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Abstract: The members of the Flaviviridae family are becoming an emerging threat for public health,
causing an increasing number of infections each year and requiring effective treatment. The con-
sequences of these infections can be severe and include liver inflammation with subsequent car-
cinogenesis, endothelial damage with hemorrhage, neuroinflammation, and, in some cases, death.
The mechanisms of Flaviviridae pathogenesis are being actively investigated, but there are still many
gaps in their understanding. Extracellular vesicles may play important roles in these mechanisms,
and, therefore, this topic deserves detailed research. Recent data have revealed the involvement of
extracellular vesicles in steps of Flaviviridae pathogenesis such as transmission, immune evasion, and
inflammation, which is critical for disease establishment. This review covers recent papers on the
roles of extracellular vesicles in the pathogenesis of Flaviviridae and includes examples of clinical
applications of the accumulated data.
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1. Introduction

Flaiviviridae include several human viruses transmitted either through blood-to-blood
contact and sexual intercourse, such as the hepatitis C virus (HCV), or by arthropods, such
as the Zika virus (ZIKV), the dengue virus (DENV), the West Nile virus (WNV), the tick-
borne encephalitis virus (TBEV), the Japanese encephalitis virus (JEV), and the yellow fever
virus (YFV), causing acute and chronic diseases with mild-to-severe symptoms, including
liver inflammation, neuroinflammation, endothelial damage, and even death. DENV and
HCV account for the largest number of Flaviviridae infection cases worldwide, with an
estimated 390 mln infections per year and 96 mln symptomatic cases for DENV [1] and
56.8 mln HCV-infected individuals [2]. The burden of Flaviviridae infections may increase
in the coming years due to global warming and subsequent changes in insect habitat,
accessibility of human movement, and other reasons. At the same time, prophylactic and
therapeutic options for the prevention and treatment of Flaviviridae are limited. Approved
prophylactic vaccines include only those against DENV [3], JEV [4], YFV [5], TBEV [6], and,
in the case of DENV, the vaccine formulation is suboptimal, with variable efficacy against
four DENV serotypes and the risk of antibody-dependent enhancement of infection [7]. In
terms of therapeutic drugs, only antivirals against HCV are currently approved for clinical
use [8], while clinical trials are underway for the other flaviviruses. A better understanding
of Flaviviridae pathogenesis is urgently needed to accelerate trials of prophylactic and
therapeutic options.

In general, viral pathogenesis involves several steps preceding the onset of viral dis-
ease. These steps include the following: virus entry, primary viral replication, virus spread
within the host, infection of cells with special affinities for the virus, cellular injury, host
immune response, viral clearance or persistence, and viral shedding and transmission [9].
During these steps, a virus utilizes host resources and interacts with host factors. Among
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these steps, virus transmission and spread, evasion of the host immune response, and
tissue-specific inflammation, caused by infection and cellular injury, appear to be of great
importance for flaviviral pathogenesis.

Flaviviridae pathogenesis may be affected by host extracellular vesicles, as shown by
research over the last decade. Of note, early studies of extracellular vesicles (EVs) consid-
ered them to be cell culture artifacts or the product of specialized cell types, but, later, their
recognition as universal transmitters of signaling molecules changed the understanding of
cellular communication [10]. Viral infections have been shown to modulate the amount
and content of EVs. Thus, research on EVs associated with Flaviviridae infections may fill
in the gaps in our knowledge regarding the mechanisms of viral pathogenesis, which is
necessary for the development of efficient virus-targeted therapies.

In this review, we discuss how EVs influence the pathogenetic features of Flaviviridae,
namely, transmission, immune evasion, and inflammation. The clinical aspects of the use
of EVs for the development of antiviral therapeutic options are also evaluated.

2. Biology of EVs

EVs are membrane-bound particles released into the extracellular space by living or
dead/dying cells. They are detected in all body fluids and can be isolated from the condi-
tioned medium of cultured cells [11]. EVs are considered to be vehicles for active molecules,
biomarkers, and therapeutic agents. The list of their functions can be extended to include
the induction of signaling, trophic support, and clearance of cellular material. Several
cellular mechanisms are involved in the regulation of the biogenesis of EVs, including
the ESCRT machinery (in particular, TSG101 and ALIX proteins, known markers of EVs),
tetraspanins, sphingomyelinase, etc. [12,13].

2.1. EV Classification and Functions

The International Society for Extracellular Vesicles (ISEV) regularly publishes Minimal
information for studies of extracellular vesicles (MISEV) [14]. MISEV recommends the use of
the generic term “extracellular vesicles” unless the subcellular origin of the EVs can be
demonstrated [14,15]. It is important to note that it is extremely difficult to assign EVs to a
specific biogenesis pathway, as this can only be documented by live imaging techniques
immediately during EV release. Testing for EV-specific markers could help, but there is
no consensus on their specificity for EV biogenesis pathways. To somehow classify EVs,
MISEV suggests specifying their diameter (“small EVs” < 200 nm and medium/large
EVs” > 200 nm) or density ranges, expression of biochemical markers, or description of EV
isolation conditions/cell origin [14]. However, many researchers still use the classification
system based on EVs’ biogenesis pathway, which distinguishes three main subpopulations
of EVs [16,17]:

- Apoptotic bodies, which are large vesicles formed by cellular fragmentation and
blebbing of the cell plasma membrane during apoptosis [18,19]. They are typically
1–5 µm in diameter.

- Ectosomes, which comprise microvesicles and some other variants of EVs such as
oncosomes. Their characteristic feature is that they are formed in the plasma mem-
brane directly from outward budding, and their size typically ranges from 100 nm
up to 1 µm in diameter, more commonly >200 nm [20]. They must be centrifuged at
10,000–15,000× g for sedimentation.

