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Abstract: The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxi-
dase (GPx) and peroxiredoxin 2 (Prx2) are particularly important in erythroid cells. Reticulocytes and
other erythroid precursors may adapt their biosynthetic mechanisms to cell defects or to changes in
the bone marrow environment. Our aim was to perform a comparative study of the mRNA levels
of CAT, GPX1, PRDX2 and SOD1 in reticulocytes from healthy individuals and from patients with
hereditary spherocytosis (HS), sickle cell disease (SCD) and β-thalassemia (β-thal), and to study
the association between their transcript levels and the reticulocyte maturity indices. In controls,
the enzyme mRNA levels were significantly correlated with reticulocyte maturity indices for all
genes except for SOD1. HS, SCD and β-thal patients showed younger reticulocytes, with higher
transcript levels of all enzymes, although with different patterns. β-thal and HS showed similar
reticulocyte maturity, with different enzyme mRNA levels; SCD and HS, with different reticulocyte
maturity, presented similar enzyme mRNA levels. Our data suggest that the transcript profile for
these antioxidant enzymes is not entirely related to reticulocyte maturity; it appears to also reflect
adaptive mechanisms to abnormal erythropoiesis and/or to altered erythropoietic environments,
leading to reticulocytes with distinct antioxidant potential according to each anemia.

Keywords: reticulocyte; hereditary spherocytosis; β-thalassemia; sickle cell disease; antioxidant
enzymes

1. Introduction

Due to the increased premature destruction of red blood cells (RBCs) in congenital
non-immune hemolytic anemias (NIHAs), reticulocytosis and the release of immature retic-
ulocytes into the bloodstream are common features and reflect the erythropoietic response
to anemia [1–3]. Reticulocyte analysis through the automated reticulocyte maturation
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indices is a valuable tool for assessing the erythropoietic status of NIHAs [4–8] and can
be used for differential diagnosis [4,5,9–15]. In ineffective or stressed erythropoiesis, the
reticulocyte count is usually lower than expected for anemia severity [6,15].

The reticulocytes (and other erythroid precursors) may adapt their biosynthetic mech-
anisms to cell defects or to an altered environment in the bone marrow, as occurs in
NIHAs [16]. Contrary to mature RBCs, which contain no DNA or RNA, reticulocytes still
have a network of ribosomal RNA [17].

In hereditary spherocytosis (HS), the membrane protein deficiencies induce membrane
destabilization [1,18], triggering metabolic stress in the erythroid cell to maintain membrane
integrity [19–21].

In β-thalassemia (β-thal), the tetramers of α-globin chains can precipitate and release
heme and iron, creating an oxidative environment within erythroid cells [2,22].

In sickle cell disease (SCD), the high trend of hemoglobin (Hb) S to polymerize leads
to cell sickling, inducing progressive cell dehydration and membrane damage by repeated
sickling, creating metabolic stress within cells [3,23,24].

Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and perox-
iredoxin 2 (Prx2) are important to assure a proper antioxidant environment within erythroid
cells and, thereby, an adequate erythropoiesis and normal erythrocyte lifespan [25]. These
antioxidant enzymes have been fairly characterized in mature RBCs; however, there are
very few reports about their transcriptome profiles in reticulocytes from healthy individu-
als [26,27] and, especially, from patients with NIHAs [28,29].

Our aim was to better understand the modulation of the antioxidant enzymes in HS,
SCD and β-thal patients and in healthy individuals by performing a comparative analysis
of their reticulocyte maturation profiles and evaluating their correlation with the mRNA
levels of CAT, SOD1, GPX1 and PRDX2.

2. Results
2.1. Hematological Data

When compared to the control group, we found that RBC concentrations were sig-
nificantly lower in HS and SCD patients and significantly higher in β-thal patients. This
latter group also presented significantly lower mean corpuscular volume (MCV) and mean
corpuscular Hb (MCH) (Table 1). Compared to the control group, Hb concentrations
were significantly lower in all NIHAs, with SCD presenting the lowest value; all patients
showed significantly higher red cell distribution width (RDW), and SCD patients showed
the highest value (Table 1).

