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Abstract: Spinal cord injury (SCI) leads to devastating sequelae, demanding effective treatments.
Recent advancements have unveiled the role of neutrophil extracellular traps (NETs) produced by
infiltrated neutrophils in exacerbating secondary inflammation after SCI, making it a potential target
for treatment intervention. Previous research has established that intravenous administration of stem
cell-derived exosomes can mitigate injuries. While stem cell-derived exosomes have demonstrated
the ability to modulate microglial reactions and enhance blood–brain barrier integrity, their impact
on neutrophil deactivation, especially in the context of NETs, remains poorly understood. This
study aims to investigate the effects of intravenous administration of MSC-derived exosomes, with a
specific focus on NET formation, and to elucidate the associated molecular mechanisms. Exosomes
were isolated from the cell supernatants of amnion-derived mesenchymal stem cells using the ul-
tracentrifugation method. Spinal cord injuries were induced in Sprague-Dawley rats (9 weeks old)
using a clip injury model, and 100 µg of exosomes in 1 mL of PBS or PBS alone were intravenously
administered 24 h post-injury. Motor function was assessed serially for up to 28 days following the
injury. On Day 3 and Day 28, spinal cord specimens were analyzed to evaluate the extent of injury
and the formation of NETs. Flow cytometry was employed to examine the formation of circulating
neutrophil NETs. Exogenous miRNA was electroporated into neutrophil to evaluate the effect of in-
flammatory NET formation. Finally, the biodistribution of exosomes was assessed using 64Cu-labeled
exosomes in animal positron emission tomography (PET). Rats treated with exosomes exhibited a
substantial improvement in motor function recovery and a reduction in injury size. Notably, there
was a significant decrease in neutrophil infiltration and NET formation within the spinal cord, as
well as a reduction in neutrophils forming NETs in the circulation. In vitro investigations indicated
that exosomes accumulated in the vicinity of the nuclei of activated neutrophils, and neutrophils
electroporated with the miR-125a-3p mimic exhibited a significantly diminished NET formation,
while miR-125a-3p inhibitor reversed the effect. PET studies revealed that, although the majority
of the transplanted exosomes were sequestered in the liver and spleen, a notably high quantity of
exosomes was detected in the damaged spinal cord when compared to normal rats. MSC-derived
exosomes play a pivotal role in alleviating spinal cord injury, in part through the deactivation of NET
formation via miR-125a-3p.
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1. Introduction

Spinal cord injury (SCI) occurs due to mechanical damage to the spinal cord, resulting
in various degrees of motor, sensory, and autonomic dysfunction, with an annual inci-
dence of 40–80 per million people [1]. This condition is complex and devastating, with
limited treatment options currently available. Recent evidence suggests that neutrophil
extracellular traps (NETs), consisting of extracellular DNA contents released from activated
neutrophils, exacerbate the local inflammatory environment and hinder neurological recov-
ery after spinal cord injury [2–4]. NETs have also been reported to exaggerate neurological
condition in other neurological diseases, such as stroke and traumatic brain disease [5–7],
and controlling NET formation is considered to be an important therapeutic intervention.
Our group has focused on exploring the potential therapeutic use of mesenchymal stem
cells (MSCs) for spinal cord injury [8]. We, along with other investigators, have observed
that MSCs, when intravenously transplanted shortly after injury, effectively restore motor
function in the animal SCI model. Nevertheless, the administered cells predominantly accu-
mulate in the lungs and liver, with no detectable presence in the injured spinal cord [9–11].
This can be attributed to the bystander effect of stem cells, in which trophic factors, cy-
tokines, and exosomes released from the cells play a role in reducing both local and systemic
inflammation, consequently contributing to the rescue of the damaged spinal cord [12].
Among these approaches, stem cell-derived exosomes have been attracting considerable
attention. Exosomes, nano-sized vesicles ranging from 40 to 200 nm, are characterized by
a double lipid-layer membrane and encapsulate a myriad of molecules, including DNA,
mRNA, microRNA (miRNA), and proteins [13]. These molecules can be transferred into
target cells, offering therapeutic benefits in mitigating neurological diseases [14–16]. Their
remarkable cryopreservation capacity and low immunogenicity have prompted considera-
tions of MSC-derived exosomes as a promising alternative to MSC. Previous reports have
demonstrated that MSC-derived exosomes exert their effects on the spinal cord by inducing
a shift in the phenotype of macrophages and microglia from a proinflammatory (M1) state
to an anti-inflammatory (M2) state. They also inhibit astrocytic gliosis and promote angio-
genesis and neurogenesis [17–22]. However, the influence of exosomes on neutrophils, the
most abundant and earliest cells recruited from the bloodstream to the spinal cord after an
injury resulting in aggravation of inflammation, has not been extensively studied.

