting against the myocardial degradative processes associated with
senescence [135].

Finally, SIRT1 can be implied in tumorigenesis. In this process, an upregulation of
SIRT1 was associated with the antiproliferative effect of NOB. Indeed, this flavone reduced
the proliferation of nasopharyngeal carcinoma C666-1 cells, inducing apoptosis through
the upregulation of the Poly ADP ribose polymerase (PARP-2)/SIRT1/AMPK axis [136].
Another interesting anticancer mechanism proposed for the employment of GA was the
activation of the SIRT1/Nrf2 signaling pathways, which in turn led to the upregulation of
the telomerase reverse transcriptase (hTERT) gene expression in HepG2 cells [137].

In Table 1, the evidence regarding the effects of flavonoids present in Citrus fruits
through SIRT1 modulation is reported.

Table 1. Effects of Citrus flavonoids elicited via the modulation of SIRT1 in cells or animal models.

Experimental Models Citrus Flavonoid Effect Reference

Wistar rats HES Antioxidant effect by activating
miR-126-3p/miR-181a-SIRT1 network [79]

Wistar albino rats FIS Reduction in testicular toxicity via
SIRT1 activation [80]

SD rats
HUVEC cells NGN Antioxidant effect against endothelial damage by

activating AMPKα/SIRT1 [81]

Swiss albino mice NGN
Amelioration of chronic sleep
deprivation-induced pain
via SIRT1 activation

[82]

Primary rat NPMSCs FIS
Anti-inflammatory and antioxidant effects
mitigating intervertebral disc degeneration
through the activation of SIRT1 pathway

[83]
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Table 1. Cont.

Experimental Models Citrus Flavonoid Effect Reference

Rat chondrocytes RU Mitigation of osteoarthritis pathogenesis
through the activation of SIRT1 [84]

A549 cells MYR Anti-inflammatory effect via SIRT1/NF-κB
pathway [85]

C57BL/6 mice HES Anti-inflammatory and antioxidant effects by the
upregulation of SIRT1/NF-κB [90]

SD rats NGN
Mitigation of polycystic ovary syndrome by
upregulating the gut microbiota and
SIRT-1/PGC-1α

[91]

SD rats HES
Antioxidant and anti-inflammatory effects via
SIRT1/FOXO activation in hepatic
encephalopathy

[92]

NRK49F cells/in vivo LU Attenuation of renal anemia caused by renal
fibrosis through the SIRT1/FOXO3 pathway [93]

THP-1 cells NGN, NAR, HSP, NEO Anti-inflammatory effect through the
modulation of AMPK/SIRT1 axis [94,95]

Human NPCs NGN Anti-inflammatory effect through the activation
of AMPK/SIRT1 axis [96]

HepG2 cells HSP Anti-inflammatory effect by activating
SIRT1-AMPK pathway [97]

THP-1 cells/LDLR−/−

knockout mice
LU Counteraction of atherosclerosis via the

AMPK/SIRT1 signaling pathway [98]

Rat NPCs ORI Antioxidant effect against mitochondrial
dysfunction through AMPK/SIRT1 axis [99]

BV2 cells/primary microglia TAN Anti-inflammatory effect via upregulation of
SIRT1 in microglia [100]

Kunming mice CA Neuroprotective effect via the activation of
AMPK/SIRT1 [101]

PC12 cells CAPE Neuroprotective effect via the activation of
AMPK/SIRT1 [102]

SD rats QUE/NGN Anti-inflammaging effect by increasing SIRT1
level in hippocampus [103]

Kunming mice
ARPE-19 cells NGN Antioxidant effect by upregulation of SIRT1 [104]

SD rats
Rat glial C6 cells HES Antioxidant and anti-inflammatory effects by

SIRT1/NOX4 activation [105]

C57BL/6N mice FIS Protection from neuroinflammation by activation
of SIRT1/Nrf2 axis [106]

Swiss mice NAR Protection from mitochondrial dysfunction in
lung by activation of SIRT1 [107]

AML-12 cells NOB Suppression of NLRP3 inflammasome by
activating SIRT1 [108]

RAW264.7/AML-12—
BALB/C mice HSP Protection from hepatic inflammation via

AMPK/CREB through SIRT1 activation [112]

ApoE−/− mice
AML-12 cells

NGN
Anti-inflammatory, antioxidant, antifibrotic
effects in NAFLD/NASH by activating
hepatic SIRT1

[113]
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Table 1. Cont.