2.2. Reticulocyte Parameters

The reticulocytes (percentage and concentration) and the reticulocyte production index
(RPI) were significantly increased in HS and SCD patients compared to the control group,
with HS patients showing the highest values (Table 1). β-thal patients presented higher
reticulocyte concentrations compared to controls, and their RPI was the lowest compared
to all groups.

HS, SCD and β-thal patients presented significantly lower low-fluorescence reticu-
locytes (LFRs) and higher medium-fluorescence reticulocytes (MFRs), high-fluorescence
reticulocytes (HFRs)and immature reticulocyte fraction (IRFs) compared to controls; SCD
patients presented the lowest LFRs and the highest IRF (Table 1).

2.3. CAT, GPX1, PRDX2, SOD1 and GADPH mRNA Levels in Reticulocytes

In HS and SCD patients, the reticulocytes showed significantly increased levels of
mRNA of all the studied genes, compared to controls, while in β-thal patients, only GPX1
and SOD1 were significantly increased (Figure 1A–E). When comparing to HS or SCD, the
β-thal reticulocytes presented significantly lower RNA levels of CAT, PRXD2 and SOD1
and significantly decreased transcripts of GPX1 than SCD.
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Table 1. Hematological data, reticulocyte count, reticulocyte production index, reticulocyte maturity
indices and immature reticulocyte fraction for control, hereditary spherocytosis, sickle cell disease
and β-thalassemia groups.

Control (n = 31) HS (n = 22) SCD (n = 6) β-Thal (n = 20)

RBCs (×1012/L) 4.9 (4.5–5.1) 4.0 (3.4–4.4) * 2.6 (2.2–3.5) *a 5.7 (5.1–5.9) *ab

Hb (g/L) 147 (137–154) 123 (113–131) * 81 (76–92) *a 112 (104–126) *b

MCV (fL) 88 (87–90) 86 (82–92) 86 (79–99) 63 (60–70) *ab

MCH (pg) 30 (29–31) 30 (29–33) 30 (26–35) 20 (19–22) *ab

RDW (%) 12.7 (12.4–13.1) 16.8 (14.2–18.6) * 19.7 (18.5–21.1) *a 15.9 (15.3–16.6) *b

RET (×109/L) 56 (49–71) 215 (143–263) * 177 (138–196) * 77 (52–107) *ab

RET (%) 1.2 (1.0–1.4) 5.4 (3.8–6.8) * 5.8 (4.8–7.3) * 1.5 (1.0–1.9) ab

RPI 1.07 (0.86–1.40) 2.41 (2.03–2.82) * 1.84 (1.39–2.55) * 0.67 (0.53–0.81) *ab

Control (n = 21) HS (n = 13) SCD (n = 4) β-thal (n = 14)

LFRs (%) 96.1 (94.3–96.8) 91.0 (85.4–94.1) * 68.4 (63.3–80.2) *a 92.2 (87.1–95.9) *b