In light of these circumstances, our research aims to investigate the effects of intra-
venous administration of amnion-derived MSC (AMSC) exosome on SCI, with a specific
focus on their interaction with neutrophils and the formation of NETs.

2. Results
2.1. Exosome Characterization

Transmission electron microscopy (TEM) images revealed that the exosomes exhibited
a consistent shape with an average diameter of approximately 80 nm (Figure 1A), which was
further corroborated by the size distribution data from the nanoparticle analyzer (Figure 1B).
Western blot analysis demonstrated elevated expression levels of CD9 and CD63, specific
markers for exosomes, in comparison to the AMSC suspension. Conversely, the expression
of calnexin, a marker with low expression in exosomes, was diminished in the exosome
(Figure 1C). These results confirm the presence of exosomes in the AMSC-derived samples.

2.2. Intravenous Exosome Administration Ameliorates SCI Damage in Mice

The animals that received exosomes exhibited significantly better neurological recov-
ery compared to those that received phosphate-buffered saline (PBS) (Figure 2A), starting
one week after administration. Kluver–Barrera staining revealed that the damaged vol-
ume of the spinal cord tissue collected at 4 weeks post-SCI was significantly lower in the
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exosome-treated group (p = 0.006) (Figure 2B,C). In the peri-injury area at 4 weeks post-SCI,
there was a notable reduction in MPO-positive neutrophil infiltration in the exosome-
treated group (p = 0.037) (Figure 3A,B). Subsequently, early neutrophil infiltration and NET
formation were examined in the day 3 section. Immunofluorescence imaging revealed
that CitH3-positive cells, as well as MPO-positive cells, were significantly reduced in the
exosome-treated group (Figure 4A,B) (p = 0.023 p = 0.047, respectively). This phenomenon
is further confirmed by the decrease in NETs, as demonstrated by peri-nuclear histone
integration in the exosome-treated group (p = 0.003, Figure 4C,D).
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Figure 1. Characteristics of AMSC-derived exosome. (A) Electron microscopy shows vesicles
with round shape morphology with diameter of approximately 100 nm. (B) Histogram of the size
distribution by nanoparticle analyzer revealed that exosome size ranged from 70 to 300 nm with
peak of 180 nm. (C) Western blot detection showed the exosome exhibited CD9 and CD63, while less
detection was noted for Calnexin compared with the AMSC.

