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Abstract: Carbon–semiconductor hybrid quantum dots are classical carbon dots with core carbon
nanoparticles doped with a selected nanoscale semiconductor. Specifically, on those with the nanoscale
TiO2 doping, denoted as CTiO2-Dots, their synthesis and thorough characterization were reported
previously. In this work, the CTiO2-Dots were evaluated for their visible light-activated antibacterial
function, with the results showing the effective killing of not only Gram-positive but also the generally
more resistant Gram-negative bacteria. The hybrid dots are clearly more potent antibacterial agents
than their neat carbon dot counterparts. Mechanistically, the higher antibacterial performance of the
CTiO2-Dots is attributed to their superior photoexcited state properties, which are reflected by the
observed much brighter fluorescence emissions. Also considered and discussed is the possibility of
additional contributions to the antibacterial activities due to the photosensitization of the nanoscale
TiO2 by its doped core carbon nanoparticles.

Keywords: carbon dots; carbon–TiO2 hybrid dots; antibacterial function; Gram-negative bacteria;
fluorescence performance; photosensitization

1. Introduction

Small carbon nanoparticles (CNPs) as nanoscale carbon allotropes at zero-dimension,
joining the one-dimensional carbon nanotubes and two-dimensional graphenes, have
attracted rapidly increasing attention in the recent literature [1–3]. The properties of CNPs
including, especially, their optical and photoexcited state properties could be dramatically
enhanced when the CNP surface is passivated effectively via the deliberate chemical
functionalization of organic species, with the resulting surface-functionalized CNPs defined
as carbon “quantum” dots or carbon dots (CDots, Figure 1) [1,4,5]. CDots are essentially
special core–shell nanostructures each with a CNP core and a corona-like soft shell of
organic species dominated by those chemically bonded to the CNP core (Figure 1). The
most visible property enhancement from CNPs to CDots is that the latter exhibits bright
and colorful fluorescence emissions, while “naked” CNPs in solvent dispersions are in
general only weakly emissive [6]. The brightly fluorescent CDots are also known for
their potent antimicrobial activities with visible light exposure [7–14]. The photoinduced
antimicrobial properties of CDots may also share some mechanistic features with those of
classical semiconductor quantum dots (QDs) [15–18].

It has also been demonstrated that CNPs are compatible with nanoscale semiconduc-
tors for carbon-based/derived hybrid “quantum” dots. Among the hybrid dot config-
urations more relevant to the work reported here are those from the doping or coating
of CNPs with nanoscale semiconductors such as ZnS, ZnO, or TiO2 and then the same
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organic functionalization as that in the preparation of neat CDots, and the resulting carbon–
semiconductor hybrid “quantum” dots are denoted as CZnS-Dots, CZnO-Dots, or CTiO2-Dots,
respectively [19,20]. These hybrid dots have been found to exhibit greatly enhanced pho-
toexcited state properties compared to those of their neat CDots counterparts, with most
having visibly much brighter fluorescence emissions and correspondingly higher observed
fluorescence quantum yields.
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Figure 1. Cartoon illustration of (left) classical CDots in the structure of a small carbon nanoparticle 
core with surface organic functionalization and (right) the carbon–TiO2 hybrid dots, CTiO2-Dots, in 
which the small carbon nanoparticle core is doped with nanoscale TiO2 and also with the same or-
ganic functionalization. 
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tor hybrid dots, opening up a new frontier in the development of high-performance anti-
microbial nanomaterials. 

2. Results  
The preparation and characterization of CTiO2-Dots have been established in previ-

ously reported studies [20]. The CNPs were harvested from the oxidative acid-treated car-
bon nanopowder sample, and the known carboxylic acid moieties on the surfaces of CNPs 
benefited their more homogenous dispersion in the ethanol–water–nitric acid mixture. In 
the same solvent mixture, the organo-titanium compound Ti(OC2H5)4 was hydrolyzed to 
form Ti(OH)4, with a preference on the surfaces of the dispersed CNPs due to nucleation 
effects, followed by their dehydration to become TiO2 in the subsequent thermal annealing 
process. The resulting TiO2-doped CNPs were treated with O,O’-bis(3-aminopropyl) pol-
yethylene glycol of average molecular weight ~1500 (PEG1500N), which was designed to 
target those doped CNPs still of some surface-bound carboxylic acid moieties to form 
zwitterionic bonds. The PEG1500N functionalization of the TiO2-doped CNPs yielded CTiO2-
Dots. These carbon–TiO2 hybrid dots are CNPs each with the surface effectively passiv-
ated by the combination of TiO2 doping and PEG1500N functionalization. Such a structural 
configuration is consistent with the available results from the transmission electron 

