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Abstract: Mitochondrial ATP synthase (Complex V) catalyzes the last step of oxidative phosphory-
lation and provides most of the energy (ATP) required by human cells. The mitochondrial genes
MT-ATP6 and MT-ATP8 encode two subunits of the multi-subunit Complex V. Since the discovery
of the first MT-ATP6 variant in the year 1990 as the cause of Neuropathy, Ataxia, and Retinitis
Pigmentosa (NARP) syndrome, a large and continuously increasing number of inborn variants in
the MT-ATP6 and MT-ATP8 genes have been identified as pathogenic. Variants in these genes corre-
late with various clinical phenotypes, which include several neurodegenerative and multisystemic
disorders. In the present review, we report the pathogenic variants in mitochondrial ATP synthase
genes and highlight the molecular mechanisms underlying ATP synthase deficiency that promote
biochemical dysfunctions. We discuss the possible structural changes induced by the most common
variants found in patients by considering the recent cryo-electron microscopy structure of human ATP
synthase. Finally, we provide the state-of-the-art of all therapeutic proposals reported in the literature,
including drug interventions targeting mitochondrial dysfunctions, allotopic gene expression- and
nuclease-based strategies, and discuss their potential translation into clinical trials.

Keywords: mitochondria; ATP synthase; ATP6; ATP8; mt-DNA; mutations; therapy; F1Fo-ATPase
modeling

1. Introduction

Mitochondria in eukaryotic organisms host different metabolic pathways and play
several roles essential to cellular life, including respiration and ATP synthesis by oxidative
phosphorylation (OXPHOS), the Krebs cycle, fatty acid oxidation, and control of redox state
and ROS level. However, they can also determine whether a cell should die by apoptosis [1].
These functions are almost exclusively carried out in the matrix or compartments of the
inner membrane. Interestingly, mitochondria harbor their own circular genome (mt-DNA)
containing 37 genes, 13 of which encode 11 polypeptides belonging to the respiratory
Complexes I (CI), III (CIII), and IV (CIV), and two others belonging to the ATP synthase, or
Complex V (CV): ATP6 (a subunit) and ATP8 (A6L subunit) (Figure 1A) [2,3]. Therefore,
all multi-subunit OXPHOS Complexes, except Complex II (CII), require the nuclear and
mitochondrial genomes to encode their corresponding subunits [3]. Exposure to high levels
of reactive oxygen species (ROS) and the relatively scarce presence of mitochondrial DNA
repair systems make the mitochondrial genome more prone to an increased number of
somatic variants when compared to most genes of the nuclear genome in eukaryotic cells [4].
Therefore, pathogenic variants in mt-DNA increase with aging [5], and many neuronal,
cardiac, neoplastic, and metabolic-related diseases are caused or at least exacerbated by
mitochondrial impairment [4,6–8].
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Figure 1. (A) Organization of the human mitochondrial genome. These include the non-coding 
control region (D-loop) (purple); 37 genes encoding 2 rRNAs (yellow); 22 tRNAs (grey); and the 13 
polypeptides belonging to CI (light blue), CIII (orange), CIV (green), and CV (red and pink). An 
enlargement of MT-ATP6/MT-ATP8 genes is shown, highlighting the sequence overlap (violet). 
Multiple alignments of ATP8 (B) and ATP6 (C) from a selection of mammalian species: Homo sapiens, 
Bos taurus, and Ovis aries. Conserved amino acids are in blue, and, at the bottom, transmembrane α-
helices are indicated with pink lines according the PROMOTIF analysis performed on the human 
PDB structure. The three amino acid residues that are more frequently mutated in patients and are 
studied in detail in this review are highlighted in pink, whereas other MT-ATP6/MT-ATP8 variants 
that are also shown in Table 1 are in bold and indicated by the upper red lines. 

2. ATP Synthase Structure and Mechanism of Catalysis 
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Figure 1. (A) Organization of the human mitochondrial genome. These include the non-coding
control region (D-loop) (purple); 37 genes encoding 2 rRNAs (yellow); 22 tRNAs (grey); and the
13 polypeptides belonging to CI (light blue), CIII (orange), CIV (green), and CV (red and pink).
An enlargement of MT-ATP6/MT-ATP8 genes is shown, highlighting the sequence overlap (violet).
Multiple alignments of ATP8 (B) and ATP6 (C) from a selection of mammalian species: Homo sapiens,
Bos taurus, and Ovis aries. Conserved amino acids are in blue, and, at the bottom, transmembrane
α-helices are indicated with pink lines according the PROMOTIF analysis performed on the human
PDB structure. The three amino acid residues that are more frequently mutated in patients and are
studied in detail in this review are highlighted in pink, whereas other MT-ATP6/MT-ATP8 variants
that are also shown in Table 1 are in bold and indicated by the upper red lines.
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Mitochondrial syndromes are a heterogeneous group of rare diseases caused by ge-
netic defects, localized in both the nuclear and the mitochondrial genomes, that cause
the dysfunction of the OXPHOS system [9]. Severe neuromuscular disorders are associ-
ated with defects in ATP synthase. While pathogenic variants in nuclear genes encoding
the CV subunits are very rare, those in mitochondrial genes, which often manifest in
early childhood, are more frequent and better characterized, highlighting their clinical
relevance [10].

Here, we describe and comment on the state of the art of the main inborn pathogenic
variants in the mt-DNA genes encoding the two subunits of CV, located in the membrane
domain of ATP synthase, Fo: ATP6 and ATP8. ATP6 plays a critical role in the coupling
mechanism of proton translocation to the synthesis of ATP through the rotary catalysis
of ATP synthase and ATP8 on the quaternary structure of the enzyme complex. ATP6 is
a hydrophobic polypeptide made of 226 amino acids in humans, which is embedded in
the inner mitochondrial membrane (IMM), while ATP8 is a small hydrophilic polypeptide
consisting of 68 amino acids that connects the membrane portion of the enzyme with the F1
catalytic domain [11,12]. It appears to play only a structural role. These two subunits are
translated from the polystronic MT-ATP8/MT-ATP6 mRNA, which presents an overlap of
46 nucleotides. The amino acid sequence of the two proteins is shown in Figure 1B,C.

This review focuses on the molecular mechanisms underlying the biochemical dys-
functions caused by ATP synthase mt-DNA variants and, for the first time, the structural
changes induced by the most common variants on a human ATP synthase model. Fur-
thermore, we considered it relevant to collect and discuss the main proposed therapeutic
approaches, as reliable therapies are currently lacking. This updated review will contribute
to deepening the knowledge of the molecular basis of mitochondrial diseases caused by
mt-DNA variants of ATP synthase by integrating an interesting review focused on related
clinical syndromes and functional consequences on a yeast ATP synthase model [13]

2. ATP Synthase Structure and Mechanism of Catalysis

ATP synthase (also referred to as F1Fo-ATPase or H+-ATPase) catalyzes the terminal
step of the OXPHOS process that consists of the phosphorylation of ADP from inorganic
phosphate to ATP by exploiting the energy released by the oxidation of the reduced
dinucleotides NADH and FADH2 [3,10]. It is a ubiquitous enzyme that supplies most of
the energy needed by aerobic cells. It consists of a catalytic and a membrane domain, called
F1 and Fo, respectively, and forms dimers [11].

The monomeric structure of the enzyme has been resolved at the atomic level in some
organisms including bacteria, in which it is constituted of 8 different subunits, 5 constituting
the catalytic sector F1 (α, β, γ, δ, ε), and 3 composing the membrane embedded sector Fo
(a, b, c) that allows proton transport through the membrane; the total number of subunits
is 27 in Escherichia coli [14]. The mammalian mitochondrial enzyme has a more complex
composition: it contains 8 homologous subunits to those of bacteria added to 10 more
different subunits (18 subunits in total) on the Fo sector for a total of 29 polypeptide
chains in humans, including the endogenous protein, IF1 (Figure 2) [15,16]. Indeed, in
mitochondria, ATP synthase is associated with the IF1 protein, which inhibits the ATP
hydrolytic activity of the enzyme both during its assembly [17] and under certain conditions,
such as those induced by a collapse of the membrane electrochemical potential (∆µH+), also
called proton motive force (pmf ) [18–22]. Recently, an additional binding site of IF1 on the
OSCP subunit of ATP synthase has been described in cancer cells. The authors suggested
that the interaction of IF1 with this site can protect cells from apoptosis [23].
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Figure 2. (A) Schematic representation of the monomeric mammalian ATP synthase, according to 
[16,17]. (B) Structure of human ATP synthase in state 1 (PDB id: 8H9S) ([16]) bound to the inhibitor 
protein IF1. The α- and β-subunits of the F1-catalytic domain are in different shades of red and yellow 
with a different labelling if the subunit is empty (αE, βE) or bound to ADP (αDP, βDP) or ATP (αTP, 
βTP). The γ-, δ-, and ε-subunits of the F1-catalytic domain are in sienna brown, sandy brown, and 
tan, respectively. The central stalk formed by subunits γ, δ, and ε is in contact with the c8-ring 
(different shades of light blue) that is part of the membrane domain and in contact with subunit a 
(or ATP6, olive drab). The peripheral stalk subunits OSCP, b, d, and F6 are in dim gray, violet, violet 
red, and black, respectively, and the A6L subunit (or ATP8) is in coral. The e, f, and g subunits in the 
membrane domain are forest green, pale green, and olive, respectively. The 6.8 kDa proteolipid 
(6.8PL) is in green yellow, and the IF1 inhibitor is in purple. The DAPIT subunit in yellow is not 
reported in (B) because it is not present in the cryo-EM structure in [16]. 