- Exosomes, generated in the cell during the endocytic pathway due to inward budding
of the endosomal membrane, with a typical size of 30–150 nm in diameter, thus requir-
ing high-speed centrifugation (100,000× g) for sedimentation [16,21]. The process of
exosome generation is as follows [22]: after invagination of the plasma membrane,
some extracellular components and cell membrane proteins are wrapped together to
form early endosomes. These early endosomes can exchange substances with other
organelles or fuse to form late endosomes and intracellular multivesicular bodies
(MVB), which contain numerous intraluminal vesicles (ILV). MVBs can be degraded
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by autophagosome/lysosome pathways or fuse with the plasma membrane to re-
lease endogenous substances and also ILVs, which, at this stage, are regarded as
exosomes [22].

In addition to these subtypes, other subpopulations of EVs have been described,
including migrasomes, shed by migrating cells [23], and oncosomes, shed by amoeboid
cancer cells [24], among others [25,26].

The final fate of EVs can be either their direct release into biological fluids, promoting
the clearance of unwanted cellular contents, or intracellular communication, when they
reach both nearby cells and distant organs through circulation, thus performing regulatory
functions [27]. Modes of EV communication include signaling, when EVs membrane-
associated surface molecules or surface-attached nucleic acids and proteins interact with
neighboring cells in a classic ligand–receptor manner [28]. The second mode is information
transfer, when EVs carrying a functional cargo fuse with a recipient cell. This requires the
fusion of EVs with a target plasma membrane or their internalization and fusion with an
intracellular membrane, i.e., endosomal [28].

2.2. Current Challenges in EV Studies

The are several fundamental challenges to studies on EVs. They are not the subject
of this review and are covered in detail in several recent reviews [26,27,29,30], but we
would like to highlight the most important of them. First, most isolation techniques do not
guarantee the purity of EV fractions. Contaminants are either derived from the isolation
procedure (e.g., components of commercial kits) [14] or may be co-isolated with EVs due
to size overlap (e.g., ribonucleoproteins, nucleosomes, lipoproteins, viral particles) [26].
Thus, functions attributed to EVs may be determined by these additional components
or their combination with EVs. To reduce contamination in EV preparations, sequential
use of different separation techniques may be recommended [29], although this inevitably
complicates the experimental workflow and is time consuming. The other important issue
is the heterogeneity of EV fractions. They usually contain a mixture of EV subpopulations,
which makes it difficult to attribute EV functions to a specific subpopulation [31]. To
solve this problem, ISEV recommends combining the high-resolution imaging of isolated
EVs together with methods of measuring the size and concentration of EVs [14]. Further
development of microfluidic and lab-on-chip technologies will help characterize individual
EVs [30,32,33], thus solving the problem of heterogeneity and allowing the use of small
sample volumes, which may be essential for biomedical and clinical applications. Another
limitation of EV studies is the uncertainty about the fate of secreted EVs. In functional
studies, it is difficult to determine which mode of EV communication is relevant for the
described effect, signaling, or information transfer [27]. The use of selective inhibitors of
specific intracellular trafficking pathways may be required to identify the cellular pathways
critical for EV function. Because of all these limitations, EV studies should include detailed
descriptions of the protocols used and very careful interpretations of the experimental data.

2.3. EVs and Viruses

It should be noted that EVs share many features with viruses, starting with their
biophysical properties and similar biochemical composition [34]. Both the EV biogenesis
pathway and viral replication cycles utilize the ESCRT machinery. Subsequently, like
exosomes, viruses can be released via the MVB route [34]. Viruses also stimulate the
production of EVs in infected cells, which carry replication-competent viruses which
promote viral replication in recipient cells [35] and, thus, viral transmission not only within
a host but also, as demonstrated for Flaviviridae, from arthropod cells to human cells [36–42].
By encapsulating viral components, EVs help them evade immune system recognition
and may contribute to viral persistence and the establishment of chronic infection [35].
In addition to the transfer of infectious viral components, EVs from virus-infected cells
transmit signals that modulate cellular processes for their benefit. On the other hand,
EVs may also play a role in limiting viral infections by modulating the host immune
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response [35]. These roles of EVs in the pathogenesis of Flaviviridae will be discussed below.
Finally, EVs can be used as carriers for antiviral drugs and their contents, as biomarkers of
disease and its severity, so examples of clinical application of EVs in relation to Flaviviridae
are given in the last review section.

3. EV Roles in the Transmission of Flaviviridae

Viruses can utilize EVs for their transmission in different manners. First, EVs shed
from virus-infected cells may help transmit infectious viral RNA or whole virions. Of note,
the flaviviral virion is approximately 40–60 nm in diameter, so, considering the diameter
of EVs, not more than 6–8 virions may be packaged within EVs. Viral RNAs and proteins,
therefore, allow a greater amount of infectious material to be enclosed inside EV compared
to the whole virion [43]. Table 1 illustrates the flaviviral components known to be associated
with EVs generated by cells infected with Flaviviridae. Secondly, EVs shed by virus-infected
cells carry signaling molecules that prepare the microenvironment for virus entry.

Table 1. The components of Flaviviridae viruses associated with EVs.