Experimental Models Citrus Flavonoid Effect Reference

C57BL/6 mice/Caco-2 and
IEC-6 cells DIO Amelioration of colon inflammation and

oxidative stress via the circ-SIRT1/SIRT1 axis [115]

Wistar rats HES/QUE Antioxidant effect by upregulating SIRT1,
hampering NF-κB activation [116]

C57BL/6 mice MYR Antioxidant and anti-inflammatory effects
through the upregulation of hepatic SIRT1 [117]

C57BL/6 mice RU Alleviation of acute endotoxemic kidney injury
by upregulating SIRT1 [118]

H9c2 cells RU Mitigation of H/R in myocardial injury
increasing SIRT1 expression [119]

SD rats LU Mitigation of myocardial ischemia reperfusion
injury via SIRT1/NLRP3/NF-κB [120]

Kunming mice HSP Antioxidant, anti-inflammatory effects in
myocardial ischemia by activation of SIRT1/Nrf2 [121]

HepG2 cells/Primary
hepatocytes from C57BL/6 NOB Mitigation of lipid metabolism by upregulating

SIRT1 in hepatocytes and circadian rhythms [124]

HepG 2 cells/
Homozygous C57BL/6 (C57)

mice
NEO Reduction in lipid metabolism through

AMPK/SIRT1/PGC-1α axis [125]

L6 cells KOR Stimulation of glucose uptake through SIRT1
induction [127]

HepG2 cells/db/db mice KMF Counteraction of NAFLD through the activation
of SIRT1/AMPK axis [128]

AML-12 cells NAR Protection from liver damage by upregulation
of SIRT1 [130]

H9c2 myocardial cells NOB Protection against myocardial I/R injury via the
modulation of the miR-433/SIRT1 axis [132]

C57BL/6 mice NOB Protection against hepatic I/R via
SIRT1/FOXO3a activation [133]

SD rats NAR
Attenuation of myocardial I/R by reducing
oxidative stress and inflammation, through
SIRT1 activation

[134]

Enzymatic assay,
computational study,
C57BL/6J, H9c2 cells

NGN Anti-senescence effect by reducing inflammation
and ROS enhancing the expression of SIRT1 [135]

C666-1 nasopharyngeal
carcinoma cells NOB Antiproliferative effect by the upregulation of

PARP-2/SIRT1/AMPK pathways [136]

Caffeic acid (CA), caffeic acid phenethyl ester (CAPE), diosmetin (DIO), fisetin (FIS), gallic acid (GA), hesperetin
(HSP), hesperidin (HES), human nucleous polposus cell (HNPc), human umbilical vein endothelial cell (HUVEC),
kaempferol (KMF), kaempferol 3-O-rutinoside (KOR), luteolin (LU), myricetin (MYR), naringenin (NGN), naringin
(NAR), neohesperidin (NEO), nobiletin (NOB), nucleous polposus cells (NPCs), orientin (ORI), quercetin (QUE),
rutin (RU), Sprague-Dawley (SD), tangeretin (TAN).

4. SIRT2

SIRT2 possesses a catalytic core of 304 amino acids and an N-terminal helical extension
of 19 residues. The catalytic core is composed of an elongated pattern with two domains;
the larger can be found in many different NAD(H)/NADP(H) binding enzymes, and the
smaller domain contains a structural zinc atom. These two domains are separated by a
large lipophilic area containing an active site for deacetylation of substrates [138] (Figure 5).
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Given the multiple roles played by SIRT2 in regulating physiological and pathological
signal transduction, it can be considered as a key target for the treatment of different
illnesses [139], including neuroinflammation and Parkinson’s disease [140,141], as well
as cancer [142] and CVD [143]. Interestingly, a QUE analogue derivative, 2-Chloro-1,4-
naphtoquinone-quercetin, was able to hamper SIRT2 enzymatic activity by docking the
substrate in the binding site [144], thus suggesting SIRT2 inhibition as a potential mecha-
nism through which Citrus flavonoids exert biological effects.