Figure 2. (A) Schematic representation of the monomeric mammalian ATP synthase, according
to [16,17]. (B) Structure of human ATP synthase in state 1 (PDB id: 8H9S) ([16]) bound to the inhibitor
protein IF1. The α- and β-subunits of the F1-catalytic domain are in different shades of red and
yellow with a different labelling if the subunit is empty (αE, βE) or bound to ADP (αDP, βDP) or ATP
(αTP, βTP). The γ-, δ-, and ε-subunits of the F1-catalytic domain are in sienna brown, sandy brown,
and tan, respectively. The central stalk formed by subunits γ, δ, and ε is in contact with the c8-ring
(different shades of light blue) that is part of the membrane domain and in contact with subunit a
(or ATP6, olive drab). The peripheral stalk subunits OSCP, b, d, and F6 are in dim gray, violet, violet
red, and black, respectively, and the A6L subunit (or ATP8) is in coral. The e, f, and g subunits in
the membrane domain are forest green, pale green, and olive, respectively. The 6.8 kDa proteolipid
(6.8PL) is in green yellow, and the IF1 inhibitor is in purple. The DAPIT subunit in yellow is not
reported in (B) because it is not present in the cryo-EM structure in [16].



Int. J. Mol. Sci. 2024, 25, 2239 5 of 33

The basic structure of the enzyme capable of synthesizing ATP at the expense of
the energy released by pmf in coupled membranes has the composition α3, β3, γ, δ, ε,
ab2c15 in Escherichia coli. The stoichiometry of c subunits varies from 8 in mammalian
ATP synthases to 17 in bacteria. C subunits interact with one another to form a cylinder
across the membrane, and the cn ring pore contains phospholipids and possibly other
molecules that interact with its inner surface [24]. Thus, whatever ATP synthase complex
is considered, most of the Fo subunits are embedded in the IMM membrane, as shown
in the scheme of Figure 2, but some constitute the peripheral stalk that allows Fo to be
structurally bound to the static moiety of F1 made of the α and β subunits [25]. The
γδε subunits of the hydrophilic moiety F1 constitute the central stalk of the enzyme, are
strictly bound to the ring of c subunits, and form the rotor that sits at the center of the
enzyme [26]. Therefore, the ATP synthases are nano-machines capable of transducing
energy from electro-chemical to mechanical to chemical as the β–γ phospho-anhydride
bond in ATP. In fact, the catalytic mechanism of the enzyme has been elucidated [27–29]:
protons flowing along their gradient concentration from the intra-cristae space (ICS) to the
matrix in mitochondria release energy to the rotor of the enzyme (γδε-cn) that is pushed
to rotate. In mitochondria, protons flowing through two hydrophilic hemichannels at the
interface of ATP6 (subunit a in bacteria) and the ring of c subunits induce the rotor located
in the center of the three pairs of αβ subunits of F1, each containing a catalytic site at their
interface, to rotate counterclockwise [30,31]. Since the rotor is intrinsically asymmetric,
its rotation allows modifying the affinity of each of the three catalytic sites, which, in situ
at the same time, never have the same conformation, but, in turn during rotation, take
on the same conformations. Therefore, each catalytic site can synthesize ATP and release
it. Indeed, the synthesis proceeds through three main steps: first, the substrates ADP
and Pi are bound; second, the ATP synthesis reaction occurs; and finally, the product is
released [27,32]. With each 360◦ rotation of the enzyme’s rotor, three molecules of ATP are
produced and released. Since ATP6 is directly involved in the proton flow that releases
energy to the enzyme rotor to catalyze ATP synthesis, variants in this protein can cause
mild to even very serious diseases [33].

3. Biochemical Dysfunctions Related to MT-ATP6 and MT-ATP8 Pathogenic Variants

The mitochondrial genome presents some specific features, including maternal in-
heritance and heteroplasmy. Heteroplasmy is a condition in which at least two different
mitochondrial genomes are present within the same cell. Pathogenic variants in the mt-
DNA are highly recessive and usually coexist with the wild-type mt-DNA molecules.
Therefore, the clinical manifestation of mt-DNA variants mainly depends on both their
severity and the mutational load (heteroplasmy) of the tissues [2,8].

Over the last two decades, a large number of studies using different patient’s speci-
mens and other cellular paradigms have led to in-depth investigations of the biochemical
and cellular alterations caused by MT-ATP6 and MT-ATP8 variants, which are summarized
in Table 1. We focused our attention here on three amino acids because they are the most
frequently mutated in patients and have been extensively studied in recent decades.

As shown in Table 1, the cellular dysfunctions observed for a given variant can be
highly variable, and one element that contributes to this characteristic is heteroplasmy.

Consequently, as with other mt-DNA-associated diseases, a specific feature is the
threshold of the percentage of mutant genome (or percentage of heteroplasmy) that must
be exceeded to detect a biochemical alteration. As reported below, this defect may also
depend on the variant, haplogroup, cell type, and tissue type.
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Table 1. Biochemical and cellular parameters in patient tissues and cell models carrying MT-ATP6 and MT-ATP8 pathogenic variants. Abbreviation: heteroplasmy
(H), oxygen consumption rate (OCR), mitochondrial membrane potential (MMP), reactive oxygen species (ROS), induced pluripotent stem cell (iPSC) and neural
progenitor cells (NPCs), Normal (N), Decreased (D), Increased (I), Affected (A).

Genetic Variant/Subunit
AA Change

Tissue or
Cell Models

H (%)

Biochemical and Cellular Parameters

CV
ATP Synthesis

CV
ATP Hydrolysis OCR CV

Assembly/Stability
Other Mitochondrial and Cellular

Readouts

m.8382C>T
ATP8: p.T6I

Muscle
(100%) [34] (D) CI activity (D)

Fibroblasts
(100%) [34] (N) (N) CIV activity (D)

m.8403T>C
ATP8: p.I13T

Fibroblasts
(100%) (N) [34] (N) [34] Depolarized plasma membrane and ROS (I) [35];

CIV activity (D) [34]

Yeast
(100%) [36] (D) (N) Growth in stress conditions (D);

Mitochondrial membrane potential (N)

m.8424T>C
ATP8: p.I20P

Muscle
(100%) [34] (D) CI, CII, CIII, and CIV activities (D)

Fibroblasts
(100%) [34] (D) (N) CI activity and growth in galactose media (D)

Cybrids
(100%) [34] (D) (D) CI and CIV activities (D);

Lactate production (I)

m.8528T>C
ATP8: p.W55R
ATP6: p.M1T

Fibroblast
(93%) [37] (D)

Heart muscle
(90%) [38] (A) CV subunit levels and CI activity (D);

ATP6 and ATP8 protein levels (D)

m.8529G>A
ATP8: p.W55X
ATP6: p.M1M

Muscle
(>90%) [39] (D) (D) (A) CI-CIV activities (N)

Fibroblast
(>90%) [39] (D) CI-CIV activities (N)

Cybrids
(100%) (D) [39,40] (D) [40] (A) [39,40]

Growth in galactose media (D);
ATP6 and ATP8 protein levels (D);

Complexes II, III, and IV levels (D) [40]
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Table 1. Cont.