Virus Components Links

HCV

Viral RNA [44–48]
E protein (inside) [45]
E protein (surface) [49,50]

Viral particles [45,51]

DENV

Viral RNA [36,52,53]
E protein (inside) [36,40,52]
E protein (surface) [54]

prM/M protein (inside) [52]
NS1 protein (inside) [52]

NS1 protein (surface) [54,55]
NS3 protein (inside) [56]

ZIKV

Viral RNA [41,42]
E protein (inside) [41]
E protein (surface) [41,57]

NS1 protein (surface) [55]

WNV Viral RNA [37]

Langat virus (LGTV)
Viral RNA [37]

E protein (inside) [37]
NS1 protein (inside) [37]

3.1. EVs in the Transmission of Blood-Borne HCV

In a number of studies, it has been shown that EVs play a role in the transmission
of HCV. HCV genomes capable of inducing productive infection in hepatocytes were
detected in the exosomes isolated from the sera of infected patients and from HCV-infected
hepatocytes [44–46,51]. In the study by Bukong et al., it was found that exosomal viral
RNA was complexed with miRNA-122, Ago2, and HSP90, and these components could
also contribute to the efficacy of viral transmission [44]. Sera and liver tissue exosomes
were also found to be carriers of defective HCV genomes that, in the presence of co-
expressed full-length viral genomes, could increase HCV replication and likely support
viral persistence in clinical settings [58]. Of note, a number of studies evidenced that
exosome-mediated viral transmission, although more resistant to neutralizing antibodies,
was less efficient than infection with authentic viral particles [46,49,51]. In this context,
Longatti et al. demonstrated that the concentration of exosomes from HCV-infected cells
was not high enough to establish infection and could only occur through cell–cell contact.
At the same time, only 0.1% of the exosomes isolated from the culture media of these cells
contained HCV RNA [46]. This aspect points to the need for further studies to establish the
role of HCV-containing EVs in the transmission of this virus.
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3.2. EVs in the Transmission of Arthropod-Borne Flaviviruses

With the exception of HCV, most of the Flaviviridae infecting humans are transmitted
by arthropods. Given that arboviruses have a complex life cycle with at least two hosts, an
alternative route of transmission by EVs would increase their chance of infection and favor
their adaptability. Indeed, mosquito and tick cells infected with DENV, ZIKV, and LGTV
release EVs that have infectious potential, particularly in human cells, as shown on several
cellular models [36,37,39–41]. Such EVs can carry viral components, including viral RNA
and viral proteins E and NS1 [38]. For example, the saliva of DENV2-infected mosquitoes
was shown to contain EVs carrying subgenomic non-coding flaviviral RNA [53]. Its levels
were correlated with increased saliva infectivity for human hepatoma cells and dermal
fibroblasts [53]. Notably, mosquito transmission of DENV to humans begins with the
infection of skin resident cells at the bite site. Since dermal fibroblast cultures mimic these
skin resident cells at the bite site, this study demonstrated that EVs from mosquito saliva
can enhance viral transmission by preparing the terrain for efficient DENV infection of
human cells. Next, EVs from DENV-infected mosquito cells contained not only infectious
RNA but also E protein [40]. Interestingly, in the study by Yang et al., DENV infection
of insect cells C6/36 increased the levels of C189 tetraspanin, the transmembrane protein
involved in exosome formation, and cell-to-cell transmission of DENV was more efficient
within C189-containing vacuoles [40]. The role of the other mosquito tetraspanins, CD9
and Tsp29Fb, in EVs-mediated DENV transmission from insect to mammalian cells has also
been demonstrated [36,39]. ZIKV-infected C6/36 cells also released EVs containing viral
RNA and E protein, which were able to infect both naïve mosquito and mammalian cells,
including cultures of monocytes and endothelial microvascular cells [41]. Interestingly,
ZIKV E glycoprotein was observed both inside and outside exosomes [41]. As with DENV,
tetraspanins, particularly CD63, have been implicated in ZIKV transmission [42].

The member of the tick-borne flaviviral group LGTV has been shown to exit infected
tick cells mainly via exosomes containing LGTV RNA and E and NS1 proteins, which
were able to transmigrate and infect naïve human skin keratinocytes, the first target of tick
bites [37]. Apparently, naïve cells take up infectious exosomes by receptor-mediated endo-
cytosis, as exosome-mediated viral transmission is clathrin-dependent [37]. Interestingly, a
heterogenic population of exosomes from tick saliva and salivary glands can inhibit wound
healing in human keratinocytes in vivo through the downregulation of CXCL12 and the
upregulation of IL-8. This impairs skin barrier functions (cell migration, wound healing,
and repair process), ultimately inhibiting the immune response at these sites [59].

3.3. EVs in Flaviviral CNS Invasion

The Flaviviridae family includes several neurotrophic viruses, ZIKV, WNV, TBEV and
JEV, having the ability to infect brain cells [60–64], and DENV, which is supposed to be non-
neurotropic but has been shown to enter CNS by hematogenous and axonal routes [65–67].
All these flaviviruses are able to cross the blood–brain barrier (BBB) and further invade
CNS by means of cell-to-cell transport. EVs are known to cross the BBB [68,69] and also
be secreted by CNS cells [70], so they may be involved in the intracellular communication
between these cells and thus assist CNS invasion by neurotrophic flaviviruses. Indeed,
EVs derived from ZIKV-infected cells were able to disrupt the structure of human brain
microvascular endothelial (hcMEC/D3) cell junctions, possibly by inducing the reorganiza-
tion of VE-cadherin, and probably facilitating ZIKV transmission across the BBB [71]. Next,
it has been demonstrated that the EVs of ZIKV-infected primary cortical neurons contain
infectious viral genome and E protein and can infect murine cortical neuron cultures [72].
Furthermore, neutral sphingomyelinase SMPD3 regulated the production and release of
these EVs, and its inhibition by silencing smpd3 or via treatment with the inhibitor GW4869
reduced ZIKV loads in cortical neurons and neuron-derived exosomes [72]. Neurotrophic
WNV and LGTV have been shown to infect murine brain microvascular endothelial cells
and neuroblastoma cells and stimulate the secretion of exosomes carrying viral RNA and
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proteins that can transmit infection to neuronal cells [37]. Thus, EVs may assist Flaviviridae
in crossing the BBB and their transmission within CNS.