It is well-known that neurodegenerative diseases, such as Parkinson’s, are associated
with oxidative stress. In this regard, FIS was employed as a neuroprotective agent in
a model of neuronal aging induced by oxidative stress and inflammation in rat brain.
In particular, FIS exerted its neuroprotective effect by reducing pro-oxidant species and
apoptotic cell death as well as ameliorating mitochondrial membrane depolarization in
aging rat brain. The mechanism by which FIS exerted its effect is based on the upregulation
of autophagy genes (ATG3 and BECN1) and the downregulation of the SIRT2 gene in aging
brain [145]. In the same field, a recent study reported that treatment with ferulic acid (FA)
causes the blocking of oxidative stress through ERK1/2-mediated activation of the Nrf2
and SIRT2 inhibition in an in vitro model of Parkinson’s disease [146].

In the context of tumorigenesis, Maugeri and colleagues reported the anticancer effect
of BJe against hematologic malignancies, employing THP-1 monocytes as a model of acute
myeloid leukemia. Indeed, BJe exerted its anticancer effect, resulting in a reduction in
cell proliferation, blockage of the cell cycle in S-phase, and induction of apoptosis. This
occurred because BJe inhibited SIRT2 activity and its gene expression, thus increasing the
acetylation and then activity of p53. Finally, the reduced phosphorylation of AKT resulted
in the link between SIRT2 and p53, suggesting the involvement of the SIRT2/AKT/p53
pathway underlying the anti-leukemic effects mediated by Bje [147]. More in depth, it was
revealed that the flavanones present in Bje, namely NAR, HSP, NGN, and NEO, can block
SIRT2 activity on the isolated recombinant enzyme, and the association of both NAG and
HSP reduces THP-1 cell proliferation. Moreover, as observed in docking studies, these two
flavanones bind the SIRT2 inhibitory site, acting as anti-leukemic agents [148].

It is noteworthy that, in contrast to other studies, Deng and co-workers revealed
that limonin (LIM), a furanolactone belonging to the limonoid family, was able to exert
protective effects against doxorubicin-induced cardiotoxicity through the activation of Nrf2
and SIRT2 signaling pathways [149].

Table 2 gathers the studies dealing with the role of Citrus flavonoid in modulating SIRT2.
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Table 2. Effects of Citrus flavonoids after modulation of SIRT2 in cells or animal models.

Experimental Models Citrus Flavonoid Effect Reference

Enzymatic assay 2-Chloro-1,4-
naphtoquinone-quercetin Potent inhibition of SIRT2 enzymatic activity [144]

Wistar rat
Primary neuronal cells FIS

Neuroprotective effect against aging-induced
oxidative stress by the downregulation of
SIRT2 gene

[145]

Enzymatic assay
SH-SY5Y cells FA Antioxidant effect via the inhibition of SIRT2 activity [146]

THP-1 cells NGN/HSP Anti-leukemic effect via reduction in SIRT2 activity [148]

Ferulic acid (FA), fisetin (FIS), hesperetin (HSP), naringenin (NGN).

5. SIRT3

SIRT3 is a NAD+-dependent deacetylase found mainly in mitochondria. SIRT3 is the
only sirtuin affecting human lifespan, playing a key role in several mitochondrial metabolic
processes such as oxidative stress and energy metabolism [150] (Figure 6).
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Several studies highlighted the involvement of SIRT3 in neurodegenerative dis-
orders [151], ischemic stroke, traumatic brain injury, intracerebral hemorrhage, neuro-
inflammation along with heart failure, oxidative stress, autophagy, and apoptosis [152–154].
The beneficial effects of Citrus flavonoids on human health have been deeply investigated,
representing important ingredients for nutraceuticals and functional foods [155].