2.3. Ex Vivo Analysis of Exosomes for NET Formation

Peripheral blood was obtained to assess NET formation in neutrophils. Initially, we ex-
amined the uptake of exosomes by neutrophils. Labeled exosomes were co-incubated with pe-
ripheral neutrophils, and it was observed that the exosomes began to accumulate around the
nucleus of neutrophils approximately 10 min after co-incubation (Supplementary Video S1).
Subsequently, neutrophils were activated by LPS and co-incubated with exosomes. The
number of neutrophils positive for CitH3 and MPO was significantly reduced in the
exosome-treated group compared to the PBS group (Figure 5A,B). This finding was further
validated through flow cytometry (FACS) analysis, which demonstrated a significant de-
crease in CitH3-positive Ly6G+ neutrophils following exosome administration (p = 0.002)
(Figure 5C,D).
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Figure 2. Exosome administration ameliorated neurological function and reduced damaged lesions.
(A) Animals that received exosomes demonstrated significantly enhanced neurological recovery,
starting from 1 week after transplantation, in comparison to animals that received saline. (B) The
Kluver–Barrera staining of the spinal cord 4 weeks after SCI showed the degree of spinal cord damage
(the red dotted area) (scale bar = 200 µm). (C) The exosome-treated group exhibited a substantially
smaller damaged lesion volume compared to the PBS group (p = 0.0061). * p < 0.05, ** p < 0.01.
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Figure 3. Neutrophil infiltration is inhibited by exosome administration. (A) Neutrophil infiltration
in the spinal cord 4 weeks after SCI was assessed using the anti-MPO antibody. (B) The count of
MPO-positive cells within the spinal cord was notably reduced in the exosome-treated group as
compared to the PBS group (scale bar = 20 µm, p = 0.037). * p < 0.05.
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Figure 4. Exosome ameliorated NET formation in spinal cord. (A,B) The quantity of NETs (CitH3)
and activated neutrophils (MPO), assessed via immunofluorescence, were significantly reduced in
the spinal cord following exosome treatment (scale bar = 50 µm, p = 0.0231, p = 0.0466, respectively)
(C,D) Existence of NETs were further evaluated by super-resolution microscopy. Note that CitH3 is
extruded around the nuclear in the PBS group. (scale bar = 20 µm, p = 0.0027). * p < 0.05, ** p < 0.01.
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Figure 5. In vitro analysis of NET formation in mouse neutrophil. (A,B) CitH3 formation was
significantly reduced in neutrophils treated with exosomes. (scale bar = 50 µm, p = 0.0101) (C,D) Flow
cytometry analysis further demonstrated a decrease in cells expressing NETs in the exosome-treated
group. (p = 0.0019). * p < 0.05, ** p < 0.01.
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To elucidate the functional mechanisms of exosomes in NET formation, neutrophils
were electroporated with miR-125a-3p mimic and inhibitor to assess NET formation fol-
lowing lipopolysaccharide (LPS) activation. Exosome administration effectively inhibited
NET formation, and miR-125a-3p electroporation modestly enhanced this treatment effect.
Furthermore, the impact of exosome administration was entirely reversed by the addition
of the miR-125a-3p inhibitor, underscoring the pivotal role of miR-125a-3p encapsulated
within exosomes in NET formation (Figure 6).
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Figure 6. miR-125a-3p inhibits NET formation in mouse neutrophil. Exosome administration
successfully attenuated NET formation following LPS administration, and miR-125a-3p mimic
modestly enhanced treatment effect. The effect of exosome was entirely reversed by the addition of
the miR-125a-3p inhibitor. (scale bar = 50 µm). ** p < 0.01.

2.4. Biodistribution of Exosomes

PET imaging of 64Cu-labeled exosomes at one hour post injection revealed their
substantial accumulation in the liver and spleen (Figure 7A). Biodistribution data obtained
by tissue detection at 24 h post injection also revealed the same trend of liver and spleen
accumulation (Figure 7B). Interestingly, the exosomes were found to be significantly higher
in the spinal cord in the SCI model compared to the normal rat despite their limited
presence (Figure 7C). This result indicates the potential for exosome accumulation at
inflammatory sites.
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3. Discussion

In the current study, we have demonstrated that intravenously transplanted AMSC-
derived exosomes successfully mitigated neutrophil activation by inhibiting NET formation,
resulting in the restoration of motor function. We were able to elucidate the underly-
ing molecular mechanism responsible for this effect, which is induced by the exosomal
miR-125a-3p. Biodistribution analysis using PET revealed that the majority of exosomes
accumulated in the liver and spleen, with a notable quantity also observed in the injured
spinal cord.