Figure 1. Cartoon illustration of (left) classical CDots in the structure of a small carbon nanoparticle
core with surface organic functionalization and (right) the carbon–TiO2 hybrid dots, CTiO2-Dots,
in which the small carbon nanoparticle core is doped with nanoscale TiO2 and also with the same
organic functionalization.

The photoexcited state properties of CDots are known to dictate their light-activated
antimicrobial function. Thus, it should be expected that the enhancement of such properties
in the carbon-based/derived hybrid dots would result in their improved antimicrobial
performance. Indeed, it was found in the work reported here that the CTiO2-Dots with
exposure to visible light are very effective in killing not only Gram-positive bacteria but
also the generally more resistant Gram-negative bacteria. The CTiO2-Dots represent an inter-
esting platform of carbon-based/derived hybrid dots, with superior optical spectroscopy
properties. The findings on their similarly superior photoinduced antimicrobial function in
the study reported here demonstrate the excellent potential of the carbon–semiconductor
hybrid dots, opening up a new frontier in the development of high-performance antimicro-
bial nanomaterials.

2. Results

The preparation and characterization of CTiO2-Dots have been established in previ-
ously reported studies [20]. The CNPs were harvested from the oxidative acid-treated
carbon nanopowder sample, and the known carboxylic acid moieties on the surfaces
of CNPs benefited their more homogenous dispersion in the ethanol–water–nitric acid
mixture. In the same solvent mixture, the organo-titanium compound Ti(OC2H5)4 was
hydrolyzed to form Ti(OH)4, with a preference on the surfaces of the dispersed CNPs due
to nucleation effects, followed by their dehydration to become TiO2 in the subsequent
thermal annealing process. The resulting TiO2-doped CNPs were treated with O,O’-bis(3-
aminopropyl) polyethylene glycol of average molecular weight ~1500 (PEG1500N), which
was designed to target those doped CNPs still of some surface-bound carboxylic acid
moieties to form zwitterionic bonds. The PEG1500N functionalization of the TiO2-doped
CNPs yielded CTiO2-Dots. These carbon–TiO2 hybrid dots are CNPs each with the surface
effectively passivated by the combination of TiO2 doping and PEG1500N functionalization.
Such a structural configuration is consistent with the available results from the transmission
electron microscopy imaging at high resolution [19,20]. Some microscopy characterization
results are provided in the Supplementary Materials. However, the XRD probing of the
TiO2 domains in the hybrid dot sample did not yield useful information due to the low TiO2
content and probably more so to the severe signal broadening effects associated with the
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ultra-nanoscopic TiO2 domain sizes. The effectiveness of the combined surface passivation
effects was reflected by the observed very bright fluorescence emissions with correspond-
ingly high fluorescence quantum yields (ΦF). The ΦF value of the CTiO2-Dots sample used
in the antibacterial experiments was 41%, versus the ΦF value of 10–12% for the similarly
synthesized PEG1500N-CDots sample without any TiO2 doping. However, the optical ab-
sorption and fluorescence emission spectral features of CTiO2-Dots and PEG1500N-CDots in
solutions were not different in any dramatic fashion (Figure 2) [21].
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Figure 2. Absorption and fluorescence (440 nm excitation) spectra of CTiO2-Dots (solid line) and
PEG1500N-CDots (dashed line) in aqueous solutions.