Although it is well-known that obesity-related insulin resistance may be mitigated
by shifting from a high-fat diet to a normo-caloric one [156], the supplementation of
Citrus flavonoids such as MYR to the diet could be employed as a therapeutic tool against
obesity, since it was demonstrated to favor the upregulation of SIRT3 expression in adipose
tissue, improving mitochondrial metabolism in C57BL6/J mice [157]. Under hyperglycemic
conditions, HSP, the aglycone form of HES present in peels of Citrus fruits, was shown
to exert protective effects by counteracting LPS-induced secretion of pro-inflammatory
cytokines in THP-1 macrophages. The mechanism underlying this anti-inflammatory
effect included the blocking of TLR2/4, MyD88, and NF-κB phosphorylation through the
upregulation of both SIRT3 and SIRT6 [158]. Furthermore, considering that hyperglycemic
conditions lead to an increase in ROS production, an interesting study revealed that FIS
and LU are able to hinder ROS production in high-glucose-treated THP-1 monocytes
through the activation of SIRT1, SIRT3, SIRT6, and FOXO3a [159]. Remaining in the field of
diabetic pathology, it has been reported that apigenin (API) improves renal injuries in both
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male Zucker lean (fa/+) rats (ZLRs) and male Zucker diabetic fatty (fa/fa) rats (ZDFRs)
through the downregulation of NAD+-degrading enzyme CD38 and the increase in both
intracellular NAD+/NADH ratio and SIRT3 [160].

At the hepatic level, Li and collaborators documented, in both in vitro and in vivo
models, the anti-fibrotic effect of a monomer compound derived from HSP through the acti-
vation of AMPK/SIRT3, thus suggesting its employment as a hepatoprotective agent [161].
Similarly, this also occurred at the lung level, where baicalein (BAI) exerted its protective
effect against fibrosis, regulating lung fibroblasts through an increase in SIRT3 expres-
sion [162].

However, oxidative stress and inflammation represent the main etiological causes
of several pathologic conditions. Along this line, the antioxidant properties of Citrus
flavonoids, even exerted through a modulation of SIRTs, led to beneficial effects in different
ailments and oxidative disorders. NAR was able to fight mitochondrial oxidative stress
in myocardial I/R-induced cardiomyocyte apoptosis through a mechanism involving the
upregulation of the AMPK-SIRT3 axis [163]. Again, API exerted neuroprotective effects by
increasing SIRT3 mitochondrial activity, reducing the accumulation of injured mitochondria,
and promoting mitophagy [164]. Another two Citrus flavonoids, acacetin (ACA) and LU,
were able to target SIRT3, promoting its upregulation, which in turn reduced the mitogen-
activated protein kinase (MAPKs, p-38 and p-JNK) activation, by mitigating the oxidative
damage and the skin photoaging caused by UVA and UVB, respectively, in both in vitro
and in vivo experimental models [165,166].

Interestingly, SIRT3 was negatively associated with cancer. Consistently, Wang and col-
leagues reported that MYR-loaded nanoliposomes are able to inhibit cell survival in glioblas-
toma cells, through the downregulation of both SIRT3 and phosphorylated p53 [167].

In Table 3, the studies reporting the effects of Citrus flavonoids on SIRT3 are listed.

Table 3. Effects of Citrus flavonoids due to the modulation of SIRT3 in cells or animal models.

Experimental Models Citrus Flavonoid Effect Reference

C3H10T1/2 cells/C57BL6/J
mice MYR Anti-obesity effect through the upregulation of SIRT3

ex-pression in adipose tissue [157]

THP-1 cells HSP Suppression of inflammation in diabetes via
TLR/MyD88/NF-κB increasing SIRT3 [158]

THP-1 cells FIS/LU Suppression of oxidative stress in hyperglycemic
condition through the upregulation of SIRT1, SIRT3, SIRT6 [159]

ZLRs and ZDFRs rats API Mitigates mitochondrial oxidative stress through the
upregulation of SIRT3 [160]

LX-2 cells/C57BL/6J mice HSP Hepatoprotective effect by activating the
AMPK/SIRT3 pathway [161]

Mice BAI Counteraction of lung fibrosis by restoring
SIRT3 expression [162]

SD rats/H9c2 cells NAG Antioxidant effect in myocardial I/R through the
activation of AMPK/SIRT3 axis [163]

Swiss albino mice API Attenuation of neurotoxicity via promoting mitochondrial
homeostasis by activating SIRT3 [164]

SD rats/Human dermal
fibroblasts cells LU Protection from skin photoaging by upregulating the

SIRT3/MAPKs axis [165]

SD rats ACA Protection from skin photoaging by upregulating the
SIRT3/MAPKs axis [166]

DBTRG-05MG cells MYR Antiproliferative effects in glioblastoma cells by reducing
SIRT3 levels [167]