Genetic Variant/Subunit
AA Change

Tissue or
Cell Models

H (%)

Biochemical and Cellular Parameters

CV
ATP Synthesis

CV
ATP Hydrolysis OCR CV

Assembly/Stability
Other Mitochondrial and Cellular

Readouts

m.8561C>G
ATP8: p.P66A
ATP6: p.P12R

Myoblasts
(99%) [41] (A)

Total ATP level (D);
ROS (N);

ATP6 and ATP8 protein levels (N)

m.8561C>T
ATP8: p.P66L
ATP6: p.P12S

Muscle (99%) [42] (D) (A)

m.8611insC
ATP6: p.L29PfsX36

Muscle
(60%) [43] (D) (A)

Fibroblasts
(80%) [43] (D) (A) ATP6 protein level (D);

Mitochondrial cristae structure and dynamics (A)

m.8618insT
ATP6: p.T33HfsX32

Muscle
(65–85%) (A) [44,45] ATP6 protein level (D) [44]

Fibroblasts
(45%) [45] (D) (A) ROS (I);

Mitochondrial network morphology (N)

m.8648G>A
ATP6: p.R41Q

Fibroblast
(100%) [34] (N) (N)

Cybrids
(100%) [34] (N) (N)

m.8782G>A
ATP6: p.G86X

Fibroblasts
(12–27%) [45] (D) (A) ROS (I);

Mitochondrial morphology (N)

m.8806C>G
ATP6: p.P94A

Muscle
(100%) [34] (N) CI-CIV activities (D)

m.8839G>C
ATP6: p.A105P

Cybrids
(100%) [46] (N)

Growth in galactose media (D);
Mt-DNA copy number (I);
OXPHOS protein levels (I);

Mitochondrial membrane potential (D);
CI-CIV activities (N)

m.8843T>C
ATP6: p.I106T

Yeast
(100%) [47] (N) (N) (N) Mitochondrial membrane potential (N)
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Table 1. Cont.

Genetic Variant/Subunit
AA Change

Tissue or
Cell Models

H (%)

Biochemical and Cellular Parameters

CV
ATP Synthesis

CV
ATP Hydrolysis OCR CV

Assembly/Stability
Other Mitochondrial and Cellular

Readouts

m.8851T>C
ATP6: p.W109R

Yeast
(100%) [48] (D) (D) (D) (N)

Growth in stress conditions (D);
Mitochondrial cristae structure (A);
CIII and CIV super-complexes (D)

m.8909T>C
ATP6: p.F128S

Yeast
(100%) [49] (D) (D) (A)

m.8932C>T
ATP6: p.P136S

Yeast
(100%) [50] (D) (D) (A) ATP6 protein level (D)

m.8946A>C
ATP6: p.M140I

Fibroblasts
(100%) [34] (N) (N) CI activity (D)

m.8950G>A
ATP6: p.V142I

Lymphocytes [51] (D)

Yeast (100%) [47] (D) (D) (N) Sensitivity of growth to oligomycin (I);
Mitochondrial membrane potential (N)

m.8969G>A
ATP6: p.S148N

Muscle (100%)
[34] (N) CI activity (D)

Yeast
(100%) (D) [52,53] (D) [52] (D)

[52,53] (A) [52] Growth in stress conditions (D) [52,53]

Cybrids
(19–98%) [52] (D) Mitochondrial cristae structure (A);

ROS (I)

Fibroblasts
(100%) [54] (D)

m.8975T>C
ATP6: p.L150P

Muscle [34] (D) CI activity (D)

Fibroblasts
(100%) [34] (D) (N) CI activity (D);

Growth in galactose media (D)

Cybrids
(100%) [34] (N) (N)

CI and CIV activities (D);
Growth in galactose media (D);

Lactate production (I)

m.8989G>C
ATP6: p.A155P

Muscle
(92%) [55] (D) Mitochondrial ultrastructure (N)
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Table 1. Cont.

Genetic Variant/Subunit
AA Change

Tissue or
Cell Models

H (%)

Biochemical and Cellular Parameters

CV
ATP Synthesis

CV
ATP Hydrolysis OCR CV

Assembly/Stability
Other Mitochondrial and Cellular

Readouts

m.8993T>G
ATP6: p.L156R

Yeast
(100%) [56] (D) (D) (D) (A) Growth in stress conditions (D);

CIV level (D)

Platelets
(80–93%) (D) [57,58] (N) [57,58] CV ATP-driven proton flow (N) [57]

Lymphocytes
(80–100%) (D) [59–62] (D) [59] (D) [60]

ROS and mitochondrial membrane potential (I) [62];
CV proton flow (D) [61,63];

Oligomycin sensitivity of CV proton flow (I) [63]

Muscle
(76%) [64] (A)

Fibroblasts
(70–100%) (D) [34,65–70] (D) [66,69,71]; (N)

[34,65,67]

(D)
[72,73];
(N) [65]

(N) [67,68]

Mitochondrial membrane potential (I) [67,70];
Mitochondrial morphology (A) [70,73];

ROS (I) [70,74];
Antioxidant enzymes (A) [70];

Oligomycin sensitivity of CV (I) [65];
Growth in galactose media (D) [34,66,69,71];

Mitochondrial calcium uptake (D) [70];
Glycolytic capacity (D) [73];

CI and CIV activities (D) [34]

Cybrids
(45–100%)

(D)
[34,66,68,71,75–

80]

(D) [34];
(N) [71]

(D)
[60,71,77–
79,81,82]

(A) [68,75,79]

Mitochondrial membrane potential (D) [81] or (I) [78,80];
Mitochondrial morphology (A) [83,84];
Mitochondrial ultrastructure (A) [80];

ROS (I) [78,81,85];
Antioxidant enzymes (A) [78,85];

Growth in galactose media (D) [66,76,78];
ATP level (D) [81];

Extracellular lactate (I) [34,77];
Autophagy (I) [84];

CI, CII, or CIV activities (D) [34,78,79];
Oligomycin [68] and apoptosis [80] sensitivity (I);
Actin cytoskeleton and Ca2+ in-flux rates (A) [83];

Reductive carboxylation of glutamine and NADH/NAD ratio
(I) [82,86]
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Table 1. Cont.

Genetic Variant/Subunit
AA Change

Tissue or
Cell Models

H (%)

Biochemical and Cellular Parameters

CV
ATP Synthesis

CV
ATP Hydrolysis OCR CV

Assembly/Stability
Other Mitochondrial and Cellular

Readouts

m.8993T>G
ATP6: p.L156R

IPSCs
(90–100%)

(D) [87];
(N) [88]

Mitochondrial membrane potential, ROS, and lactate production
(I) [89]

NPCs, Neurons
(90–100%) (D) [89]

Mitochondrial membrane potential, ROS, and antioxidant
enzymes (I) [89];

Degenerative defect [89];
Metabolic dysregulation;

Formation of cerebral organoid (A) [88]

m.8993T>C
ATP6: p.L156P

Yeast
(100%) [90] (D) (N) (D) (N) CIV level, COX2, and ATP6 protein levels (D)

Lymphocytes
(90–95%) (D) [62]

Mitochondrial membrane potential (N);
ROS (I) [62];

Proton flux (D) [63]

Fibroblasts
(95–100%) (D) [34,65] (D) [34], (N) [65] (N) [65] (N) [68] Depolarized plasma membrane and ROS (I) [35];

Growth in galactose media (D) [34]

Cybrids
(100%)

(D) [71,77];
(N) [34,79] (N) [34] (D) [77];

(N) [79] (N) [68,79] Lactate production (I) [34,77]

m.9008C>G
ATP6: p.T161S

Muscle
(100%) [34] (N)

Fibroblasts
(100%) [34] (N) (N) CI activity (D)

Cybrids
(100%) [34] (D) (N) Growth in galactose media (D);

Lactate production (I)

m.9016A>G
ATP6: p.I164V

Yeast
(100%) [47] (N) (N) (N) Mitochondrial membrane potential (N)

m.9019A>G
ATP6: p.T165A

Muscle
(100%) [34] (D) CI activity (D)

m.9025G>A
ATP6: p.G167S

Yeast
(100%) [47] (D) (D) (N) Sensitivity of growth to oligomycin (I);

Mitochondrial membrane potential (N)
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Table 1. Cont.