3.4. EVs in ZIKV Crossing the Transplacental Barrier

Autophagy, a process associated with viral infection [73], may be regulated by EVs and
their contents [74,75]. The autophagy machinery has been shown to function in secretory
pathways, including EVs biogenesis [76,77], so autophagy may favor viral transmission.
ZIKV infection alters CD63 expression levels and may utilize CD63 in the autophagic secre-
tory pathways, contributing to the release of infectious EVs [42]. Autophagic vesicles may
also possibly help ZIKV to cross the transplacental barrier. Curiously, autophagy is a mech-
anism that protects the placenta from pathogens [78,79], but some viruses, including ZIKV,
can hijack it. On a mouse model, the endosomal route was shown to be important for the
mother-to-child transmission of ZIKV, and chloroquine or hydroxychloroquine inhibited
autophagy-dependent viral replication, effectively preventing maternal-to-fetal transmis-
sion of the virus [80,81]. For HCV, induction of autophagy has also been shown to affect
endosomal pathways and may support the exosome-mediated release of viral particles [82],
and knockdown of autophagy inhibits exosome-mediated viral transmission [83].

4. EVs Favor Immune Evasion by Flaviviridae

Flaviviridae have developed multiple strategies to evade the host immune response,
both innate and adaptive [84–89]. Viral components are supposed to play a major role in
it [85,90]. However, immune evasion may also be associated with other reasons, such as the
EVs induced in flaviviral infections. By using EVs, viruses can evade host factors (pattern
recognition receptors (PRR), antibodies, immune cells) or modulate their functions.

4.1. EVs Favor the Evasion of Innate Immune Recognition and Neutralizing Antibodies

EVs with infectious viral components cay help viruses escape from immune system
effectors and establish chronic infection. EVs released from an HCV-infected hepatocyte
cell culture contained a fraction of HCV dsRNA intermediates, which decreased RNA
recognition and, thus, reduced the activation of the TLR3 signaling pathway [47]. Blocking
vesicles release in HCV-positive cells increased intracellular dsRNA levels and restored
TLR3 activation, inhibiting viral replication [47].

By using EVs, viruses can evade another host defense mechanism of virus elimination,
i.e., neutralizing antibodies. In the studies mentioned above, exosomes carrying HCV RNA
could favor viral transmission to naïve cells. This transmission mode has been shown to
be resistant to neutralizing antibodies [44,46,51], which may explain, at least in part, the
relative ineffectiveness of these antibodies in blocking HCV infection. An interesting effect
was observed in the study by Deng et al. in which hepatoma cells and hepatocytes were
demonstrated to produce exosomes carrying HCV glycoprotein E2 on their surface, which
could sequester anti-HCV neutralizing antibodies and, thus, promote the neutralization
escape of infectious HCV particles [50]. The efficiency of production of these E2-coated
exosomes was boosted by the expression of syntenin, an intracellular adaptor protein
involved in exosome biogenesis [50].

A similar mechanism was demonstrated in DENV infection, which induced the pro-
duction of autophagy-associated vesicles which were detected in patients sera. These
vesicles contained viral RNA and viral proteins E, NS1, prM/M, host lipid droplets and
the autophagy marker protein LC-II [52]. DENV-specific neutralizing antibodies had no
neutralizing activity against such vesicles, and these vesicles could successfully initiate a
new round of infection in the target cells [52]. This phenomenon may explain the ineffi-
ciency of neutralizing antibodies upon DENV infection in vivo. The role of autophagy in
DENV transmission was illustrated by experiments in DENV-infected autophagy-deficient
cells, where a reduction in DENV vesicles formation was observed [52].
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4.2. EVs Carry Effector Molecules Targeting the Host Immune System

EVs produced during Flaviviridae infections may also carry effector molecules with neg-
ative effects on host immunity. Exosomes isolated from the plasma of viremic HCV patients
were enriched for a specific set of miRNAs, of which miRNA-122-5p and miRNA-222-3p
could be correlates of NK degranulation activity [91]. Notably, direct acting antivirals (DAA)
therapy helped decrease the levels of these miRNAs and restore NK cells functions [91].
Exosomes produced by DCs infected with a pathogenic strain of DENV (DENV3-5532)
contained miRNAs capable of interfering with the mRNA surveillance pathway that nor-
mally helps degrade viral RNAs [92]. The authors of the above-mentioned study showing
increased infectivity of mosquito saliva with EVs containing DENV non-coding RNAs also
proposed that such an effect was due to the inhibition of the IFN type I and III signaling
mediated by these EVs [53].

EVs from HCV-infected cells have been shown to inhibit the adaptive immune re-
sponse. First, HCV-infected hepatocytes were shown to produce TGF-β containing exo-
somes, which may play a pivotal role in the accumulation of Tfr (T follicular regulatory)
cells [93]. This potentially inhibited protective Tfh (T follicular helper) cells’ responses
in HCV-infected patients, leading to the suppression of the generation of high-affinity
antibody-producing B cells and contributing to viral persistence [93]. Second, exosomes
produced by HCV-infected cells were involved in stimulating monocytes to secrete lectin
galectin-9, which was elevated in the liver and sera of HCV-patients, inducing the apoptosis
of HCV-specific T cells and increasing the levels of inhibitory regulatory T cells [94].