MFRs (%) 3.9 (3.9–5.6) 8.0 (5.4–10.8) * 18.9 (12.5–19.7) *a 7.2 (3.4–11.3) *b

HFRs (%) 0.2 (0.0–0.4) 0.9 (0.6–3.8) * 12.8 (6.8–17.4) *a 0.9 (0.3–1.7) *b

IRF (%) 3.9 (3.2–5.6) 9.0 (6.0–14.6) * 36.7 (19.8–36.7) *a 7.8 (4.1–12.9) *b

Data are presented as median (interquartile range). Mann–Whitney U test was used to compare differences
between groups; p < 0.05 was considered statistically significant. * p < 0.05 vs. control group; a p < 0.05 vs. HS
patients; b p < 0.05 vs. SCD patients. β-thal, β-thalassemia; Hb, hemoglobin; HFRs, high-fluorescence reticulocytes;
HS, hereditary spherocytosis; IRF, immature reticulocyte fraction; LFRs, low-fluorescence reticulocytes; MCH,
mean corpuscular hemoglobin; MCV, mean corpuscular volume; MFRs, medium-fluorescence reticulocytes; RBCs,
red blood cells; RDW, red cell distribution width; RET, reticulocytes; RPI, reticulocyte production index; SCD,
sickle cell disease.
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 Figure 1. Reticulocyte mRNA levels of catalase (CAT, (A)), glutathione peroxidase 1 (GPX1, (B)),
peroxiredoxin 2 (PRDX2, (C)), superoxide dismutase 1 (SOD1, (D)) and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH, (E)) in the control (n = 31), hereditary spherocytosis (n = 22), sickle cell
disease (n = 6) and β-thalassemia (n = 20) groups. The embedded table (F) shows the comparison
between the average mRNA transcript levels for each disease in relation to the control group (ratios).
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Data are presented as median (interquartile range) for (A–E). Mann–Whitney U test was used to
compare differences between groups; p < 0.05 was considered statistically significant. * p < 0.05 vs.
control group; a p < 0.05 vs. HS patients; b p < 0.05 vs. sickle cell disease patients. β-thal, β-thalassemia;
HS, hereditary spherocytosis; SCD, sickle cell disease.

The cDNA copy-number values of all genes were several folds higher than controls
in HS and SCD patients, with the latter presenting the highest values; in β-thal, only the
GPX1 and SOD1 ratios were higher (Figure 1F).

2.4. Reticulocyte Maturity Indices versus mRNA Levels of CAT, GPX1, PRDX2, SOD1 and
GAPDH

When evaluating the relationships between reticulocyte maturity indices and the
mRNA levels of the studied genes, we found that for the control group, the transcripts
of all enzymes correlated negatively and significantly with the LFRs, and positively and
significantly with the IRF, except for SOD1 (Figures 2 and 3).
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Figure 2. Percentage of low-fluorescence reticulocytes (LFR, %) versus mRNA levels of catalase (CAT,
(A)), glutathione peroxidase 1 (GPX1, (B)), peroxiredoxin 2 (PRDX2, (C)), superoxide dismutase 1
(SOD1, (D)) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, (E)) for the control (n = 21),
hereditary spherocytosis (n = 13), sickle cell disease (n = 4) and β-thalassemia (n = 14) groups.
Spearman’s rank correlation coefficient was used to evaluate relationships between sets of data;
p < 0.05 was considered statistically significant. β-thal, β-thalassemia; HS, hereditary spherocytosis;
SCD, sickle cell disease.

In the NIHA groups, PRDX2 mRNA levels were negatively correlated with LFRs and
positively correlated with the IRF for HS patients (Figures 2 and 3).
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Figure 3. Percentage of immature reticulocyte fraction (IRF, %) versus mRNA levels of catalase (CAT,
(A)), glutathione peroxidase 1 (GPX1, (B)), peroxiredoxin 2 (PRDX2, (C)), superoxide dismutase
1 (SOD1, (D)) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, (E)) for the control (n =
21), hereditary spherocytosis (n = 13), sickle cell disease (n = 4) and β-thalassemia (n = 14) groups.
Spearman’s rank correlation coefficient was used to evaluate relationships between sets of data; p
< 0.05 was considered statistically significant. β-thal, β-thalassemia; HS, hereditary spherocytosis;
SCD, sickle cell disease.

3. Discussion

Reticulocytes still have mRNA, providing a reservoir of information regarding their
erythropoietic status. Intracellular RNA levels are directly correlated to fluorescence
intensity and, thus, to the degree of reticulocyte maturation [4,5,9–15]. Several studies
analyzed reticulocyte maturity indices in β-thal [6,8] and HS [7], reporting an increase in
MFRs and HFRs and/or in IFRs, which indicated an increase in immature reticulocytes.