CDots of different surface organic functionalizations with visible light exposure have
exhibited potent antibacterial activities against Gram-positive bacteria [8]. In the evaluation
experiments using the Gram-positive B. subtilis as the target, the bacterial cells in PBS
suspensions (~106–107 CFU/mL) were treated with CTiO2-Dots at different concentrations
under visible light exposure for 2 h. After the treatments, the viable cell numbers in the
treated samples and the control samples were determined. As shown in Figure 3, in the
dose–response curves of B. subtilis, the CTiO2-Dots sample with visible light exposure is
clearly highly efficient in inactivating B. subtilis, such that the treatment with 5 µg/mL
CTiO2-Dots can completely inactivate all cells in the tested bacterial sample corresponding
to ~6 log viable cell reduction in B. subtilis cells.

For comparison, the antibacterial activity against B. subtilis by the similarly structured
PEG1500N-CDots but without TiO2 doping was evaluated under the same light exposure
and test conditions. According to the dose–response curve also shown in Figure 3, the
visible light-activated antibacterial function of the PEG1500N-CDots was much weaker, such
that the treatment with 20 µg/mL of the dot sample resulted in only ~0.8 log viable cell
reduction in B. subtilis. The effect of increasing the concentration of the CDots was not so
significant either, with the doubling of the PEG1500N-CDots concentration to 40 µg/mL
in the treatment resulting in only slightly increased viable cell reduction in B. subtilis
to ~1.1 log (Figure 3).
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Figure 3. The dose–response curves of CTiO2-Dots and PEG1500N-CDots with 2 h visible light exposure
for the inactivation of B. subtilis cells.

Gram-negative bacteria are generally more resistant to many antibiotics and antimi-
crobial agents due to the permeability barrier properties of their outer membrane [22–27].
Such a membrane containing lipopolysaccharide represents a unique structural feature
of Gram-negative bacteria, and makes it more difficult for antibiotics and antibacterial
agents to penetrate and reach the cytoplasm for action [28–35]. In fact, combating Gram-
negative bacteria has been a historic challenge in the antimicrobial research field [36–42];
so, any success in developing antimicrobial agents capable of effectively inactivating Gram-
negative bacteria is highly valuable. In this study, E. coli was selected as a representative
of Gram-negative bacteria for the evaluation of the antibacterial activities of CTiO2-Dots
and PEG1500N-CDots with visible light exposure. The experimental conditions for the
evaluations were similar to those for B. subtilis discussed above. The E. coli cells in PBS
suspensions (~106–107 CFU/mL) were treated with CTiO2-Dots at different concentrations
with visible light exposure for 2 h, followed by the determination of the viable cell numbers
in the treated samples and the controls. As shown in Figure 4, the CTiO2-Dots sample with
visible light exposure is highly efficient in inactivating Gram-negative E. coli cells, with the
effectiveness comparable to that against B. subtilis. More quantitatively, the treatment with
2.5 µg/mL CTiO2-Dots resulted in ~1.1 log viable cell reduction, and a higher CTiO2-Dots
concentration of 5 µg/mL could completely inactivate all E. coli cells in the tested bacterial
samples, corresponding to ~6 log viable cell reduction.

For comparison, the PEG1500N-CDots sample was used to treat E. coli cells with the
same visible light exposure, and the results are shown in Figure 4. Obviously, the PEG1500N-
CDots sample with visible light was incapable of inactivating E. coli cells, even with the
much higher dot concentrations of 20–40 µg/mL (Figure 4).

Among the classically defined and synthesized CDots, which are simply small carbon
nanoparticles (CNPs) with deliberate chemical functionalization of the nanoparticle surface
by organic species [1], EDA-CDots [EDA = 2,2′-(ethylenedioxy)bis(ethylamine)] [43] have
been considered a benchmark dot sample for their generally potent visible light-activated
antimicrobial function, including their ability to inactivate Gram-negative bacteria like
E. coli [7,44]. However, as also shown by the comparison in Figure 4, the CTiO2-Dots are
still significantly more effective. A clear mechanistic understanding on the effectiveness of
CTiO2-Dots is beyond the scope of this work, but some considerations that might be relevant
to the mechanistic origins of the observed different antibacterial behaviors are as follows.