5. EV Roles in the Inflammatory Pathogenesis of Flaviviridae

Flaviviridae pathogenesis is closely associated with inflammation that begins in the
infected cells and develops with the subsequent involvement of immune cells. All the
types of immune cells involved in inflammatory processes, i.e., macrophages [95–97], mast
cells [98], DCs [13], neutrophils [99], and T cells [100], have been shown to secrete EVs
in response to immune stimuli. Inflammation can modulate the levels of EV secretion
and their content, providing them with proinflammatory cytokines and miRNAs and heat
shock proteins [101]. In addition, EVs may stimulate bystander cells, further enhancing
inflammatory response [101].

Viral tropism determines the tissue specificity of the sites of inflammation development.
Flaviviral infections can stimulate EVs that may contribute to tissue-specific inflammatory
mechanisms specific to Flaviviridae, in particular, liver inflammation, neuroinflammation,
and endothelial dysfunction, which will be discussed below. In addition, examples of the
anti-inflammatory roles of EVs can be found in Section 5.4, which describes the relationships
between EVs and inflammasomes.

5.1. EVs in Liver Inflammation

HCV infection becomes chronic in 80–85% of cases and is accompanied by chronic
inflammation [102]. In the early stages of liver injury, inflammation plays a role in tissue
repair [103], but, over time, excessive inflammation leads to liver cell damage and cell
death, with subsequent liver failure, liver fibrosis, regulated by the activation of hepatic
stellate cells (HSCs), and hepatocellular carcinoma [104]. EVs can strongly influence these
processes and promote the transition from one disease stage to the other through specific
immunostimulatory EV cargo [105]. Not only cell-free HCV but also HCV-containing exo-
somes, isolated from patient sera, were shown to activate the TLR7/8 signaling pathways,
so as to transfer HCV particles towards naïve hepatocytes, trigger monocytes differenti-
ation towards macrophages producing mixed M1/M2 cytokines and having M2 surface
markers, and, finally, promote the generation of circulating fibrocytes [106], thereby induc-
ing liver fibrosis. Studies in transgenic mice have shown that M2 macrophages promote
chronic inflammation in the liver during HCV infection by secreting proinflammatory
cytokines IL-6 and TNFα [107]. Exosomes can also deliver specific miRNAs from infected
hepatocytes to hepatic stellate cells (HSC), where these miRNAs trigger several pathways
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associated with liver fibrosis, including TGB-β signaling and the TLR7, and B-cell activation
pathways [108–110].

5.2. EVs in Endothelial Disfunction
5.2.1. DENV

Among all Flaviviridae, DENV is the most associated with endothelial cell damage.
Most cases of DENV infection cause a mild disease, but, in a subset of patients, it pro-
gresses to dengue fever (DF) or to dengue hemorrhagic fever/dengue shock syndrome
(DHF/DSS). DHF is characterized by increased capillary permeability, thrombocytopenia,
altered leukocytes number and functions, altered hemostasis, and liver damage [111,112].
Patients with DHF grades III and IV may develop spontaneous extensive plasma leakage
and hemorrhagic fever, resulting in DSS which can be fatal [113]. DENV can activate
endothelial cells either directly, by infecting them, or indirectly, by infecting DCs and mono-
cytes/macrophages, which release a set of soluble proinflammatory cytokines including
IL-1β, TNF-α, IL-6, and also IFN-α and IFN-β [111,112,114]. This triggers immune sig-
naling cascades that promote endothelial cell disfunction, ultimately leading to abnormal
microvascular function, capillary injury, thrombocytopenia, and vascular leakage with
variable multiorgan involvement, neovascularization, and subsequent macrophage recruit-
ment, inflammation, and plaque formation [115–117]. During these events platelets may
also be activated, further damaging the endothelium and leading to thromboinflammation,
characterized by fibrin deposition and thrombus formation [118].

EVs derived from the endothelium, leukocytes, and platelets may have pathological
roles in the development of vascular damage. Under abnormal conditions, circulating EVs
carrying specific contents may promote endothelial disfunction by increasing the levels of
adhesion molecules, reactive oxygen species, and proinflammatory cytokines [119]. This
suggests that EVs may be a potential “missing link” in the development of DHF [120,121].
Indeed, in a study, DENV infection activated platelets via highly expressed CLEC2, a
tyrosine kinase-coupled C-type lectin [122], which stimulated platelets to release EVs [123].
Interestingly, exosomes further preferentially activated CLEC5A, another C-type lectin, and
microvesicles further preferentially activated TLR2 in neutrophils and macrophages [123].
This induced neutrophil extracellular trap (NET) formation and proinflammatory cytokine
release, which contributed to increased vascular permeability. The blocking of CLEC5A
and TLR2 could inhibit inflammation and lead to the increased survival of DENV-infected
mice [123]. Another study showed that both platelets and erythrocytes from DENV-infected
patients could shed microparticles and carried viral envelope and NS1 proteins on their
surface [54]. Elevated levels of microparticles shed by erythrocytes were directly correlated
with DENV severity, particularly during the early acute phase, and could help identify
patients with potentially severe disease requiring immediate care [54]. Interestingly, this
study demonstrated that a decrease in platelet-derived microparticles was associated with
a bleeding tendency [54].