Genetic Variant/Subunit
AA Change

Tissue or
Cell Models

H (%)

Biochemical and Cellular Parameters

CV
ATP Synthesis

CV
ATP Hydrolysis OCR CV

Assembly/Stability
Other Mitochondrial and Cellular

Readouts

m.9029A>G
ATP6: p.H168R

Yeast
(100%) [47] (D) (D) (N) Sensitivity of growth to oligomycin (I);

Mitochondrial membrane potential (N)

Cybrids
(100%) [81] (D) ATP level (D);

ROS and mitochondrial membrane potential (I)

m.9032T>C
ATP6: p.L169P

Cybrids
(25–80%) [81] (D) ATP level (D);

ROS and mitochondrial membrane potential (I)

m.9035T>C
ATP6: p.L170P

Cybrids
(100%) [91] (D)

ROS and antioxidant enzymes (I);
Mitochondrial membrane potential (N);

Sensitivity to glucose deprivation (I);
Oxidative stress (I)

Muscle
(100%) [34] (D) CI activity (D)

Fibroblasts
(100%) (D) [34] (N) [34] (D) [92] (A) [92] Growth in galactose media (D) [34]

m.9058A>G
ATP6: p.T178A

Yeast
(100%) [47] (N) (N) (N) Mitochondrial membrane potential (N)

m.9101T>C
ATP6: p.I192T

Lymphocytes
(100%) [93,94] (D)

Cybrids
(100%) [94] (D)

m.9127
delAT

ATP6: p.I201PfsX2

Fibroblasts
(50%) [95] (D) (D) (N) Oligomycin-induced increase in mitochondrial membrane

potential (D)

m.9134A>G
ATP6: p.E203G Muscle [96] (D) (D)

m.9139G>A
ATP6: p.A205T

Yeast
(100%) [47] (N) (N) (N) Mitochondrial membrane potential (N)
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Table 1. Cont.

Genetic Variant/Subunit
AA Change

Tissue or
Cell Models

H (%)

Biochemical and Cellular Parameters

CV
ATP Synthesis

CV
ATP Hydrolysis OCR CV

Assembly/Stability
Other Mitochondrial and Cellular

Readouts

m.9154C>T
ATP6: p.Q210X

Fibroblasts [97] (N) (A) Mitochondrial morphology (A)

IPSC and
Neurons [97] (A)

Motor neuron differentiation (A);
Mitochondrial morphology (A);

Hyperactivation of the Notch pathway

m.9160T>C
ATP6: p.Y212H

Yeast
(100%) [47] (N) (N) (N) Mitochondrial membrane potential (N)

m.9176T>G
ATP6: p.L217R

Yeast
(100%) [98] (D) (D) (A)

Growth in stress conditions (D);
CIV super-complexes (D);

ATP6, COX2, and CYTB protein levels (D);
Mitochondrial ultrastrucure (A)

Muscle
(>95%) [64] (A)

Fibroblasts
(95–100%) (D) [99] (N) [71] (N) [99] Mitochondrial membrane potential (I) [99];

Growth in galactose media (D) [71]

Cybrids
(30–100%) (D) [71,79,80] (N) [71] (D)

[71,79] (A) [79]
CI and CIV activities (D) [79];

Mitochondrial ultrastructure (A) [80];
Mitochondrial membrane potential and apoptosis sensitivity (I) [80]

m.9176T>C
ATP6: p.L217P

Yeast [100] (D) (N) (D) (A)

Muscle
(100%) [34] (D)

Fibroblasts
(100%)

(N) [101]; (D)
[102] (N) [71] (A) [102] Mitochondrial network morphology (N) [102];

Depolarized plasma membrane and ROS (I) [35]

Cybrids
(100%) [71] (D) (N)
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Table 1. Cont.

Genetic Variant/Subunit
AA Change

Tissue or
Cell Models

H (%)

Biochemical and Cellular Parameters

CV
ATP Synthesis

CV
ATP Hydrolysis OCR CV

Assembly/Stability
Other Mitochondrial and Cellular

Readouts

m.9185T>C
ATP6: p.L220P

Yeast [103] (D) (N) (N) (N) Sensitivity of growth to oligomycin (I)

Muscle
(>97%) (D) [104,105] (A) [105] CI, CII, and CIV activities (N) [106–108]

Lymphocytes
[106] (N) (D)

Fibroblasts
(90–100%)

(D) [34,35] (D) [35]; (N) [34] (D) [35] (N) [35]

CI activity (D) and depolarized plasma membrane [35];
ROS or antioxidant enzymes (I) [35,109];

CI, CII, and CIV activities (N) [106];
Mitochondrial membrane potential (N) [109];

Lactate production (I) [34]

Cybrids (100%) (D) [109];
(N) [34] (D) [35]; (N) [34] (D) [35]

CI activity (D) [35];
Lactate production (I) [34];

Mitochondrial membrane potential (N) [109]

NPC and neuron
(100%) [109] (D) (N)

Mitochondrial membrane potential (I);
Mitochondrial calcium homeostasis (A);

Depolarized plasma membrane;
Mitochondrial cristae structure and ROS (N)

m.9191T>C
ATP6: p.L222P

Muscle
(94%) [104] (D) (D)

Yeast
[103,110] (D) (N) (D) (A)

Growth in stress conditions (D);
CIV level (D);

ATP6 protein level (D)

m.9205delTA
ATP6: p.X227NA

Muscle
(>98%) [111]

CIV activity (D)

Fibroblasts
(>98%) (D) [111] (N) [111] (D) [111] (A) [111]

CIV activity (D) [111,112];
ATP6 protein and CIV subunit levels (D) [111];

Morphological abnormalities of mitochondria [112]



Int. J. Mol. Sci. 2024, 25, 2239 14 of 33

3.1. The mt-DNA Pathogenic Variants at Position m.8993

The two most common variants in MT-ATP6 are m.8993T>G (p.Leu156Arg) and
m.8993T>C (p.Leu156Pro), which cause a change in a highly conserved leucine residue
on ATP6 [13,57,113]. These variants are the most common and are responsible for approx-
imately 50% of reported MT-ATP6 disease cases [33]. These variants are associated with
Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP) or Maternal Inherited Leigh syn-
drome (MILS) when heteroplasmy is between 70 and 90% or greater than 90%, respectively.
Furthermore, the T>G transversion usually results in a more severe clinical phenotype than
the T>C transition [13,113–115].

3.1.1. Biochemical and Cellular Dysfunctions in Mutated Cell Models

Analyses of patient specimens carrying the m.8993T>G or the m.8993T>C variant have
been performed in platelets [57,58], lymphocytes [59–63], muscle tissue [64], and skin fibrob-
lasts [34,35,65–74,116] (see Table 1). Several biochemical abnormalities have been identified,
including a decreased ATP synthesis and oxygen consumption rate (OCR) [34,57–62,65–73],
often in direct correlation with the mutation load [58,61,71,76], an alteration of the proton
flux [61–63], and a not-fully assembled CV [64]. In human cells, these ATP synthase dysfunc-
tions lead, as secondary effects, to a reduction in growth in stress medium [34,66,69,71], to
an increase in both mitochondrial membrane potential (MMP) [62,67,70,116] and
ROS [35,62,70,74], as well as to an altered mitochondrial network morphology and cristae
structure [70,73].

In cells of NARP patients carrying the m.8993T>G variant, the severe impairment of
OXPHOS has been proposed as the primary pathogenic defect; instead, the increase in
ROS could be the main contributor to the pathogenesis of the disease associated with the
m.8993T>C variant [62].

It is worth noting that no significant effects of the m.8993T>G variant have been
reported on either ATP hydrolytic activity or ATP-driven proton transport by Complex V
in patient cells [57,67]. However, inhibition of ATP hydrolytic activity could contribute to
energy preservation and survival of cells under stress conditions (oxygen shortage), leading
to the collapse of the proton motive force and ATP synthase working in reverse. Incidentally,
due to the heterogeneity of the membrane potential within the same mitochondrion and
the possible coexistence of ATP synthase working physiologically and in reverse [117,118],
patients might benefit from the use of a specific inhibitor of the hydrolytic activity of CV.

The different percentages of heteroplasmy and other factors, including nuclear back-
ground and the type of tissue analyzed, may contribute to the phenotypic differences
observed in the analysis of patients’ specimens, as well as those observed in clinical out-
comes [33,92,119]. For these reasons, transmitochondrial cybrids are widely used to validate
the possible pathogenicity of a mitochondrial variant, even in homoplasmic populations,
with the advantage of using a cell model with the same nuclear background [120]. In the
case of the two MT-ATP6 variants, this cell model clearly demonstrated the impairment
of respiration [60,71,77–79,81,82], ATP synthesis [34,66,68,71,75–80], mitochondrial mor-
phology [83,84], and enhanced ROS production [78,81,85], confirming the milder effect of
m.8993T>C compared to the T>G variant [62,68,71,77,79].

Interestingly, analysis of different cybrid lines carrying the same m.8993T>G vari-
ant highlighted that the mitochondrial genome sequence, and thus the haplogroup, is
a factor contributing to the variations in the observed biochemical phenotypes, ranging
from normal to severe defects [79]. Moreover, clear evidence of the role of mutation load
on deleterious biochemical abnormalities has been recently reported in isogenic cybrids,
where the OCR reduction and the extracellular acidification rate (ECAR) increase were
proportionally linked to the levels of heteroplasmy, indicating a switch toward glycoly-
sis [82]. Metabolic remodeling induced by the m.8993T>G variant was also investigated,
and both proteomics and metabolomics analysis were consistent with increased glycol-
ysis and reductive carboxylation of glutamine to support cell survival and to maintain
redox balance [82]. Accordingly, a second report showed that, in cybrids, the impaired
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OXPHOS activity induces compensatory energy-generating anaplerotic mechanisms where
glutamine-glutamate-α-ketoglutarate metabolism sustains cell survival [86].