Acacetin (ACA), apigenin (API), baicalein (BAI), fisetin (FIS), hesperetin (HSP), luteolin (LU), myricetin (MYR),
naringin (NAG).
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6. SIRT4

Among the three mitochondrial SIRTs, SIRT4 has received the least focus from the sci-
entific community [168]. Nevertheless, its key roles in both lipid and glutamine metabolism,
as well as other possible enzymatic activities, have been reported [169]. The lack of studies
is also reflected in the fact that the crystal structure of human SIRT4 is still missing, even
though those of Xenopus tropicalis and Danio rerio possess a sequence similarity of the
catalytic core of 67% and 65%, respectively [170] (Figure 7).
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Along this line, the evidence on the role of natural molecules in SIRT4 is very limited.
However, it has been reported that rhamnetin (RHM), one of the most abundant methyl
esters in Citrus fruits, protected cardiomyoblasts against H2O2-induced cell death, also
enhancing cell protection against redox imbalance. These effects were ascribed to a modu-
lation of mitogen-activated protein kinases (MAPKs), which were upstream influenced by
an induction of both SIRT3 and SIRT4 expression, thus supporting RHM cardio-protection
(Table 4) [171].

Table 4. Effects of rhamnetin in modulating SIRT4 activity.

Experimental Models Citrus Flavonoid Effect Reference

H9c2 cardiomyoblast cells RHM Cardioprotective and antioxidant effects due to
an increase in both SIRT3 and SIRT4 expression [171]

Rhamnetin (RHM).

7. SIRT5

SIRT5 is a NAD+-dependent deacetylase, containing both positively charged tyro-
sine and arginine in the active site, which are able to remove the acyl groups negatively
charged from proteins [172]. SIRT5 consists of two domains; the larger one is a typical
NAD+ binding site containing six parallel beta-strands (β1–3 and β7–9) forming a central
sheet surrounded by several alpha-helices (α1, α2, α7, α10–13), while the smaller one is
characterized by structural zinc ions and five α-helices (α3–5, α8–9) and three antiparallel
β-sheets (β4–6) [173] (Figure 8).

SIRT5 is mainly localized into the mitochondrial matrix, playing a key role in the detox-
ification of ROS and in the regulation of protein substrates in fatty acid metabolism [174]. In
this regard, recent studies revealed that SIRT5 is involved in metabolic diseases, particularly
in hepatic steatosis [175], in cancer, and in SARS-CoV-2 infection [176]. Emerging evidence
supports the capability of QUE to modulate SIRT5 expression, promoting the mitigation
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of several illnesses. In this frame, Chang and collaborators investigated the mechanism
by which QUE counteracts myocardial fibrosis, improving cardiac function through an
increase in SIRT5 expression, which in turn hampered oxidative stress and inflammatory
response [177]. Furthermore, a recent study reported the capability of QUE to block DNA
damage through the upregulation of SIRT5, which leads to the inhibition of PI3K/AKT
phosphorylation, thus promoting apoptosis in an in vitro model of lung cancer [178]. In
Table 5, the evidence on the effects of Citrus flavonoids on SIRT5 is reported.
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Table 5. Effects of Citrus flavonoids due to the modulation of SIRT5 in cells or animal models.

Experimental Models Citrus Flavonoid Effect Reference

HL-1 cells/C57BL/6J mice QUE Antioxidant and anti-inflammatory effects
increasing SIRT5 expression [177]

BEAS-2B, Human NSCLC,
A559 and H1299 cells QUE

Inhibition of DNA damage and induction of
apoptosis via the direct binding and
upregulation of SIRT5, along with the
modulation of PI3K/AKT pathway

[178]

Quercetin (QUE).

8. SIRT6

SIRT6 is a nuclear member of SIRT family formed by 355 amino acids, characterized
by the typical core of about 250 amino acids, plus N-terminal extension, enzymatic core
domain residues, and C-terminal extension [179]. In detail, SIRT6 is characterized by
two domains. The large domain contains the nucleotide binding element as well as the
Rossmann fold, which is elected for NAD+ binding. As regards the small domain, it is
unique for SIRT6, containing Zn2+ binding loop able to stabilize the enzyme structure as
well as the integrity of the catalytic domain [180] (Figure 9).