Herein, we studied the correlation between reticulocyte maturity indices for the first
time, as given by automatic blood cell counters and the mRNA levels of antioxidant
enzymes (CAT, GPX1, PRDX2 and SOD1) in reticulocytes from healthy individuals and
from patients with HS, β-thal or SCD.

When compared to the NIHA groups, reticulocytes from the control group showed
the lowest mRNA content and, thus, were the more mature reticulocytes, as shown by
the highest LFRs and the lowest IFRs (Table 1). Considering that the mRNA levels of
the genes on study correspond to the copy number of RNA templates still untranslated
during the final maturation stage of the reticulocyte in the bloodstream, the transcriptome
observed in healthy individuals seems to follow the order GPX1 < GAPDH < SOD1 <
CAT < PRDX2 (Figure 1A–E). This is possibly in line with the relative amount of each
enzyme that will be needed to support a normal RBC lifespan; actually, Prx2, the third most
abundant protein in this cell [30], presents the highest transcript values. Our data support
that as reticulocytes mature, the relative amounts of all RNA transcripts of these enzymes
decrease as the proteins are synthesized, which is consistent with the decrease in immature
circulating reticulocytes (IFRs) and the increase in late-stage circulating reticulocytes (LFRs)
(Figures 2 and 3).

Most of the correlations between the reticulocytes’ maturity indices and the mRNA
levels for each enzyme were not statistically significant in HS, SCD and β-thal patients
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(Figures 2 and 3). Thus, proportionality does not exist between the amount of total RNA and
the levels of the enzyme transcripts in reticulocytes observed in controls. This might result
from altered erythropoietic activity, which leads to changes in reticulocyte maturation and
in their release from bone marrow, or from altered protein translation. An et al. [31] showed
that the transcriptome composition during human terminal erythroid differentiation greatly
changes from one stage to another. Given the different maturity indices presented by HS,
SCD and β-thal patients, between each other and the controls (Table 1), it is reasonable that
their transcriptome might reflect distinct temporal patterns of gene expression between
more immature and more mature reticulocytes. However, it might also result from adaptive
changes in erythroid cells due to alterations in erythroid cell components and/or in the
erythropoietic environment.

Comparing the amounts of reticulocyte RNA, we found that for the three NIHA
groups, the sequence order was GAPDH < GPX1 < SOD1 < CAT < PRDX2, which is
different from that found for the control group (see above, Figure 1A–E). This change may
reflect the differences in reticulocyte maturity, but it may also reflect different needs in
the protein synthesis of the main redox enzymes. The quantity of GAPDH transcripts
appears to be proportional to the reticulocyte maturity indices; however, for CAT, GPX1,
PRDX2 and SOD1, this proportionality is not evident (Table 1 and Figure 1E). In fact,
HS and β-thal patients with similar IRF, LFRs and anemia severity (Table 1) presented
clearly distinct quantities of mRNA transcripts (Figure 1A–D). This shows that reticulocytes
with similar maturation development presented very different transcriptomes, which
leads us to hypothesize that other factors than maturity may influence the mRNA levels
of these redox enzymes. Probably, an adaptive response to an abnormal erythropoiesis
and/or to an altered erythropoietic milieu occurs, such as in inflammatory or oxidative
environments [3,32–34].

HS patients (all unsplenectomized) showed a significantly higher RPI and reticulocy-
tosis compared to controls (Table 1). These common findings in HS patients [7,14,35] were
associated to significantly lower LFRs and a higher IRF, evidencing the erythropoietic re-
sponse to correct anemia by increasing RBC production and releasing more immature reticu-
locytes with significantly higher mRNA levels (Figure 1), likely due to incomplete/delayed
protein synthesis. We must also consider that this increase in untranslated transcripts may
result from their accumulation due to an impairment in protein synthesis, or from a higher
stimulus for transcription of antioxidant enzymes in order to face an erythroid oxidant
environment. Interestingly, in HS patients, PRDX2 showed a strikingly increased mRNA
value, as compared to the other antioxidant enzymes, accompanied by significant correla-
tions with LFRs and the IRF (Figures 2 and 3). This supports that Prx2 has a main role in the
regulation of the redox metabolism of RBCs in HS patients, as reported elsewhere [36,37],
possibly intervening as early as the erythropoietic development.