The deleterious mechanism hypothesized based on all these studies, especially for the
m.8993T>G variant, includes defective proton transport across Fo, failure of the enzyme
to couple phosphorylation of ADP on F1 to proton flow, or alteration of the holoenzyme
assembly and stability [33,61–63]. Considering that these alterations have been observed
in different cellular models despite not always being together, it seems reasonable that all
three mechanisms contribute to the pathogenicity of the variants.

In recent years, the introduction of induced pluripotent stem cell (iPSC) technology
allowed disease modeling by overcoming the difficulty of accessing clinically relevant
patients’ cells or tissues, such as neurons. The generation of IPSCs requires multiple quality
checks and presents the issue of heteroplasmy fluctuations due to the genetic bottleneck
occurring in the reprogramming process. In addition, the mutant load can also change
during differentiation or cell culture and therefore must be constantly monitored [121,122].

A series of patient-derived iPSCs carrying the m.8993T>G or T>C variant has been
developed [89,123–126], and neural progenitor cells (NPCs) and neurons have been differ-
entiated [89]. The mutant iPSCs were able to differentiate into the three embryonic germ
layers (endoderm, mesoderm, and ectoderm) [109,125,126]. However, analysis of embryoid
bodies showed impaired differentiation potential in cells with a high percentage of the vari-
ant [125]. Overall, the generated cell types recapitulate the energy defects observed in other
cell models and the degenerative phenotypes observed in patients [87,89]. Neurons, in part
because of their predominantly mitochondria-dependent oxidative metabolism [89,109],
have shown degenerative defects not detectable in other, less differentiated cells, notably
ATP shortage and AMPK activation, finer neuronal fibers, and increased sensitivity to
glutamate toxicity [89]. Furthermore, a study of mutant IPSCs revealed abnormalities dur-
ing the three-dimensional differentiation and a defective formation of cerebral organoids,
particularly in the generation of neural epithelial buds, as well as impaired corticogenesis
with an altered metabolic profile [88].

3.1.2. Modeling of ATP6 Subunit Carrying Changes in Leu156 in the ATP Synthase Human
Structure

In the recently released ATP synthase human structures ([16], PDB id 8H9S, 8H9T,
8H9U, and 8H9V for states 1, 2, 3a, and 3b, respectively), the Leu156 residue is located on
helix H5 and is buried in the core of ATP6, forming van der Waals contacts with Leu217
and Val218, located on helix H6 (Figure 3). In the four structures, the residues in the vicinity
of Leu156 are the same, and there are no conformational transitions involving ATP6 in the
different states of the human ATP synthase. The variant of Leu156 in arginine can damage
the interaction between subunit helices H5 and H6 because of (i) the larger volume of an
arginine residue with respect to a leucine and (ii) the presence of a charged side chain in a
region populated only by hydrophobic residues. In other words, the presence of an arginine
in position 156 can cause a divarication between helices H5 and H6 that in turn can alter
the folding of ATP6. Indeed, the correct positioning of these helices is crucial for proton
access to the negatively charged Glu58 in the c subunits (Figure 3). As a consequence, we
hypothesize that this may affect the proton flow and its coupling to the synthesis of ATP.
The p.Leu156Pro variant can also cause some sort of damage to the fold of helix H5, but in
a region that is less important for proton translocation. Indeed, the proline is a well-known
helix terminator and a variant of Leu156 to proline can cause a steric clash between Pro156
Cδ carbon and the backbone oxygen atom of Gln152 and Pro153 together with the loss of
a hydrogen bond between Leu156 and Gln152 backbone. On the other hand, proline is a
hydrophobic residue smaller than leucine. Then, the Leu156Pro variant should not cause
large damages to the hydrophobic core or to the global fold of ATP6.
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Figure 3. Detail of the region comprising Leu156 of ATP6 in the human structure of ATP synthase
(state 1). (A,B) The native ATP6 and c subunits are reported in ribbons colored as in Figure 2. Residues
labels are colored as the corresponding subunits. Leu156 is in ball-and-stick, while other residues
in the vicinity of Leu156 or proposed to be part of the proton translocation process are in stick. The
side chains are colored according to the atom type. The interaction between Arg159 in ATP6 and
Glu58 in c8-ring is shown. The orientation of panel (B) is clockwise rotated by 90◦ around the vertical
axis with respect to the orientation in panel (A). Panels (C,D) reports the model structures of the
p.Leu156Arg and p.Leu156Pro variants, respectively (see Appendix A for details).

3.2. The Pathogenic Variants at Nucleotide m.9176

The m.9176T>C and m.9176T>G variants, which cause a Leu217Pro and a Leu217Arg
ammino acid change, are frequently found in MILS patients and were first reported in 1995
and 2001, respectively [99,101].

In the case of the m.9176T>G variant, a partially disassembled CV, decreased ATP
synthesis, and mitochondrial respiration due to a defective OXPHOS pathway led to an
increase in MMP in MILS patient-derived fibroblasts [71,99]. Similar observations have
been described in cybrids [71,79,80] and in patient-derived muscle tissue [64]. Furthermore,
analysis of this variant in yeast highlighted a severe reduction in the ATP6 protein level,
suggesting that it may affect the assembly of the ATP synthase complex and cause mito-
chondrial and bioenergetic dysfunctions [98]. Human IPSCs have been recently generated
for the m.9176T>G [126], and their use to develop neurons will be instrumental in deeply
characterizing the pathogenic mechanism of this variant in a disease-target tissue.

In the first report in 1995, biochemical analysis of the m.9176T>C variant revealed
no defects in ATP synthase function in patient cells with the homoplasmic variant [101].
However, further studies reported impaired ATP synthesis [71,100,102] and CV stabil-
ity [102] in both human cells and mutant yeast. As for the variants at the nucleotide m.8993,
the alteration caused by the T>C variant was less severe than that caused by the T>G
variant [71,100].

In human structures, Leu217 is positioned in helix H6 of ATP6 and is part of both the
interface between helices H5 and H6 and between ATP6 and the c8-ring. While the residues
in ATP6 in the vicinity of Leu217 (Leu156, Arg159, Val213, Leu216, Leu220, and Tyr221) do
not change during the catalytic cycle, the residues found close to Leu217 in the c subunit are
different depending on the ATP synthase state. Indeed, in state 1, Leu52 and Leu56 in the c
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subunit are close to Leu217 in ATP6 (Figure 4A), while in states 2 and 3a, Leu217 is in the
vicinity of Leu52 and Ala55 in the c subunit (Figure 4B). Finally, in state 3b, no residue from
any c subunit is in the closeness of Leu217 (Figure 4C). The variant of Leu217 in an arginine
residue appears to cause two effects: (i) arginine is a larger residue with respect to leucine,
causing some sort of friction between the ATP6 and the c8-ring that is rotating during the
catalytic cycle, and (ii) the arginine has a charged side chain that can form H-bonds with
other residues in the vicinity, such as Tyr221 from ATP6. This newly formed H-bond can
interfere with the formation of another H-bond between Tyr221 and a water molecule in
the outlet proton translocation half-channel. The latter water molecule is held in the correct
position by two H-bonds, the already cited one with Tyr221 and a second with Glu58 from
the c subunit. On the other hand, the variant of Leu217 in a proline residue can cause some
sort of effects on the folding of helix H6 downstream of the mutated residue, but—as in the
case of p.Leu156Pro—the damage caused by the presence of a small hydrophobic residue
in position 156 should be moderate.
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as ball-and-stick, while other residues in the vicinity of Leu217 or proposed to be part of the proton
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In the left panels, the wild-type protein is reported, while the models of Leu217Arg and Leu217Pro
variants are reported in the central and right panels, respectively (see Appendix A for details).
H-bonds are indicated using dashed red lines.
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3.3. The mt-DNA Pathogenic Variant at Position m.9185

The variant at nucleotide m.9185T>C (p.Leu220Pro) was first reported in 2005 [104],
and functional studies revealed a moderate effect of this variant on ATP synthase function-
ing. Indeed, in patient cells, besides normal Complexes I-IV activity [104,107,108], a slight
alteration of CV and a depolarization of the plasma membrane were reported, often only
in the case of homoplasmy [34,35,104–106,109]. Mild effects on ATPase function have also
been observed in mutated cybrids and yeast cells [34,35,103,109]. The evaluation of IPSCs
and their patient-derived NPCs [109,127], in addition to the defective ATP production,
allowed us to highlight mitochondrial impairment that is hidden in the other cell types.
Indeed, neural cells presented a mitochondrial hyperpolarization and an alteration of
mitochondrial calcium homeostasis, as evidenced by both transcriptomic and proteomic
analysis [109]. All these data suggest that the variant may alter the ability of these cells to
produce ATP and control MMP, causing neural impairment.