Int. J. Mol. Sci. 2024, 25, 2196 5 of 9
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 10 
 

 

 
Figure 4. The dose–response curves of CTiO2-Dots, PEG1500N-CDots, and EDA-CDots with 2 h visible 
light exposure for the inactivation of E. coli cells. 

For comparison, the PEG1500N-CDots sample was used to treat E. coli cells with the 
same visible light exposure, and the results are shown in Figure 4. Obviously, the PEG1500N-
CDots sample with visible light was incapable of inactivating E. coli cells, even with the 
much higher dot concentrations of 20–40 µg/mL (Figure 4). 

Among the classically defined and synthesized CDots, which are simply small car-
bon nanoparticles (CNPs) with deliberate chemical functionalization of the nanoparticle 
surface by organic species [1], EDA-CDots [EDA = 2,2′-(ethylenedioxy)bis(ethylamine)] 
[43] have been considered a benchmark dot sample for their generally potent visible light-
activated antimicrobial function, including their ability to inactivate Gram-negative bac-
teria like E. coli [7,44]. However, as also shown by the comparison in Figure 4, the CTiO2-
Dots are still significantly more effective. A clear mechanistic understanding on the effec-
tiveness of CTiO2-Dots is beyond the scope of this work, but some considerations that might 
be relevant to the mechanistic origins of the observed different antibacterial behaviors are 
as follows. 

3. Discussion 
In general, the photoexcited state properties of CDots, which ultimately drive their 

antimicrobial activities, are correlated with their observed fluorescence parameters, more 
specifically, fluorescence quantum yields (ΦF). There is experimental evidence for the pos-
itive correlation between the antimicrobial effectiveness of the CDots and their observed 
fluorescence quantum yields [45], which are further correlated with the effectiveness of 
the surface functionalization of the core CNPs in the CDots [1]. Therefore, it may be ar-
gued that the poor performance of the PEG1500N-CDots against E. coli might be attributed 
to their observed relatively low fluorescence quantum yields due to the less effective func-
tionalization of the core CNPs by PEG1500N via the zwitterionic bonding. Consistent with 
such an argument is the generally more effective functionalization of the core CNPs in the 
EDA-CDots, with higher observed fluorescence quantum yields [43]. For the CTiO2-Dots, 
the high fluorescence quantum yields due to the combined surface passivation by the TiO2 
doping and PEG1500N attachment may be used to account for the high performance in the 
visible light-driven inactivation of Gram-negative E. coli, though there could also be other 
contributing factors. In the CTiO2-Dots, while the nanoscale TiO2 moieties are not 

0 10 20 30 40 50
0

2

4

6

8

Dots concentration (µg/mL)

Lo
g1

0 
of

 v
ia

bl
e 

E.
 c

ol
i c

el
l n

um
be

r 
(L

og
 C

FU
/m

L)

CTiO2-Dots

PEG1500N-CDots

EDA-CDots 

Figure 4. The dose–response curves of CTiO2-Dots, PEG1500N-CDots, and EDA-CDots with 2 h visible
light exposure for the inactivation of E. coli cells.

3. Discussion

In general, the photoexcited state properties of CDots, which ultimately drive their
antimicrobial activities, are correlated with their observed fluorescence parameters, more
specifically, fluorescence quantum yields (ΦF). There is experimental evidence for the
positive correlation between the antimicrobial effectiveness of the CDots and their observed
fluorescence quantum yields [45], which are further correlated with the effectiveness of
the surface functionalization of the core CNPs in the CDots [1]. Therefore, it may be
argued that the poor performance of the PEG1500N-CDots against E. coli might be attributed
to their observed relatively low fluorescence quantum yields due to the less effective
functionalization of the core CNPs by PEG1500N via the zwitterionic bonding. Consistent
with such an argument is the generally more effective functionalization of the core CNPs in
the EDA-CDots, with higher observed fluorescence quantum yields [43]. For the CTiO2-Dots,
the high fluorescence quantum yields due to the combined surface passivation by the TiO2
doping and PEG1500N attachment may be used to account for the high performance in
the visible light-driven inactivation of Gram-negative E. coli, though there could also be
other contributing factors. In the CTiO2-Dots, while the nanoscale TiO2 moieties are not
absorptive in the visible spectral region, such moieties are known to have the capability
for photosensitization due to photoexcited molecular dyes with absorptions in the visible
light spectrum [46–50]. It is possible that there is photosensitization of the nanoscale
TiO2 moieties by the nanocarbon part of CTiO2-Dots upon visible light excitation, which
could contribute to the overall antibacterial activities. This is obviously a complicated
structure–property relationship issue that deserves further dedicated investigations.