Patients with SCD presented a similar number of reticulocytes to HS patients but
showed more severe anemia (Table 1). Their RPI values were significantly lower than
in HS, showing that in SCD, the erythropoietic response is less efficient or impaired. In
fact, we observed the most immature reticulocyte profile in SCD, with the highest IRF and
the lowest LFRs (Table 1), as reported by others [14,15,38–40]. This was also supported
by the extremely high levels of all mRNA transcripts, especially when comparing their
average increase to the controls (Figure 1F). It was shown that stress erythropoiesis occurs
in SCD patients [3,41], with a lower number of erythropoietic cells within a hypoxic
and inflammatory environment [42]. This unique milieu in the bone marrow and in the
peripheral circulation might certainly underlie the more severe anemia and the highest
reticulocyte immaturity, as compared to the HS and β-thal groups; it may also explain the
lower RPI (Table 1).

In β-thal patients, in spite of normal reticulocyte counts, the IRF was higher and LFRs
lower than in controls (Table 1), showing a premature reticulocyte release, as reported by
others [6–8,14,15,36,43]; this was associated with increased GPX1 and SOD1 mRNA levels
(although not as high as in SCD and HS) (Figure 1B,D). Romanello et al. [29] also reported
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significantly increased transcripts of GPX1 and SOD1 genes in β-thal intermedia patients.
These authors [29] also reported an increase in CAT mRNA levels and decreased PRDX2
levels, while our data only indicate trends, which is possibly explained by the less severe
form of β-thal (minor trait) of our patients.

It is important to notice that β-thal had a similar reticulocyte maturity profile to
HS, but the RPI was significantly lower (Table 1), denoting a noteworthy ineffective ery-
thropoiesis [44–46]. The altered erythropoiesis may explain the observed similarity in
circulating reticulocyte maturity between HS and β-thal patients, which was simultaneous
with very different pattern in mRNA relative levels of the antioxidant enzymes (Figure 1F).
The β-thal patients showed the lowest mRNA levels among the pathologic groups (Fig-
ure 1A–E), presenting CAT, PRX2 and GAPDH mRNA levels similar to those of the control
group. In β-thal, erythropoiesis is characterized by an early-stage enhanced erythroblast
proliferation, in parallel with limited erythroid differentiation and increased apoptosis
during the late stages of erythropoietic development [44–46]. It appears that when the ery-
throblasts are able to differentiate, they give rise to reticulocytes which present an mRNA
profile closer to that of healthy individuals than to those of HS or SCD patients. Unlike
β-thal, the latter two present the typical hallmarks of stressed erythropoiesis associated
with inflammation [41,42,47,48]; thus, it is possible that these very different pathologic
erythropoietic developments might result in the transcriptome-distinct patterns that we
describe herein.

In conclusion, similar reticulocyte maturity indices, as observed in β-thal and HS,
were linked to completely different mRNA level profiles; on the contrary, SCD and HS cases
with distinct reticulocyte immaturity showed similar patterns of transcripts. Our results
suggest that these differences in the relative mRNA levels for the studied enzymes are not
entirely related to the maturity of reticulocytes but appear to also reflect the response to
changes within the erythroid cells and/or in the bone marrow environment (oxidative,
inflammatory) characteristic of each anemia. That is, the reticulocytes released into the
bloodstream already present adaptive modifications according to each NIHA to assure the
development of mature RBCs equipped with the needed antioxidant potential to achieve a
lifespan as close as possible to normal.