In the human ATP synthase structures, Leu220 is located on helix H6 of ATP6, just one
helix turn away from Leu217, and forms van der Waals contacts with Met60, located on
helix H3. Except for Glu224, the other residues found in the vicinity of Leu220 in ATP6 are
all hydrophobic (Leu216, Leu217, and Tyr221). As for Leu217, Leu220 is at the interface
between ATP6 and the c8-ring, and the interacting residues from the latter depend on the
ATP synthase state. Leu220 of ATP6 is in the vicinity of some residues of the c subunit:
Phe47 and Ile51 in states 1 and 3b (Figure 5A) and Leu52 in states 2 and 3a (Figure 5B).
As for the previously discussed cases, a variant of Leu220 in a proline residue can have
some effects on the fold of helix H6 downstream of the mutated residue and, in turn, cause
some problems to the ATP synthase mechanism. On the other hand, proline is a small
hydrophobic residue, and no serious steric or electrostatic effects are expected.
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3.4. Other MT-ATP6 and MT-ATP8 Pathogenic Variants

A number of MT-ATP6 and MT-ATP8 variants reported in the literature have been
reviewed by two different research groups [13,33], and the functional studies of cell
models are reported in detail in Table 1. Here, we report and describe the recently
identified variants.

The study of the m.8909T>C variant, found in a patient also carrying the pathogenic
m.3243A>G variant in mt-tRNALeu (MT-TL1), reported a defect in Complex V assembly
and ATP synthesis [49]. A compromised assembly of ATP synthase and a reduced OCR
has been observed in fibroblasts of two patients carrying the same m.8782G>A variant, one
presenting adult-onset cerebellar ataxia, chronic kidney disease, and diabetes, whereas the
other had myoclonic epilepsy and cerebellar ataxia [45].

The truncating variant m.9154C>T was found in a patient with adult-onset axonal
neuropathy, ataxia, and IgA nephropathy and caused alteration of Complex V assembly,
mitochondrial morphology, and ultrastructure in mutated fibroblasts [97]. Interestingly, the
mutation load resulted to be proportional to Complex V assembly defect in patient-derived
iPSCs and responsible for impaired neurogenesis due to Notch hyperactivation and altered
metabolism of mature motor neurons [97].

Other identified MT-ATP6 variants include the m.8858G>A variant in a sporadic
case of NARP-MILS [128]; the m.8936T>A in a young boy with atypical mitochondrial
Leigh syndrome associated with bilateral basal ganglia calcifications [129]; m.9143T>C in a
patient with insulin-dependent diabetes mellitus, recurrent lactic acidosis, infections, and
immunodeficiency [130]; m.9154C>T in a patient with neuropathy, cerebellar ataxia, and
IgA nephropathy [131]; and m.9171A>G in a patient with mitochondrial retinopathy with
atrophy [132]. The three variants m.8572G>A, the m.8578C>T and m.8812A>G were found
in patients with adult-onset spinocerebellar ataxia (SCA) [133].

Regarding new variants affecting MT-ATP6, MT-ATP8, or both, m.8561C>T, which
causes a defect in CV assembly, was reported in a child with early onset ataxia, psy-
chomotor delay, and microcephaly [42], whereas functional studies have been performed
for the m.8382C>T, m.8424T>C, m.8806C >G, m.8975T>C, m.9008C>G, and m.9019A>G
variants [34].

4. MT-ATP6 and MT-ATP8 Variants and Clinical Phenotypes

The first variant in the mt-DNA affecting ATP6 of ATP synthase was described in
1990 as m.8993T>G on MT-ATP6, and found in four members of a family affected by
NARP syndrome [134]. This variant is the most common variant associated with NARP,
an adult-onset slowly progressive disease, whose non-canonical clinical manifestations
include cerebral or cerebellar atrophy, optic atrophy, cognitive and hearing impairment,
dementia, renal insufficiency, epilepsy, and diabetes [135].

Since then, a very large and still growing number of different MT-ATP6 and MT-ATP8
variants have been reported in mitochondrial patients, with variants located in MT-ATP8
being less frequent. Patients present a highly variable clinical phenotype, ranging from
asymptomatic to multisystemic neurodegeneration, and the onset of the manifestation can
occur both in the pediatric population and in adults [13,33].

MILS, which is a subset of Leigh syndrome, is a second common disorder associated
with pathogenic MT-ATP6 variants whose first variant was reported in 1992 [136]. MILS is
a highly disabling disease with an early onset (predominantly age < 2 years), characterized
by bilateral lesions in the central nervous system, in association with developmental
delay and regression, movement disorders, hypotonia, ataxia, dystonia, ophthalmologic
abnormalities, and other multisystemic symptoms [9,137]. Differently from NARP, MILS is
a very severe disorder with a poor outcome, with 50% of affected individuals dying within
3 years of age [138,139].

In the last three decades, a high variability of clinical manifestations has been observed
in patients carrying MT-ATP6 variants, including bilateral striatal necrosis [101,140], Leber
hereditary optic neuropathy (LHON) [93], adult-onset ataxia and polyneuropathy [141],
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schizophrenia [142], hereditary spastic paraplegia [102], spinocerebellar ataxia [108],
Charcot–Marie–Tooth disease [105], mitochondrial myopathy, lactic acidosis and sider-
oblastic anemia (MLASA) [54], and motor neuron syndrome [143]. The less common
variants in MT-ATP6/8 or MT-ATP8 reported in the literature showed to cause maternally
inherited diabetes and deafness syndrome [144], left ventricular hypertrabeculation [145],
brain pseudoatrophy and mental regression [146], cardiomyopathy [39], autism [147],
epilepsy [148], ataxia, peripheral neuropathy, diabetes mellitus, and hypergonadotropic
hypogonadism [41]. Recently, early onset ataxia, psychomotor delay and microcephaly [42],
leukodystrophy, renal disease, and myoclonic epilepsy with cerebellar ataxia [45] have
been added to the already wide range of clinical symptoms. Furthermore, the clinical
manifestations are often highly variable. For example, MT-ATP6-related Leigh disease has
been reported in cases with adult onset [149,150] or in patients with MRI findings that differ
from classic MILS, presenting delayed myelination, cerebral atrophy/microcephaly, or no
pathology [151,152]. In addition, new biochemical dysfunctions and disease symptoms
have been added to the canonical phenotypic spectrum related to MT-ATP6 variants, such
as carboxylase deficiency [153] or recurrent infections and immunodeficiency [130].

One of the most important factors responsible for the high heterogeneity of the disease
phenotype is heteroplasmy. As with the biochemical phenotype, a specific threshold of
mutational load must be exceeded to see clinical manifestations. The value of the thresh-
old may depend on the nature of the variant, the cell type, and is usually greater than
50% [9,154]. The type of the symptoms often depends on the degree of heteroplasmy. For
example, the same MT-ATP6 variant can cause MILS or NARP syndromes if the hetero-
plasmy found in stable tissues is higher than 90% or between 70 and 90%, respectively [9,33].
However, the degree of heteroplasmy observed in patients is not always strictly correlated
with the severity of the clinical phenotype since high percentages of mutations can occur
even in asymptomatic individuals [33,151].

Moreover, different disease phenotypes have been reported in patients with the same
genotype and belonging to the same family [151]. Therefore, other factors such as variable
penetrance, nuclear background that may contribute by means of unknown nuclear variants,
mt-DNA haplogroup, as well as age and sex, may affect the puzzling clinical variability
that characterizes MT-ATP6- and MT-ATP8-related diseases.

5. Therapeutic Approaches

ATP synthase dysfunctions are crucial in neurodegenerative pathologies related to
MT-ATP6 and MT-ATP8 variants and can lead to secondary biochemical defects associated
with clinical phenotypes.

Various therapeutic strategies have been developed for MT-ATP6/8 diseases: (i) to
target the metabolic dysfunctions caused by the variants, (ii) to increase the level of the
wild-type ATPase subunit, or (iii) to decrease the mutation load, as shown in Figure 6.