4. Material and Methods
4.1. Materials

The carbon nanopowder sample was acquired from US Research Nanomaterials, Inc.
(Houston, TX, USA). O,O’-Bis(3-aminopropyl) polyethylene glycol (PEG1500N, average
molecular weight ~1500) was purchased from Aldrich, Ti(OC2H5)4 (>97%) from Alfa Aesar,
and sodium dodecyl sulfate (SDS, 99%), nitric acid (60–70%), and ethanol (>99%) from VWR.
Dialysis membrane tubing was obtained from Spectrum Laboratories. Water was deionized
and purified by using a Labconco WaterPros water purification system (Labconco, Kansas
City, MO, USA).
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4.2. Measurement

UV/vis absorption spectra were recorded on a Shimadzu UV2501-PC spectrophotome-
ter. Fluorescence spectra were measured on a Jobin-Yvon emission spectrometer equipped
with a 450 W xenon source, Gemini-180 excitation, Triax-550 emission monochromators, and
a photon-counting detector (Hamamatsu R928P PMT at 950 V). 9,10-Bis(phenylethynyl)-
anthracene in cyclohexane was used as a standard in the determination of fluorescence
quantum yields through the relative method (matching the absorbance at the excitation
wavelength between the sample and standard solutions and comparing their corresponding
integrated total fluorescence intensities). X-ray diffraction measurements were performed
on a Rigaku Ultima IV X-ray diffractometer with Cu Kα radiation (λ = 1.5418 Å).

4.3. CTiO2-Dots and PEG1500N-CDots

The carbon nanopowder sample (1 g) was refluxed in an aqueous nitric acid solution
(5 M, 100 mL) for 24 h. The acidic suspension from the processing was cooled to room
temperature and centrifuged at 1000× g to retain the supernatant, which was then dialyzed
(molecular weight cut-off ~500) against fresh water. The resulting aqueous suspension was
evaporated to remove water to obtain a sample of small carbon nanoparticles (CNPs).

The preparation of CTiO2-Dots followed the procedure and conditions reported previ-
ously [20]. Briefly, a clear solution of Ti(OC2H5)4 (2.9 g) in a mixture of ethanol (51 mL),
water (0.43 mL), and nitric acid (0.16 mL) was prepared. To an aliquot (50 mL) of the
solution was added the CNPs (200 mg), and the mixture was sonicated for 1 h, stirred for
12 h, and then filtrated. The filter cake was grounded and annealed at 250 ◦C for 1 h to
obtain a solid sample. A portion (50 mg) of the sample was dispersed in an aqueous sodium
dodecyl sulfate (SDS) solution (1 wt%, 120 mL) with sonication for 30 min, followed by
filtration. The filter cake was washed with water repeatedly, and then dried. The solid
sample thus obtained was mixed well with PEG1500N (1 g), and the mixture was heated to
110 ◦C and stirred for 72 h under nitrogen protection. The reaction mixture was cooled back
to ambient temperature and dispersed in water (15 mL). The dispersion was centrifuged
at 20,000× g to retain the supernatant as an aqueous solution of the PEG1500N-CTiO2-Dots
(denoted simply as CTiO2-Dots throughout this report).

For PEG1500N-CDots, a sample of the CNPs without the treatment for TiO2 doping
was mixed well with PEG1500N, and the mixture was heated to 110 ◦C and stirred for 72 h
under nitrogen protection. The reaction mixture was allowed to cool back to ambient
temperature and then dispersed in water, followed by centrifugation at 20,000× g to retain
the supernatant as an aqueous solution of the dot sample.