4. Materials and Methods
4.1. Subjects

This study was conducted in accordance with the Declaration of Helsinki and ap-
proved by the Ethic Committees of Centro Hospitalar e Universitário de São João, Porto,
and Centro Hospitalar Universitário de Santo António, Porto. All participants, or their legal
representatives, gave their informed consent to participate in the study. Patient selection
was performed by clinical hematologists according to the study’s parameters.

We studied 81 individuals, including 31 healthy individuals (control group) and 50
subjects diagnosed with NIHA: 22 HS patients (all unsplenectomized), 6 SCD patients
( homozygous SCD (S/S)and 20 β-thal patients (all minor trait). Blood samples were
collected (5 mL, using EDTA as anticoagulant) during the routine follow-up of the patients
and when in steady-state pathological conditions. The patients had not received blood
transfusions in the 4 months prior to this study.

No statistically significant (χ2) differences were found for sex (male/female: 52/48%,
52/48%, 25/75%, 50/50%) and age (27 ± 2, 24 ± 5, 15 ± 5, 32 ± 6 years) between control,
HS, SCD and β-thal groups, respectively.

4.2. Evaluation of Hematological Parameters

Complete blood count, reticulocyte count and reticulocyte maturation indices, namely,
low-fluorescence reticulocytes (LFRs), medium-fluorescence reticulocytes (MFRs), high-
fluorescence reticulocytes (HFRs) and immature reticulocyte fraction (IRF, sum of MFRs
plus HFRs) [10,49], were also evaluated (Sysmex XN-9000®). The reticulocyte production
index (RPI) was calculated according to Hillman [50].
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Due to COVID-19 hospital constraints during the time period of sample collection
(2019–2022), the reticulocyte maturation indices were only determined for 21 controls,
13 HS patients, 4 SCD patients and 14 β-thal patients. Nonetheless, after performing
statistical analysis utilizing both the larger or smaller sample number of individuals, we
found that the results (hematological and reticulocyte parameters and reticulocyte mRNA
levels) were similar, independently of case number, when comparing the different groups
(Table S1 of Supplementary Data).

4.3. Separation of Reticulocytes

After a double density gradient (Histopaque 1.077 and 1.119, Sigma-Aldrich, St. Louis,
MO, EUA) centrifugation (700× g, 25 ◦C, 30 min) of whole-blood samples (500.0 µL),
plasma and leukocytes were discarded, and RBCs were isolated and washed two times
with phosphate-buffered saline (PBS) solution (pH 7.4). Then, reticulocytes were separated
from mature RBCs using the manual column-based magnetic cell isolation—MACS®—
separation technology (MidiMACSTM kit equipped with LS columns, Miltenyi Biotec,
Bergisch Gladbach, Germany) and the MACS® MicroBeads (human CD71 MicroBeads,
Miltenyi Biotec), according to the manufacturer’s instructions.

Briefly, a suspension containing 1.8 × 109 of erythrocytes was prepared in MACS®

buffer (PBS pH 7.2, 0.5% bovine serum albumin and 2.0 mM EDTA, sterilized and degassed).
Upon centrifugation (300× g, 4 ◦C, 10 min), the pellet was resuspended in 120.0 µL of buffer,
and 80.0 µL of CD71 MicroBeads was added for a 15 min incubation at 4 ◦C. After washing,
the reticulocytes were separated using the MidiMACSTM separator. The magnetically
labeled CD71+ cells (reticulocytes) were retained on the column and later eluted with 6 mL
of buffer.

The obtained cell suspension was centrifuged (1000× g, 4 ◦C, 5 min) and TRI reagent
solution (Sigma) was added to the final pellet (reticulocytes) for cell lysis and conservation;
the samples were stored at −80 ◦C until RNA extraction.