This study is built upon our previous research, in which intravenous administration
of AMSCs for spinal cord injury resulted in significant functional recovery. However,
it is noteworthy that AMSCs were not detected within the injured spinal cord itself [9].
Exosomes released from stem cells are considered to play a pivotal role in the therapeutic
mechanisms of stem cell treatment, and numerous experiments are currently underway in
the context of SCI [23–25]. The mechanisms can be categorized into two distinct patterns:
alleviating damage and promoting neuro/angiogenesis. A majority of studies that have
embraced early exosome administration focus on damage alleviation, encompassing anti-
apoptosis, preservation of the blood–spinal cord barrier, and immunomodulation. While
immunomodulation often involves the deactivation of macrophages, the therapeutic role
of exosomes in neutrophil deactivation is rarely explored [26]. The underlying reason
for this scarcity of research may be attributed to the challenges associated with ex vivo
culturing of neutrophils compared to microglia/macrophages. Inflammation is known to
manifest immediately following spinal cord injury, initially activating microglia within
a few hours, followed by neutrophil infiltration into the injured spinal cord during the
initial 1–3 days, and culminating with a peak infiltration of macrophages around one
week after the initial injury. As the first non-resident cells to be recruited to the damaged
spinal cord, we posit that controlling neutrophil deactivation is of paramount importance
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in ameliorating the cascade of inflammation in SCI [27–29]. In addition to the timing
of administration, the number of administrations is also of significant importance. In
this report, we administered exosomes for three consecutive days following SCI, which
mimics the natural pattern of exosome secretion from MSCs [30]. This approach aligns
with findings from Nakazaki et al., who observed that administering exosomes in fractions
over three consecutive days resulted in superior functional improvement when compared
to a single administration of the total exosome dose over the same three-day period [31].
Given the reported very short half-life of exosomes, multiple administrations to adequately
cover the period of neutrophil activation are considered essential.

While data regarding the functional role of NET formation in SCI models remain
limited, accumulating evidence substantiates the concept that NET formation exacerbates
central nervous system diseases through various pathways, including direct neural damage,
microglial activation, and the induction of reactive gliosis [3,4]. Feng et al. previously docu-
mented that NET formation worsens secondary injury after SCI by promoting inflammation
and disrupting the blood–brain barrier (BBB), and the degradation of NETs through the use
of DNase led to an enhancement in motor function following spinal cord injury [2]. Consis-
tent with these findings, our current study observed an improvement in motor function,
coinciding with the decrease in NET levels, underscoring a strong interconnection between
NETs and the secondary inflammation resulting from spinal cord injury. Understanding
the mechanisms by which exosomes alleviate NET formation is essential for enhancing
their functionality, yet these mechanisms remain incompletely understood. Timelapse
imaging has revealed that exosomes congregate around the neutrophil nucleus, suggesting
a potential role in delivering active molecules to neutrophils. In our study, we selected
miR-125a-3p as a therapeutic molecule for exosomes, given its well-documented involve-
ment in inflammation and its abundant expression in AMSCs. As a result, the miR-125a-3p
inhibitor successfully counteracts the NETs-suppressing effect of exosomes, confirming
its role in anti-inflammatory processes. These findings are consistent with the work of Jin
et al., who have exclusively reported that miR-125a-3p suppresses NETs by targeting the
NF-κB signaling pathway mediated by Toll-like receptor 4 (TLR4) [32]. Kim et al. reported
that mir-125a inhibits the NF-κB regulator tumor necrosis factor alpha-induced protein 3 to
negatively affect NF-κB activity [33]. Additionally, mir125b, TLR4/JNK signaling has been
reported to play a role in NET formation by neutrophils [34]. miR-125a-3p is also implicated
in altering the phenotype of microglia by interfering with interferon regulatory factor 5
(IRF5). Knockdown of miR-125a-3p in MSC-derived exosomes resulted in increased IRF5
expression in spinal cord tissues [35]. Mir-125 is reported to show a significant correlation
with inflammatory bowel disease in humans [36]. It is likely that miR-125a-3p operates
through multiple mechanisms, and further evaluation is necessary to comprehensively
elucidate its anti-inflammatory mechanisms. Furthermore, MSC-derived exosomes have
been reported to attenuate NET formation through the inhibition of C5b-9 assembly [37].
It is conceivable that other pathways not involving miR-125a-3p may also contribute to
this process.