The details of the synthesis and characterization of EDA-CDots, which are small carbon
nanoparticles with 2,2′-(ethylenedioxy)bis(ethylamine) (EDA) for surface functionalization,
have been reported previously [43].

4.4. Bacterial Strains and Cultures

B. subtilis and E. coli K12 cultures were grown in 10 mL nutrient broth (Becton, Dickin-
son and Company, Sparks, MD, USA) by inoculating the broth with a single colony of a
plated culture on a Luria–Bertani (LB) agar (Fisher Scientific, Fair Lawn, NJ, USA) plate,
and incubated overnight at 37 ◦C. The freshly grown B. subtilis and E. coli cells were washed
twice with phosphate-buffered saline (PBS, 1X, pH 7.4) (Fisher Scientific, Pittsburgh, PA,
USA) and then resuspended in PBS for experimental uses.

4.5. Treatment of Bacterial Cells

The treatment of bacterial cells (B. subtilis or E. coli) with CTiO2-Dots, PEG1500N-CDots,
or EDA-CDots was performed in 96-well plates. Aliquots of 150 µL of bacteria cell suspen-
sion and 50 µL of the selected dot sample at desired concentrations were placed into each
well. The final bacterial cell concentration in each well was about ~106–107 CFU/mL, and
the final concentration of the tested dots varied from 2 to 200 µg/mL. All samples were
triplicated. The plate was placed on an orbital shaker (BT Lab Systems, St. Louis, MO,
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USA), with shaking at 300 rpm, and exposed to visible light from a commercially acquired
household 60 W-equivalent daylight LED bulb (CREE, omnidirectional 815 lumens) placed
at ~10 cm above the surface of the plate for 2 h.

4.6. Assessment of Antibacterial Activity

After the treatments of the dot samples with visible light exposure, the viable cell
numbers in the treated samples and the control samples were determined by the traditional
surface plating method. Briefly, the bacterial samples were serially diluted (1:10) with
PBS. Aliquots of 100 µL appropriate dilutions were surface-plated on LB agar plates. After
incubation at 37 ◦C for 24 h, the colonies on the plates were counted, and the viable cell
numbers were calculated in terms of the colony-forming units per milliliter (CFU/mL) for
all of the treated samples and the controls. The logarithmic values of the viable cell numbers
in the samples were plotted against the dot concentrations used in the treatments to generate
dose-dependent curves for the different dot samples. The reduction in the logarithmic value
of viable cell number in the treated samples in comparison to the controls (without any
dots) was used to evaluate the antibacterial activities of the CTiO2-Dots, PEG1500N-CDots,
and EDA-CDots. Under the defined concentration/conditions, the greater the viable cell
reduction, the more potent the antibacterial activity of the dot sample.

5. Conclusions

In summary, CTiO2-Dots may be considered as hybrid CDots in which the more ef-
fective surface passivation of the core CNPs is achieved by a combination of the core
nanoparticle surface doping with nanoscale TiO2 and organic (PEG1500N) functionalization,
resulting in much brighter fluorescence emissions and higher quantum yields than those
of the corresponding PEG1500N-CDots without the TiO2 doping or even the benchmark
dot sample EDA-CDots. Equally superior are the photoinduced antibacterial activities of
CTiO2-Dots over those of the neat CDots, with the particularly noticeable performance in the
inactivation of the more resistant Gram-negative bacteria. Thus, the carbon-based/derived
hybrid dots, with the CTiO2-Dots representing an interesting and effective platform, offer
excellent opportunities for the development of visible light-driven antimicrobial agents
capable of inactivating Gram-negative bacteria and other more resistant pathogens. Mecha-
nistically, the photoexcited state properties of CDots are responsible for their antimicrobial
functions. With the known positive correlation between fluorescence quantum yields
and antimicrobial performances of CDots, one may credit the observed more effective
antibacterial action of CTiO2-Dots to the high fluorescence quantum yields of the hybrid
CDots. Nevertheless, it remains an interesting and fundamentally important question as
to whether there is photosensitization of the nanoscale TiO2 doped on the surface of core
CNPs in the hybrid CDots and the associated additional contributions to the observed high
antibacterial performance.
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