SIRT6 is able to promote long-chain fatty acid group deacetylation, as well as to
catalyze the reaction of mono-ADP-ribosylation in chromatin silencing of the DNA repair
proteins [181]. Moreover, SIRT6 acts as a signaling regulator of several illnesses, including
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cardiovascular diseases and diabetes mellitus, and it plays a pivotal role in the regulation
of brain mitochondrial processes and in cancer [17,182–185]. Interestingly, through the
employment of a screening method for the identification of novel SIRT modulators from
plant extract, it has been observed that QUE is a candidate able to target SIRT6 [186].
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Structurally, You and colleagues reported that QUE-based compounds activate as well
as inhibit SIRT6 through the isoform-specific binding site for pyrrolo[1,2-a]quinoxalines,
which can be considered as a versatile allosteric site for the modulation of SIRT6 [187].
Biologically, the activation of SIRT6 was associated with several beneficial effects. A very
recent study investigated chalcone isoliquiritigenin (ISL), present in grapefruits, highlight-
ing its capability to upregulate SIRT6, attenuating vascular endothelial cell pyroptosis
mediated by NLRP3 [188].

Since SIRT6 plays a pivotal role in glucose and lipid metabolism, several studies
focused on its modulation. In particular, it has been reported that HES is able to target and
increase SIRT6 expression in THP-1 cells, mitigating diabetic inflammation, through the
modulation of TLR/MyD88/NF-κB signaling pathways [158]. Interestingly, in the same
in vitro model, Kim and co-workers suggested that LU and FIS inhibit high glucose-induced
ROS production through the activation of SIRT1, SIRT3, SIRT6, and FOXO3a [159].

Therefore, the capability of Citrus flavonoids to counteract inflammatory processes was
observed to occur through a modulation of SIRT6. Along this line, LU suppressed in vitro
TNF-α-induced inflammatory injury and senescence via the SIRT6/NF-κB [189]. To support
the well-known anti-inflammatory effects of HSP, Jing and co-workers suggested that it
counteracts neuro-inflammation in vivo, by mitigating oxidative stress via SIRT6/NLRP3
in mice [190]. In the same field, the CAPE appeared to play a key role in neurological
complication after anesthesia and surgery though a mechanism involving SIRT6/Nrf2
activation, reducing oxidative stress and favoring microglia-protective polarization [191].

On the contrary, the downregulation of hippocampal SIRT6 induced by FA coun-
teracted depression-like behaviors by increasing the activity of AKT/collapsin response
mediator protein 2 (CRMP2) signaling in mice [192].

Table 6 lists the studies which investigated the role of SIRT6 and Citrus flavonoids.
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Table 6. Effects of Citrus flavonoids due to the modulation of SIRT6 in cells or animal models.

Experimental Models Citrus Flavonoid Effect Reference

THP-1 cells HSP
Mitigation of diabetic inflammation through the
modulation of TLR/MyD88/NF-κB signaling
pathways, increasing SIRT6 expression

[158]

THP-1 cells LU/FIS Inhibition of ROS production through the
elevation of SIRT6 and FOXO3a expression [159]

Enzymatic assay/U2OS cells QUE, LU Modulation of SIRT6 activity [187]

HUVEC cells ISL Decrease in vascular endothelial cell pyroptosis
via the upregulation of SIRT6 [188]

HNPC cells LU
Anti-inflammatory effect by upregulating SIRT6
and hindering the downstream activation of
NF-κB pathway

[189]

C57BL/6J mice HSP Counteraction of neuroinflammation and
oxidative stress by increasing SIRT6 levels [190]

C57BL/6J mice/BV2 cells CAPE
Mitigation of post-operative cognitive
dysfunction, hindering oxidative stress by
enhancing the SIRT6/Nrf2 pathway

[191]

C57BL/6 mice/Human
HEK-293T and mouse HT-22 cells FA

Reduction in depression-like behaviors by
suppressing AKT/CRMP2 and acting as
downregulator of SIRT6

[192]

Caffeic acid phenethyl ester (CAPE), ferulic acid (FA), fisetin (FIS), hesperetin (HSP), isoliquiritigenin (ISL),
luteolin (LU), quercetin (QUE).