A cytokine storm contributes to the development of severe forms of DENV infec-
tion [124], and miRNAs and mRNAs incorporated into exosomes from DENV-infected
cells may be among the activating factors in this process [120]. In EVs derived from cells
infected with the hemorrhagic strain of DENV, DENV3-5532, the mRNAs related to platelet
and endothelial cell activation were enriched as well as the cytokines associated with
plasma leakage and DSS, such as IL-6 [92]. The mRNAs of CXCR4, macrophage migration
inhibitory factor (MIF), IL-17A, and IL-8, whose increased levels correlated with disease
severity, were also found in EVs produced by cells infected with these DENV variants [92].
Macrophages infected with the other dengue strain, DENV-2, emitted exosomes-carrying
proteins and miRNAs that induced early changes in the physiology of the endothelium,
associated with its alertness status, causing the activation and secretion of proinflammatory
mediators, such as TNF-α, IFN-α, IL-6, IL-8, IL-10, IL-12p70, IP-10, and RANTES [56].
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5.2.2. ZIKV

Among the other members of the Flaviviridae, ZIKV may be associated with certain
hemostatic alterations, particularly in the placenta and in the umbilical cord [125,126],
or may stimulate endothelial activation associated with BBB breakdown [127]. EVs may
contribute to these processes. ZIKV-infected mosquito cells (C6/36 cells) could secrete
EVs containing viral RNA and E protein, and these EVs could enter not only naïve insect
cells but also human endothelial vascular cells [41]. They activated the coagulation (TF)
and inflammation (PAR-1) receptors on their membranes, promoting a proinflammatory
and procoagulant cellular state with increased endothelial permeability [41]. These EVs
could also promote the differentiation of naïve monocytes, inducing a proinflammatory
state with TNF-α expression [41]. Thus, EVs derived from insect cells may contribute to
the pathogenesis of ZIKV by promoting inflammation.

5.2.3. NS1 Protein Associated with EVs

Another viral factor that may be detrimental to the endothelial barrier is the NS1
protein of ZIKV and DENV [114,128–130], which has been shown to be present in the
fraction of EVs emitted by ZIKV- and DENV-infected cells [55]. Furthermore, a study by
Safadi et al. showed that NS1 in the form of a dimer can be associated with the surface
of excreted exosomes, increasing its availability to the other cells, including endothelial
cells [55]. This aspect raises the question of the safety of vaccine platforms based on the
exosomes carrying the NS1 protein on the surface.

5.3. EVs in Neuroinflammation

Neurotropic Flaviviridae ZIKV, WNV, TBEV, and JEV and the non-neurotropic DENV,
can cause neuroinflammation, inducing the release of proinflammatory factors and the
infiltration of immune cells in the brain [60–65]. The exact mechanism of these processes
is still unknown, and there are indications that EVs may play a role. In pathological
conditions, EVs may modulate neuroinflammatory responses and regulate tissue damage
and repair but, at the same time, promote viral replication and disease progression [70].
The ability of Flaviviridae to cross the BBB is crucial for neuroinflammation, and we have
discussed above that EVs carrying viral components may provide this ability, thereby
increasing viral transmission within the CNS.

In addition, there are some other mechanisms that support neuroinflammation. Specif-
ically, JEV-infected microglial cells could secrete EVs carrying the miRNAs let-7a and let-7b,
which could be transferred to neurons and stimulate neuronal death through caspase acti-
vation [131]. Let-7a/b enhanced the release of TNF-α from microglia through interaction
with TLR7, modulating the inflammatory response of microglia, which could also lead to
damage in the bystander neuronal cells. The authors of the study attributed these effects
to the miRNAs and not to the viral components of the exosomes, as no infectious viral
RNA/particles were detected in them [131].

Another mechanism was demonstrated in the model of cells infected with DENV/
transfected with DENV NS1 [132]. These cells elicited EVs carrying high levels of miRNA-
148, which were internalized by human microglial cells and manipulated the deubiquiti-
nating machinery there, alleviating the inhibition of proinflammatory pathways (TNF-α,
NF-kB, IFN-β) and, thus, contributing to neuroinflammation in the CNS [132].

5.4. EVs and Inflammasomes

An increasing number of studies have demonstrated that EV secretion correlates with
inflammasome activity [133–138] and that inflammasome-induced EVs are capable of enhanc-
ing inflammatory responses in bystander cells [139]. Inflammasome activation is an integral
part of the systemic inflammatory process and accompanies infection by several Flaviviridae
viruses, including HCV [140,141], DENV [142,143], ZIKV [144,145], WNV [146], and JEV [147].
Viral RNA and proteins are known factors in this activation [141,144,145,148–151].
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The complex of the NLRP3 inflammasome, the most studied inflammasome type, con-
sists of a sensor, an adaptor, and an effector pro-caspase-1 [152,153]. Upon the recognition
of priming stimuli, the inflammasome components are expressed, and upon recognition
of activating stimuli, they assemble into a functional complex [154,155]. Pro-caspase-1
within the complex then undergoes autoproteolysis to form catalytically active caspase-1,
which processes the inactive precursors of IL-1β and IL-18 to their active variants [156–158].
Another substrate of caspase-1, gasdermin D, is also processed and further incorporated
into the cellular membrane forming the pores in it [159,160]. IL-1β and IL-18 pass through
these pores, triggering cascades of inflammatory reactions [161,162]. Pore formation leads
to pyroptosis, which is a form of inflammatory cell death [159,160].

Interestingly, pyroptosis also induces a marked release of exosomes [163]. This effect
may be due to the caspase-1 dependent cleavage of the trafficking adaptor Rab-interacting
lysosomal protein, which promotes the movement of multivesicular bodies towards the
cell periphery and induces the selective loading of proinflammatory miRNAs containing
an AAUGC motif (hsa-miRNA-124-3p, hsa-miRNA-155-5p, and hsa-miRNA-126-3p) into
exosomes [163]. Thus, pyroptosis can induce the release of EVs with proinflammatory roles
and enhance the inflammatory response in the organism, but EVs with anti-inflammatory
roles are also released. For example, the activation of inflammasomes in macrophages in-
duces the secretion of IFN-β-containing EVs that limit NLRP3 activation in bystander cells,
thereby preventing hyperinflammation [138]. In a study by Yan et. al., exosomes derived
from umbilical cord mesenchymal stem cells attenuated the production of cleaved caspase-1
in skeletal muscle cells, thereby reducing IL-1β and IL-18 release and pyroptosis [164].