5.1. Targeting Mitochondrial Dysfunctions

In homoplasmic m.8993T>G cybrids, our research group demonstrated that sup-
plementation of both α-ketoglutarate (αKG) and aspartate contributed to significantly
increased ATP levels and cellular survival. Indeed, the succinyl coenzyme A (CoA) pro-
duced by the α-ketoglutarate dehydrogenase catalyzed reaction was converted into suc-
cinate, producing ATP via the substrate-level phosphorylation mechanism [155]. There-
fore, the combined supplementation of these substrates has been proposed as a dietary
therapeutic approach for patients with severe ATP synthase dysfunction [155]. Interest-
ingly, metabolomic analysis of the same mutated cybrids revealed their high dependence
on glutamine-glutamate-α-ketoglutarate and confirmed that the supplementation with
dimethyl-αKG, a membrane-permeable analog of α-KG, can activate anaplerotic energy
metabolism and support cell growth. This study suggests the dietary strategy as a thera-
peutic option for other mitochondrial myopathies [86].
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Figure 6. Overview of the therapeutic options proposed for the treatment of pathologies associated
with MT-ATP6/MT-ATP8 variants. (A) Drugs (blue square) targeting mitochondrial dysfunctions in
mutated cells: compounds that limit an abnormally increased process (red square) or that boost a
pathological reduced pathway (green square). Black arrows indicate positive regulation, while red
arrows indicate negative regulation. Antioxidants or Avanafil have been reported to reduce high
ROS production and mitochondrial membrane potential (∆ψm), respectively. Supplementation of
α-ketoglutarate and aspartate (α-KG/Asp) contributes to increasing ATP levels through reactions
of the tricarboxylic acid (TCA) cycle. The limitation of ATP deficit is induced by Epicatechin or by
Rapamycin. Epicatechin, by blocking the ATP hydrolytic activity of CV, increases cellular energy
availability, whereas Rapamycin, by reducing the enhanced activity of mTORC1, limits the related
energy-consuming processes. (B) Allotopic expression is aimed at replacing the mutant protein
(ATP6 or ATP8) with the wild-type counterpart, restoring the ATP synthase function. (C) A third
approach uses nucleases (black scissors) that selectively cleave the mutant mt-DNA molecules (red
chains), inducing their degradation. The consequent replication of the wild-type mitochondrial
genome (green chains) to maintain the copy number will increase its percentage and lead to a shift of
mt-DNA heteroplasmy.

In many pathological conditions, ROS generation is often increased due to dysfunction
in the OXPHOS system, leading to irreversible cellular injury; thus, redox-active molecules
are widely used in the treatment of mitochondrial diseases [156,157]. The enhanced ROS
production observed in almost all the analyzed MT-ATP6/MT-ATP8 mutated cell types
suggested the use of antioxidant molecules to prevent ROS-induced damage [62,78]. The
efficacy of N-acetylcysteine (NAC), a molecule that supplies the intracellular pool of re-
duced glutathione, was tested in vitro in both m.8993T>G cybrids and fibroblasts, where
it led to a reduction in ROS and an improvement in mitochondrial respiration and ATP
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synthesis [78]. In NARP patient-derived fibroblasts, the vitamin E-derivative trolox di-
minished both mitochondrial and cytosolic superoxide anions, but no biochemical studies
on OXPHOS dysfunctions have been performed [70]. Selenium supplementation showed
a mild effect in cybrids. This molecule induced an increase in the NRF1 protein level, a
transcription factor that regulates the expression of antioxidant enzymes, in glutathione
peroxidase and thioredoxin reductase activity and a consequent drop in the ROS level, with
no changes in the amount of respiratory chain proteins [85,158]. Melatonin, a molecule that
can act as an endogenous free radical scavenger and plays an effective role in preserving
functions, has been shown to protect m.8993T>G cybrids from stress-induced cell death,
cardiolipin depletion, and alterations in mitochondrial movement [159]. Finally, a low dose
of resveratrol (10 nM), a compound that promotes mitochondrial biogenesis and exhibits
antioxidant activity, was reported to boost mitochondrial respiration in a homoplasmic
m.8993T>G patient’s fibroblasts [72].

EPI-743, also known as vatiquinone, is a para-benzoquinone analog formed by the
combination of coenzyme Q10 (CoQ10) and vitamin E and presents improved both pharma-
cological properties and antioxidant efficacy compared to CoQ10 or idebenone [160,161].
The antioxidant activity is based on its ability to undergo a reversible two-electron cy-
cling reaction, which leads to an increase in the concentrations of reduced glutathione
(GSH) and an improvement in the cellular redox status [160,161]. EPI-743 has been used in
several trials for heterogeneous groups of neurological disorders [160,162]. Interestingly,
this drug has been used in children with genetically confirmed Leigh syndrome in an
open-label phase 2A trial, showing improvement in clinical outcomes [163], as well as in
randomized, double-blind, placebo-controlled trials (ClinicalTrials.gov ID: NCT01721733
and NCT02352896) [162]. Furthermore, a phase 3 clinical trial to test vatiquinone on pa-
tients with inherited mitochondrial disorders, including Leigh syndrome, is active and
enrolling patients (ClinicalTrials.gov ID: NCT05218655).

The strategy of reducing ATP deficit by limiting the energy-consuming processes
has been used to treat several mitochondrial diseases [156]. The Mammalian Target of
Rapamycin Complex 1 (mTORC1) plays a central role in the regulation of various processes.
In response to environmental conditions, mTORC1 stimulates anabolism and mitochondrial
energy production and inhibits catabolic processes such as autophagy [164,165]. Although
no changes in the mTORC1 pathway was observed in m.8993T>G cybrids [166], the MILS
patient-derived neurons exhibited enhanced mTORC1 activity, as shown by increased
phosphorylation of its targets [89]. Treatment of mutated neurons with rapamycin, the most
widely used inhibitor of mTORC1 that reduces protein synthesis and increases autophagy,
preserved ATP levels, decreased the altered AMPK phosphorylation and mitigated the
effects of glutamate toxicity [89].

Epicatechin, a catechin derivative member of flavonoids’ family, has been associated
with various beneficial effects on mitochondrial functioning [167–169]. In a recent report,
(+)-Epicatechin was identified as a selective inhibitor of the hydrolytic activity of ATP syn-
thase [170]. In mutated fibroblasts, blocking the ATP hydrolytic activity of Complex V with
(+)-Epicatechin prevented the waste of ATP, increasing the cellular energy availability [170].

The abnormally high MMP observed in m.9185T>C NPCs has been used as readout for
a high-content screening of FDA-approved drugs. In this study avanafil, a Phosphodiesterase-
5 (PDE5) inhibitor, was identified as the best molecule for MMP rescue and recovery of the
mitochondrial calcium homeostasis in both mutant NPCs and neurons [109].

Supplementation of L-arginine and L-citrulline, nitric oxide precursors, was proposed
for the treatment and prevention of metabolic stroke in mitochondrial diseases, with
clinical benefit also for pediatric patients with Leigh syndrome [171]. Indeed, low citrulline
and/or elevated C5-hydroxyacylcarnitine levels were found in newborn screening of
children with MT-ATP6 variants [153,172,173]. Supplementation with citrulline and other
mitochondrial cofactors, such as biotin, CoQ10, and the B50 complex, together with other
early interventions, have been proposed to reduce the risk of decompensation and to
ameliorate long-term outcomes [173].

ClinicalTrials.gov
ClinicalTrials.gov
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5.2. Allotopic Expression Strategy

The proteins encoded by the mt-DNA are expressed and translated into proteins
within the mitochondrial matrix. The allotopic expression of a mitochondrial gene is an
approach aimed at relocating a wild-type copy of the mutated gene into the nucleus. Of
course, the wild-type gene must express a polypeptide containing an amino-terminal prese-
quence for its import into the mitochondria [174]. This strategy is intended to complement
the mutant protein with the wild-type counterpart and restore the altered biochemical
pathway, thus allowing treatment of the disease by gene therapy. For the success of this
approach, several challenges have been assessed and, in the last three decades, handled
and improved. These include the different codon dictionaries and preferences between the
mitochondrial and nuclear systems, the requirement of a mitochondrial targeting sequence
(MTS) for translocation within the organelle, and the need for functional integration of the
polypeptide into mitochondrial Complexes [174,175].