9. SIRT7

SIRT7 is a NAD+-dependent histone deacetylase composed of 400 amino acids, show-
ing deacetylase, desuccinylase, and deglutarylase activities [193]. SIRT7 contains a con-
served catalytic core with long flanking N- and C-terminal extensions [194], and it has been
reported that SIRT7 can be found in a chromatin-enriched fraction [195], despite the fact
that a full crystal structure is still lacking (Figure 10).
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It has been reported that SIRT7 plays a key role in the regulation of chronic in-
flammation [196], as well as in different kinds of cancer, including breast cancer [197],
melanoma [198], and ovarian cancer [199]. As with the other SIRTs, Citrus flavonoids have
been investigated for their effects on SIRT7. In this regard, it has been reported that HSP
was able to target SIRT7, exerting a protective effect against calcific aortic valve disease
both in vitro and in vivo. This effect was due to HSP’s capability to directly bind SIRT7,
hampering the release of pro-inflammatory cytokines and ROS production, mitigating
dysfunctional mitochondria, via the upregulation of Nrf2 [200].
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Another study reported that FA, at low concentration, exerted neuroprotective effects
and prevented neuronal apoptosis in H2O2-stressed PC12 cells. This is due to the stabiliza-
tion and degradation of p53 through an increase in both SIRT1 and SIRT7 gene expression
in vitro [201]. In Table 7, the studies reporting the effects of Citrus flavonoids on SIRT7
are reported.

Table 7. Effects of Citrus flavonoids on the modulation of SIRT7 in cells or animal models.

Experimental Models Citrus Flavonoid Effect Reference

C57BL/6 mice/
Docking studies/Human VICs HSP

Protective effect in the aortic valve, increasing
the SIRT7-mediated activation of the
Nrf2–ARE axis

[200]

PC12 cells FA Neuroprotective effect through the upregulation
of SIRT1 and SIRT7 [201]

Hesperetin (HSP), ferulic acid (FA).

10. Conclusions

SIRTs are NAD+-dependent deacetylases able to maintain cellular homeostasis by
silencing genes and modulating the activity of different factors, thus unleashing cascades
of numerous events when in action. Given also their widespread localization within cells
(i.e., nucleus, cytoplasm, and mitochondria), it is not surprising that SIRTs are involved
in several physio-pathological conditions. During recent decades, this has captured the
interest of the scientific community, which has put forth great effort to unravel the true
significance of SIRT regulation in cells. The multi-target capacity of natural products per-
fectly accords with the essence of SIRTs. Indeed, in this review, we highlighted the fact
that Citrus flavonoids are able to elicit a wide plethora of biological effects via modulating
the activity of SIRTs, acting as crossroads. Antioxidant, anti-inflammatory, hypolipidemic,
and neuroprotective effects were exhibited by flavonoids through the activation of SIRT1,
SIRT3, and SIRT6. On the contrary, the inhibition of SIRT2 was mainly associated with
antiproliferative and neuroprotective effects. Beneficial effects, such as cardioprotective
effects, were preliminarily observed from SIRT4 activation, and anti-inflammatory and an-
ticancer effects were related to SIRT5 activity, while neuroprotective effects were mediated
by SIRT7 (Figure 11).
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Notably, the evidence of some members of the SIRT family is rich and robust, whereas
others are still lacking studies to precisely define their role and hence investigate com-
pounds able to target them. Considering that SIRTs belong to a family of multi-functional
enzymes, a deepening of the current knowledge on the neglected SIRT members would
be highly encouraged among scientists. Again, potential interactions on SIRTs or on more
than one SIRT simultaneously should be considered, in order to fully define the mechanism
of action and the selectivity rate of natural allies, such as Citrus flavonoids. Consequently,
this could help to better establish their place in the management of several human illnesses.

To date, epigenetic inhibitors, such as histone deacetylase and DNA methyltrans-
ferase inhibitors, appear to represent an emerging scenario over conventional therapies,
in different clinical settings. However, the impact of SIRT modulation on human health
remains an open challenge among researchers. Adequate and well-established findings are
essential for the development of effective therapies based on SIRTs. In this context, future
investigations could pave the way towards combination therapies including natural and
synthetic drugs or, even better, represent the starting point for the development of potent
scaffolds targeting SIRTs.

Overall, this review helps in outlining a direction for further studies, thus suggesting
Citrus flavonoids as holding potential promise in the development of novel effective drugs
acting on the SIRT family.
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