Furthermore, our investigation revealed that exosomes are predominantly distributed
in the liver and spleen, with a discernible quantity also observed in the injured spinal cord.
While prior reports have documented the presence of exosomes in the spleen and damaged
spinal cord, comprehensive knowledge of their distribution throughout the entire body
remains incomplete [38,39], and the data presented in our study contribute significantly to
this understanding. We observed that neutrophils obtained from the circulating rat blood
exhibited low NET formation, which is consistent with the accumulation of exosomes
in the spleen, where neutrophils are stored. The exact role of exosome accumulation in
the liver remains uncertain. It could potentially be attributed to the uptake by Kupffer
cells of eliminating unidentified substances. Previous reports indicate that exosomes that
accumulate in the damaged spinal cord have a direct deactivating effect on microglia,
ultimately leading to functional recovery [39]. The presence of exosomes in the damaged
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spinal cord during the acute phase, when local and systemic inflammation plays a pivotal
role, warrants further investigation.

In this report, we utilized intravenous transplantation as one of the most commonly
used methods. However, other transplantation routes have also been reported for exosome
administration against spinal cord injury. Intraspinal injection offers the possibility of
delivering a high concentration of exosomes, but the injection itself carries the risk of
additional spinal cord damage [40,41]. Intranasal injection is currently gaining attention
due to its minimally invasive method of delivering exosomes to the damaged spinal cord,
although the absorption rate may vary depending on the patient’s condition [39,42,43]. The
intrathecal injection can deliver a high amount of exosomes with a minimally invasive
procedure [44].

Several limitations in our study warrant discussion. Firstly, we were unable to com-
prehensively analyze the content of exosomes to identify potential therapeutic candidates.
This is because various elements, including proteins, mRNA, miRNA, and other unknown
molecules, may contribute to the observed functional recovery, and it is quite difficult to
investigate the full role of different molecules at once. Secondly, we were not able to detect
the precise organ where the exosome acts against neutrophil. We assume that it would
be in the spleen; however, circulating neutrophil can also be one option. Third, we did
not investigate other inflammatory parameters of neutrophils, such as lesional cytokine
expression. A fewer neutrophil accumulation in the exosome group at the late phase
(28 days) and reduced SCI damage imply lower expression of inflammatory cytokines.

4. Materials and Methods
4.1. Ethical Approval

Animal protocols were approved by the Animal Studies Ethics Committee of the
Hokkaido University Graduate School of Medicine (approval number: 17-0065). All
experimental procedures were conducted in accordance with the Institutional Guidelines
for Animal Experimentation and the Guidelines for Proper Conduct of Animal Experiments
by the Science Council of Japan.