For Flaviviridae, to our knowledge, the direct link between inflammasome activation
and EV release and cargo has not been demonstrated. Notably, DENV infection can activate
NLRP3 inflammasome in platelets [142], and, in the study described above, DENV was
shown to activate platelets to emit EVs that have a proinflammatory role on macrophages
and neutrophils [165]. It is likely that inflammasome activation during DENV infection
could enhance EVs production, which could further enhance inflammatory responses.
These points deserve further research not only in relation to DENV infection but also in
relation to other Flaviviridae infections.

6. EVs Help Restrict Flaviviridae Infections

In addition to the above mechanisms by which EVs favor viral infections, EVs may
also help the host organism to counteract them.

6.1. EVs Stimulate Host Innate Immunity

The cargo of EVs produced by immune cells may help to promote the innate immune
response. It has been shown that TLR3-activated macrophages can produce exosomes
containing members of the miRNA-29 family, which help induce an antiviral state in
HCV-infected hepatocytes [166]. Furthermore, EVs isolated from macrophages stimulated
with IFN I and II types were able to induce a late long-lasting inhibitory effect on HCV
replication, which was also confirmed for EVs from HCV patients under IFN therapy [97].
Exosomes from non-immune cells could also stimulate effector mechanisms against HCV.
For example, exosomes secreted by IFN-induced human liver sinusoidal cells [167] and
miRNA-containing exosomes secreted by umbilical mesenchymal stem cells had inhibitory
effects on HCV replication [168]. Next, HCV RNA delivered by EVs from hepatocytes
could induce an innate IFN-α response in neighboring DCs [169]. This is particularly
important because these EVs, derived from infected cells, carry immunostimulatory cargo
to the professional IFN-producing cells, whose ability to trigger an innate response is not
compromised because they are not permissive for infection.

DENV-infected cells were shown to produce exosomes containing interferon-inducible
transmembrane protein 3 (IFITM3), which exerted an antiviral activity against DENV in
uninfected cells [170]. Human monocyte-derived dendritic cells (mdDC) were found to
secrete EVs carrying a set of mRNAs of genes associated with innate immunity, includ-
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ing ATP-dependent helicases (DDX58, DDX60, and DDX60L), chemokines (CXCL10 and
CXCL11), and effectors of the type I IFN response (IFI35, IFI44L, IFIT1, IFIT5, IFIT3, and
IFITM1) [92]. PBMCs treated with IFN-α were also able to secrete EVs that inhibited the
replication of the pathogenic dengue strain DENV3-5532 [92]. WNV could also affect the
composition of EVs in infected cells, through both IFN-dependent and IFN-independent
pathways, by increasing the EV levels of miRNAs and mRNAs with immunostimulatory
and antiviral activities [171].

6.2. EVs Attenuate Antibody-Dependent Enhancement

EVs can also play a role in the specific protective mechanisms that help restrict fla-
viviral infections. EVs derived from human saliva have been shown to be more effective
in preventing ZIKV attachment to target cells than EVs derived from other sources [172].
The authors suggest that it protects against ZIKV infection via deep kissing in spite of the
susceptibility of oral cells to viral entry and of the high levels of viral RNA and infectious
virus present in saliva [172]. Subsequently, ZIKV-infected cells were shown to release
EVs carrying viral glycoprotein E on their surface and take up anti-E antibodies, thereby
attenuating the antibody-dependent enhancement modulated by these antibodies [57],
although not exclusively by anti-ZIKV antibodies but also by cross-reactive antibodies to
DENV, as demonstrated in a cell culture and in mouse models [57].

6.3. EVs May Favor Antigen Presentation

To our knowledge, there are no studies on Flaviviridae investigating EVs in relation
to viral antigen presentation, although facilitation of antigen presentation was one of the
first functions established for EVs. Professional antigen-presenting cells such as DC and B
lymphocytes load antigen peptides onto the MHC class II inside antigen-processing com-
partments, which are specialized endosomal structures [173]. Their fusion with the plasma
membrane releases MHC class II containing intraluminal vesicles as exosomes, can place
MHC class II on the plasma membrane where it can be released inside ectosomes [174,175],
and, finally, induces antigen-specific MHC class II-restricted T cell responses and modulates
the immune response [176,177]. Interestingly, EVs of small and medium sizes could activate
mainly CD4+ T cells of a Th1 phenotype and larger EVs-activated Th2 phenotype T cells [178].
Furthermore, EVs containing viral particles captured by neighboring antigen-presenting cells
may facilitate the antigen presentation process, even in the absence of complete virions, as
has been demonstrated for cancer antigens and some viruses [179–181].

7. Clinical Application of EVs for the Treatment of Flaviviridae Infections

In recent years, the clinical application of EVs as biomarkers and therapeutic carriers
has become a developing field of research. Accordingly, the number of clinical trials using
EVs has increased, targeting diseases as diverse as cancer, neurodegeneration, inflammation,
and immunology. The accumulated knowledge on the EV role in Flaviviridae pathogenesis
may promote their application in the diagnosis and treatment of infections caused by
these viruses.