The first successful demonstration of allotopic expression of an optimized MT-ATP6
gene fused with the COX8 MTS in m.8993T>G cybrids was published in 2002, where
both growth and ATP synthesis were improved [76]. To follow, several groups reported
allotopic expression of both ATP6 and, although to a lesser extent, ATP8 proteins in human
cells, trying to optimize the codon sequence for nuclear use and MTS type [40,69,176–178].
Indeed, the mitochondrial surface localization of nuclear-encoded mRNA allows the si-
multaneous translation of the polypeptide and its translocation within the organelle, a
fundamental property, especially for highly hydrophobic proteins, such as ATP6. Thus, the
use of the MTS and the 3′UTR of a nuclear gene such as SOD2 was tested to optimize the
mitochondrial import of ATP6 in mutated fibroblasts [69,178]. In cybrids, the m.8529G>A
variant resulted in the complete absence of ATP8 and a partial reduction in ATP6, leading
to a defect in Complex V assembly and functionality [39]. The allotopic experiments with
these homoplasmic cybrids showed that only the co-expression of the two wild-type genes,
MT-ATP6 and MT-ATP8, rescued the assembly and activity of CV, the OCR, and the cell
viability in galactose-media [40]. Transgenic mice that allotropically express the wild-type
or the m.8993T>G mutated ATP6 have been developed as a model for mitochondrial disease
research, with implications for the development of DNA-based therapy [179,180].

As a promising therapy for mitochondrial diseases, further efforts have been made
to improve this approach both in terms of efficient mitochondrial localization and codon
sequence. Indeed, Chin and colleagues have developed an unbiased, high-content imaging-
based screening platform to optimize the allotopic expression of eight mitochondrial pro-
teins by combining thirty-one MTS and fifteen 3′UTRs [181]. Following this step, chemically
modified mRNAs (modRNAs) encoding optimized ATP6 were able to restore respiration
and growth under stress conditions of cybrids harboring the m.8993T>G variant, proving
that modRNAs can be an alternative in the field of mitochondrial disease therapy [181].
On the other hand, Lewis et al. redesigned the sequence of the 13 protein-coding genes
of the human mt-DNA by codon optimization, improving both the steady-state mRNA
levels and the protein amount [182]. Indeed, only the codon-optimized subunit ATP8
protein is produced with stable expression in m.8529G>A cybrids and, when expressed in
mouse model cells, was able to integrate into Complex V and rescue growth under stress
conditions [182].

5.3. Nuclease-Based Approaches

An additional therapeutic option for the treatment of mitochondrial diseases aims to
reduce the percentage of mutation load below the threshold for manifestations of biochem-
ical dysfunctions. This goal is achieved by using mitochondrial-targeted nucleases that
generate double-strand breaks (DSBs) at specific mt-DNA sequences [154,183]. Following
DSBs, the mutant mt-DNA molecules are degraded, and the remaining wild-type molecules
can replicate and repopulate the treated cells. This strategy has been validated in a number
of different human cells and mouse models of mitochondrial diseases [154,183].
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Mitochondrial-targeted restriction endonucleases (mitoREs) require the presence of
a naturally unique restriction site that encompasses the point mutation or deletion [154].
The use of mitoRE has been tested by two different research groups in cybrids carrying
the m.8993T>G variant, which generates a restriction site recognized by the enzymes SmaI
and XmaI [184,185]. These mitoREs were effective at shifting mt-DNA heteroplasmy in a
time- and dose-dependent manner, rescuing the intracellular ATP level and mitochondrial
membrane potential [184], growth capability, OCR, and ATP synthesis rate [185]. The
limitations of the mitoREs approach are that very few pathogenic variants introduce a
unique restriction site into the mitochondrial genome and that the enzymes cannot be
modified for a different DNA-binding specificity.

Later, great attention has been given to engineered nucleases, such as mitochondrial-
targeted zinc-finger nucleases (mtZFNs) and mitochondrial-targeted TALE nucleases (mito-
TALENs). In addition to the MTS, these nucleases present a sequence specific DNA-binding
domain and a functionally dimeric sequence nonspecific endonuclease domain from the
RE FokI that generates DSBs. The main advantages over mitoREs are that mtZFNs and
mitoTALENs can be engineered to obtain different protein–DNA interactions, and thus
these systems can target different mt-DNA variants. Secondly, the endonuclease becomes
active only when both monomers are bound to the target DNA sequence, limiting the
off-targets [154,183].

The proof of principle of the ZFNs approach was first provided in a work of an
engineered zinc finger peptide with a methylase activity specific to m.8993T>G [186].
The system was improved to generate an initial mtZFN version that cleaved dsDNA for
heteroplasmy shift in the mutated cybrids, but some unwanted mt-DNA depletion and
cytotoxic effects occurred [187]. To follow, an ameliorated heterodimeric mtZFN was more
effective in increasing the wild-type mt-DNA genome from 7% to 17% in the m.8993T>G
cybrids, without undesired secondary effects [188]. Finally, the optimized version of this
mtZFN induced an almost complete directional shift of mt-DNA heteroplasmy, with a
consequent improvement in OCR, energy charge, and changes of intracellular metabolites,
as shown by metabolomic analyses [189].

The mitoTALEN technology has been applied to reduce the m.9176T>C mt-DNA
variant in artificially generated murine oocytes carrying the mitochondrial genome of
patient-derived cells, preventing the transmission to offspring [190].

Recently, both mitoTALEN and mitoZFN have been tested in in vivo models of other
mt-DNA variants [154]. All these findings may be useful in the translation of these thera-
peutic tools into clinical trials, although some challenges, such as immunogenicity of the
delivery system and off-target effects on the nuclear and mitochondrial genome [154,183],
remain to be overcome and will require further optimization.

6. Conclusions and Perspectives

The increasing amount of variants affecting the MT-ATP6 and MT-ATP8 genes is
reflected in a progressively larger spectrum of clinical phenotypes associated with ATP
synthase dysfunctions. Over the last two decades, the knowledge of the cellular and
biochemical consequences of these variants has made great progress, thanks to the use
of different cellular models, which we have reviewed. Although effective therapy for
the neurodegenerative diseases related to the above variants is still lacking, a deeper
understanding of the biochemical dysfunctions at both the molecular and metabolic levels
has allowed us to propose interventions that could help limit the severity of these disorders.
The encouraging results from pre-clinical in vitro studies are graphically summarized
in Figure 6.

Consistent and absolute findings on the consequences of MT-ATP6 and MT-ATP8
variants were difficult to define for several reasons, including (1) heterogeneity of tissues
and cell types used in the experimental studies; (2) inconsistency of results on heteroplasmy,
ATP synthesis, and respiration, particularly in intact cells; (3) difficulty in comparing ge-
netic and biochemical analyses performed with different methods; and (4) a lack of data on
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the time dependence of the patient’s clinical status and related in vitro analyses. Future
advances in this field will depend on identifying and standardizing experimental methods
and conditions that influence biochemical and genetic assays, thus allowing potentially
confounding factors to be removed. Furthermore, further work appears necessary to moni-
tor in vivo what the ATP/ADP ratio is in the organs of patients carrying the most common
variants with the aim of testing whether the data can match the experimental results in vitro.
This could be achieved, for instance, with the development of high-resolution magnetic
resonance spectroscopy and imaging.

However, the recent advances in the field of gene therapy, aimed at expressing the
wild-type protein or reducing the mutant mt-DNA, represent a feasible option, although
some challenges remain to be overcome. It should be noted that the positive results of the
gene therapy trial for the treatment of Leber Hereditary Optic Neuropathy (LHON) caused
by ND4 variants [162] have shown the potential of an allotopic therapeutic strategy for other
mt-DNA-related diseases, including the disorders caused by MT-ATP6/MT-ATP8 variants.
We hope that this review contributes to the understanding of the need to coordinate in vitro
and in vivo studies on mt-DNA variants to collect all critical parameters and thus better
show the direction toward more appropriate therapeutic approaches.
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Appendix A

The human ATP synthase structures were visualized and analyzed using UCSF
ChimeraX 1.7 [191]. The variants were simulated by using the swapaa tool included in
UCSF ChimeraX. Swapaa replaces amino acid sidechains using information from a rotamer
library. A residue can be changed to a different sidechain conformation of the same type
of amino acid or mutated into a different type. Rotamers are chosen automatically and
optimized to reduce the clashes with the neighboring atoms, to optimize the largest possible
number of H-bonds. In the present case, side chain conformations were chosen from the
Dunbrack library [192]. The latter uses a continuous probability density estimating for
the non-rotameric degrees of freedom of amides, carboxylates, and aromatic sidechains.
Subsequently, the sidechains were modeled as functions of the backbone dihedrals and
rotamers of the remaining degrees of freedom.
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111. Ješina, P.; Tesařová, M.; Fornůsková, D.; Vojtíšková, A.; Pecina, P.; Kaplanová, V.; Hansíková, H.; Zeman, J.; Houštěk, J.
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