4.2. Methods
4.2.1. Culturing and Isolation of AMSC Exosomes

Human AMSC vials, provided by Kaneka Corporation (Osaka, Japan), were thawed
and seeded at a concentration of 2.0 × 105 cells/mL in medium. The cells were incu-
bated at 37 ◦C for 5 days. The medium was then replaced with serum-free cell culture
medium (MEMα, 12561056, Thermo Fisher Scientific, Waltham, MA, USA) for 2 days to
obtain exosome-containing medium supernatant. Differential centrifugation methods were
employed for exosome isolation as previously described with minor modification [45,46].
Initially, the supernatant was subjected to a continuous centrifugation step at 2000× g for
10 min and 10,000× g for 30 min to remove dead cells and cellular debris. Subsequently,
the supernatant was subjected to ultracentrifugation at 100,000× g for 70 min, resulting
in the formation of a pellet consisting of small vesicles corresponding to exosomes. The
size and morphology of the isolated exosomes were confirmed through TEM (H-7100,
Hitachi, Tokyo, Japan) and nanoparticle tracking analysis (Videodrop, Myriade, Paris,
France). Additionally, Western blotting was utilized to identify specific exosome surface
markers, including CD 9 (1:500, 014-27763, Fujifilm Wako, Osaka, Japan), CD 63 (1:500,
012-27063, Fujifilm Wako, Osaka, Japan), and Calnexin (1:500, ab22595, Abcam, Cambridge,
UK). Protein concentration of exosome diluted in PBS was evaluated by Pierce BCA Protein
Assay kit (23227, Thermo Fisher Scientific, Waltham, MA, USA).

4.2.2. SCI Model and Exosome Administration

Female Sprague-Dawley rats, aged nine weeks and weighing between 200 and 233 g,
were obtained from CLEA Japan, Inc., Japan. Female rats were selected because they
possess shorter urinary tract than male rats, which lowers the chance of sepsis caused
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by anuresis after spinal cord injury. The rat spinal cord injury model was established
following previously described methods [9,47]. In brief, the rats underwent dorsal laminec-
tomy (T6–7) while under isoflurane gas anesthesia. Immediately after the laminectomy,
a modified aneurysm clip (07-943-30, Mizuho, Japan) was used to create a spinal cord
injury by extradural pinching of the spinal cord for 1 min [48]. Postoperative care included
assisting the rats in voiding their bladders 2–3 times a day until they regained independent
urination. Twenty-four hours post-spinal cord injury, the Basso–Beattie–Bresnahan (BBB)
score was assessed [49], and rats with a non-zero BBB score were excluded from the study.
Subsequently, 1 mL of AMSC-derived exosomes (100 µg) adjusted with PBS, or 1 mL of
PBS alone, was administered via the tail vein. Exosomes were given for three consecutive
days. BBB scores were then assessed at 1-week intervals for a total of 4 weeks following
the surgery.

4.2.3. Histological Analysis

Immunohistochemistry was conducted to assess the volume of the injured spinal cord,
neutrophil infiltration, and NET formation in the spinal cord on either day 3 or day 28, as
previously reported [9,47]. On the day of sacrifice, the rats were deeply anesthetized and
subjected to transcardial perfusion with PBS followed by 4% paraformaldehyde (PFA). The
spinal cords were then extracted, fixed in 4% PFA for 24 h, embedded in paraffin, and sliced
into serial longitudinal sections measuring 10 µm in thickness using a cryostat microtome
(LEICA RM2125 RTS, Leica Biosystems, Nussloch, Germany). Kluver–Barrera staining,
which involves Luxol fast blue (LFB) absence, was performed to assess the volume of the
injured spinal cord 28 days after SCI. The following equation was employed to calculate
the lesion volume: Lesion volume (mm2) = πD2 (H1 + H2)/6, where H1 represents the
lesion length from the epicenter to the rostral end, H2 denotes the lesion length from the
epicenter to the caudal end, and D is the diameter of the epicenter [9,47]. Neutrophil infil-
tration at day 28 was evaluated using an anti-myeloperoxidase antibody (1:1000, ab208670,
Abcam, Waltham, MA, USA), followed by Histofine Simple Stain MAX-PO (Nichirei Bio-
sciences Inc., Tokyo, Japan) for 30 min and reacted with 3,3′-diaminobenzidine (DAB)
(Simple Stain DAB Solution, Nichirei Biosciences Inc., Tokyo, Japan) for 3 min. Images
were obtained from the peri-damaged lesion (5 mm rostral and caudal from the epicenter
of the damaged lesion). A total of five non-overlapping areas were selected, and the cells
exhibiting positive signals were semi-quantitatively counted using automated cell counting
software https://www.keyence.com/products/microscope/fluorescence-microscope/bz-
x700/models/bz-h4c/ (Hybrid Cell Count, BZ-X Analyzer, Keyence, Osaka, Japan). Im-
munofluorescent staining was performed to assess NETs on day 3 specimens, as previously
described [50,51]. In brief, spinal cords were harvested without PFA fixation and imme-
diately mounted in the OCT compound, and Fresh-frozen sections were cryosectioned in
the longitudinal plane. The spinal cord sections were incubated overnight at 4 ◦C with
mouse anti-Histone H3 (citrulline R2 + R8 + R17:CitH3) (1:00, Ab5103, Abcam, Waltham,
MA, USA) and Anti-mouse/rat MPO-FITC (1:200, LS-C140180, LSBio, Shirley, MA, USA),
followed by Alexa Fluor 594 goat anti-mouse (1:500, Thermo Fisher Scientific, Waltham,
MA, USA). A mounting agent with DAPI or Hoechst was used to visualize cell nuclei.
The number of MPO-positive neutrophil and CitH3-positive NETs, as well as the ratio of
integrated CitH3 over Hoechst, were evaluated as previously described.