7.1. EVs in Diagnostics and in the Therapy of Flaviviridae Infections

One of the potential clinical applications of EVs useful in the diagnosis and choice of
therapy for Flaviviridae infections is the use of EV cargo as a biomarker of the disease stage
or disease severity. Exosomal miRNAs during HCV infection are an early non-invasive
diagnostic biomarker for HCV-related hepatocellular carcinoma [91,182–184]. Another
example of EV-derived biomarkers are EVs containing specific miRNAs species (let-7e,
mir-1261, mir-371b, and mir-4327), which were detected when mdDCs were infected with
the hemorrhagic DENV3-5532 strain, but not with the DENV3-290 strain that causes mild
dengue [54,92,185]. A ZIKV study using the rhesus macaque trophoblast stem cell model
also revealed EV-derived diagnostic non-invasive miRNA markers that may help to identify
placental infection [186].
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EVs may also be the markers to evaluate the efficacy of antiviral therapy. For example,
the level of exosomal negative-sense HCV RNA was indicative of a replication-competent
virus and reflected resistance to treatment with IFN/ribavirin, as it was found in the exo-
somes of treatment non-responders and some treatment-naïve individuals [44]. Exosomal
HCV RNA expression also correlated significantly with HCV RNA expression in the sera
of HCV-infected patients [48], which may help to predict efficacy of treatment. Exoso-
mal miRNAs-122/155 expression levels may be associated with HCV replication, and the
higher the miRNA-122/199a expression, the more positive the therapeutic effect could be
expected [48,187]. Furthermore, treatment with DAAs may decrease the levels of some
exosomal miRNAs, indicating immune restoration [91]. Finally, miRNA levels may help
predict the therapeutic efficacy of DAAs in patients infected with different genotypes of
HCV [187].

7.2. EVs as Delivery Platforms

EVs are also widely used as platforms for the delivery of bioactive compounds. Their
immunogenicity is weaker than that of liposomes or viral vectors, and they are able to cross
major physiological barriers including the BBB, making them an attractive basis for the
development of therapeutic agents. Here are a few examples of these applications.

Adipose tissue-derived mesenchymal stem cells, which have a high capacity to pro-
duce large amounts of exosomes, were transfected with miRNAs and, as a result, secreted
exosomes carrying these miRNAs. The miRNAs could be effectively delivered to HCC
cells, where they exerted their therapeutic potential, as previously shown in other studies,
altering the expression of target genes and making HCC cells more sensitive to chemother-
apy [188]. Exosomes secreted by umbilical cord mesenchymal stem cells were previously
shown to inhibit HCV replication, probably due to the expression of functional miRNAs
including let-7f, miRNA-145, miRNA-199a, and miRNA-221. Thus, these exosomes have
been used as adjuvants in combination with IFN-α or telaprevir to enhance their thera-
peutic effect [168]. The IFITM3-containing EVs described above as potential anti-DENV
agents [170] were developed for the treatment of ZIKV and suppressed viremia by a 2-
log reduction in pregnant mice [189]. They could also be effectively delivered across the
placenta and were shown to suppress ZIKV in the fetus [189].

EVs have also been explored as a platform for vaccination, and some of these success-
ful developments are undergoing clinical trials [190,191]. An antigen can be incorporated
into EVs or on their surface, and this is the major challenge in EV-based vaccine devel-
opment. Two approaches are used for this: the first one is to produce and purify EVs
from antigen-expressing cells, and the second is to add an EV-targeting signal to the anti-
gen [192]. Exosome-based vaccine platforms include an intramuscularly delivered DNA
vector expressing viral antigen fused to the C-terminus of a mutant variant of the HIV-1 Nef
protein, known as the exosome-anchoring protein, which ensures high levels of uptake into
the exosomes [193]. This platform has been developed for several viral antigens, including
the NS3 of WNV and HCV [193]. In a study, it allowed the antigens to be loaded into the
exosomes and, when injected into mice, elicited a highly detectable antigen-specific CD8+
T cell response with cytotoxic activity [193].

7.3. EVs as a Target for Inhibitors

EVs and, in particular, their biogenesis can be targeted by chemical inhibitors that
help block the pathogenic functions of EVs. For example, blocking tetraspanins, which
are essential for exosome formation and the transmission of several Flaviviridae including
DENV, ZIKV, WNV, and HCV, may be a therapeutic c option to inhibit viral replication [194].

8. Conclusions and Perspectives

In this review, we aimed to analyze how EVs may play a role in Flaviviridae pathogen-
esis, which is summarized in the outline of Figure 1.
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Figure 1. EV roles in Flaviviridae pathogenesis. 
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Figure 1. EV roles in Flaviviridae pathogenesis.

First, EVs containing viral components facilitate the transmission of Flaviviridae, both
inter-host and between different cell types within a host. Of note, EVs may help cross
the BBB and transmit within the CNS, which is important for neurotropic viruses, and
autophagic vesicles generated during ZIKV infection may help cross the transplacental bar-
rier. Second, EVs promote immune evasion either by hiding viral components from innate
immune system receptors and neutralizing antibodies or by carrying other molecules that
inhibit host immunity. Third, EVs may enhance the proinflammatory responses associated
with Flaviviridae, contributing to the development of liver inflammation, endothelial dam-
age, and neuroinflammation. At the same time, EVs can also restrict Flaviviridae infections
by carrying antiviral and immunostimulatory molecules. The overlap of these opposing
EV functions should be of particular interest for further investigation. There are also blind
spots in topics such as the correlation of EVs’ secretion with inflammasome activation and
the role of EVs in the antigen presentation of flaviviral antigens, which should also prompt
further studies.

Some common problems associated with EV studies should be considered in further
research. These are the methodological drawbacks of EV isolation, including the difficulty
in separating EVs from viral particles which share common biophysical properties and from
other components. Second, the final fate of secreted EVs cannot always be defined, as, after
the secretion and internalization of EVs, their contents may be destroyed inside lysosomes
without achieving their objectives. Last but not least, the use of EVs as therapeutic tools
raises other puzzling questions, such as the technical challenges of loading cargo inside
EVs, quality control, and possible side effects of bioengineered EVs. All these aspects
should be considered in future studies.
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