4.4. qRT-PCR Analysis

Phenol-chloroform RNA extraction from reticulocytes was performed according to
the manufacturer’s instructions (TRI Reagent® Protocol, Sigma-Aldrich, St. Louis, MO,
EUA). Briefly, after thawing, chloroform was added to the samples that were prepared
as described in Section 2.3, and after centrifugation (12,000× g, 15 min, 4 ◦C), RNA was
precipitated with isopropanol from the aqueous phase. Samples were again centrifuged
(12,000× g, 10 min, 4 ◦C), and the RNA pellet was resuspended and washed in 75% ethanol
(7500× g, 5 min, 4 ◦C). Finally, the RNA pellet was dissolved in RNase-free water and
stored at −80 ◦C until further assayed.

RNA concentrations were measured by NanoDrop (ND-1000 Spectrophotometer,
NanoDrop Technologies Inc., Wilmington, DE, EUA). cDNA was obtained by reverse
transcription of RNA templates using the Xpert cDNA synthesis kit (GRiSP, Porto, Portugal),
following the manufacturer’s instructions.

For amplification in qPCR reactions (Applied Biosystems StepOnePlus Real-Time PCR
system, Thermo Fisher Scientific, Waltham, MA, EUA), Xpert Fast SYBR 2X mastermix
(GRiSP), custom primers (Table 2) and 1 ng of cDNA were used. The cDNA levels were
assessed by performing a calibration against a standard curve of known amounts of
synthesized cDNA. To establish the standard curve for each gene, a cDNA stock solution in
the range of 102 to 10−4 ng of nucleic acid/reaction was used (Figure S1 of Supplementary
Data). The nucleic acid amount in each sample was expressed in copy numbers of cDNA
according to Dorak [51].
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Table 2. List of primer sequences, annealing temperatures and reaction concentrations.

Gene Primer Sequences (5′→3′) Ta (◦C) Concentration (nM)

CAT
F ACT GTT GCT GGA GAA TCG GG

60 250R TCC CTG ATG AAG AAA ATG GGG G

GPX1
F GGT CTG GTC TTC AGC TAC CC

60 250R ACC AGT TTC TTC CGG ATG GC

PRDX2
F CCT GAA CAT CCC CCT GCT TG

60 250R AGT GAT CTG GCG AAG GAC AC

SOD1
F GAG AGG CAT GTT GGA GAC TT

60 200R TCT GCT TTT TCA TGG ACC ACC

GAPDH
F TAT GAC AAC AGC CTC AAG AT

60 200R GAG TCC TTC CAC GAT ACC
CAT, catalase; F, forward; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GPX1, glutathione peroxidase 1;
PRDX2, peroxiredoxin 2; R, reverse; SOD1, superoxide dismutase 1; Ta, annealing temperature.

Alongside with the antioxidant enzyme genes (CAT, GPX1, PRDX2 and SOD1),
GAPDH was also evaluated because glyceraldehyde-3-phosphate dehydrogenase (G3PD)
synthesis still occurs at the reticulocyte stage [52], and this gene has been extensively used
in gene expression studies, due to its ubiquitous existence. Moreover, G3PD linkage at the
erythrocyte membrane has been proposed as a marker of membrane destabilization and
OS [36,53], and it was found to be correlated to reticulocyte count in HS patients [54].

To compare the relative amount of RNA transcript levels between each NIHA and
the control group, the ratios between the mean copy number of cDNA value for each
NIHA/control pair were calculated.

4.5. Statistical Analysis

IBM SPSS Statistics 29 for Windows (SPSS Inc., Chicago, IL, EUA) was used. Data
normality was assessed by the Shapiro–Wilk test. Due to their non-Gaussian distribution,
data are presented as median values (interquartile range). Group differences were examined
via the Pearson Chi-Square and Kruskal–Wallis H tests, and upon statistical significance,
pairwise comparisons were made using the Mann–Whitney U test. Associations between
data were assessed by Spearman’s rank correlation coefficient. Statistical significance was
reached when p < 0.05.
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