4.2.4. Ex Vivo Assessment of Neutrophil and NET Formation

Neutrophils were isolated from the whole blood obtained by heart puncture of
10-week-old C57BL/6 mice according to the manufacturer’s protocol (Neutrophil Iso-
lation KIT, Cayman Chemical, Ann Arbor, MI, USA). The quality of the isolated neutrophils
was further confirmed by flow cytometry (FACS) by the expression of Ly6G (60-5931-
U100, Tonbo Biosciences, Tokyo, Japan). In order to assess the NET formation in ex vivo
neutrophils, isolated neutrophils were adjusted to a concentration of 5 × 105 cells and
incubated with a total of 400 µL of the cell suspension in a 4-well chamber slide at 37 ◦C for

https://www.keyence.com/products/microscope/fluorescence-microscope/bz-x700/models/bz-h4c/
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30 min. Subsequently, exosomes at a concentration of 100 µg/25 µL or 25 µL of PBS, along
with 400 µL LPS at a concentration of 100 µg/mL, were added to the cells and incubated
at 37 ◦C for 3.5 h as previously described [52]. Following the incubation, the cells were
washed and then fixed with 300 µL of fixation buffer for 15 min. Then, 300 µL of 0.1%
NP-40 was added and incubated for 5 min to permeabilize the cells. Mouse anti-Histone
H3 was added, followed by Alexa Fluor 594 goat anti-mouse (1:500, Invitrogen, Carlsbad,
CA, USA) and anti-mouse/rat MPO-FITC. Measurement of the ratio for CitH3 positive
NETs over MPO positive neutrophil was evaluated using an automated cell/area counter
(BZ-X Analyzer, Keyence, Osaka, Japan) at a magnification of 10×.

To elucidate the uptake of exosomes into neutrophils, exosomes were labeled us-
ing the ExoSparkler Exosome Membrane Labeling Kit (343-09661, Dojindo, Japan) fol-
lowing the manufacturer’s instructions [53]. Neutrophils, adjusted to a concentration
of 5 × 104 cells/mL, were co-incubated with the labeled exosomes at a concentration of
100 µg/25 µL in a glass-bottom dishes (35-mm-diameter; Matsunami Glass Industry Glass,
Osaka, Japan). Time-lapse fluorescence imaging and data analysis were performed essen-
tially as described previously [54]. In brief, the cells were placed in a stage-top incubation
chamber maintained at 37 ◦C on a Nikon Eclipse Ti2-E microscope (Nikon, Tokyo, Japan)
equipped with a KINETIX22 scientific complementary metal oxide semiconductor (sCMOS)
camera (Teledyne Photometrics, Tucson, AZ, USA), PlanApo 20×/0.8, or 60×/1.2 objective
lenses, a TI2-CTRE microscope controller (Nikon), a TI2-S-SE-E motorized stage (Nikon).
The cells were illuminated with an X-Cite turbo system (Excelitas Technologies, Waltham,
MA, USA). The sets of excitation and emission filters and dichroic mirrors adopted for this
observation included GFP HQ (Nikon) for ExoSparkler or DAPI-U HQ (Nikon) for Hoechst
33342. Confocal images and super-resolution images were acquired with an X-Light V3
spinning disk confocal unit (CrestOptics, Roma, Italy) and a DeepSIM (CrestOptics) for
Eclipse Ti2 equipped with a Prime BSI sCMOS camera (Teledyne Photometrics), respectively.
The cells were illuminated with CELESTA light engines (Lumencor, NW Greenbrier Park-
way, Beaverton, OR, USA). The time-lapse imaging was configured at 5-minute intervals,
covering a total duration of 1275 min.

Flow cytometry was further conducted to evaluate the NET formation in neutrophils
as previously described with modification [55]. Fluorophore-conjugated or biotinylated
monoclonal antibodies specific to mouse antigens were enumerated as follows: PE-Ly6G
(clone 1A8, BD Pharmingen), PerCP cy5.5-CD11b (clone M1/70, eBioscience), MPO-FITC,
and CitH3. The secondary reagent employed was Alexa Fluor 594 goat anti-mouse (Invitro-
gen, Carlsbad, CA, USA). Neutrophils were co-incubated with exosomes (100 µg/25 µL)
or PBS (25 µL) for 3.5 h and subsequently activated for 24 h with LPS at a concentra-
tion of 1 µg/mL under standard conditions of 37 ◦C. Multiparametric analyses of the
stained cell suspension were conducted utilizing a FACS Aria III cell sorter (BD) with FACS
Diva software https://www.bdbiosciences.com/en-us/products/software/instrument-
software/bd-facsdiva-software (BD). Neutrophils expressing NETs were delineated based
on the CitH3+Ly6G+CD11b+ gating strategy and subsequently compared between the
exosome-treated and PBS-treated groups.

To elucidate the therapeutic mechanism of exosomes on NET formation in neutrophils,
we conducted an evaluation of exosomal miRNA. Based on a literature search and confiden-
tial data provided by Kaneka Corporation, in which miRNA-125a-3p (miR-125a-3p) were
abundantly expressed in the AMSC, we selected miR-125a-3p as a candidate molecule. The
electroporation of the miR-125a-3p mimic and inhibitor (has-miR-125a-3p, ThermoFisher
Scientific, Waltham, MA, USA) was performed according to the manufacturer’s recom-
mendations. Neutrophils isolated from C57BL/6 mice underwent two washes with PBS
without Ca2+ and Mg2+ and were then adjusted to 2 × 106 cells. After removing the super-
natant, 90 µL of R buffer (Thermo Fisher Scientific, Waltham, MA, USA) was added, and
the electroporation procedure was conducted using a voltage of 1720 V, a pulse width of
10 ms, and a total of 2 pulses for 20 mM of miR-125a-3p mimic and 100 mM of miR-125a-3p
inhibitor. Subsequently, the cells were seeded in a 1.5 mL microtube containing 0.5 mL

https://www.bdbiosciences.com/en-us/products/software/instrument-software/bd-facsdiva-software
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of pre-warmed supplemented DMEM. After 12 h, exosomes were added to the exosome
group, the group electroporated with the miR-125a-3p mimic (mimic group), and the group
electroporated with the miR-125a-3p inhibitor (inhibitor group). The control group was
established without exosome or miR supplementation. All of the groups were then stimu-
lated with 100 µg/mL of LPS. Following a 24-h interval, immunofluorescence staining, as
previously described, was used to quantify CitH3-positive cells within the population of
DAPI-positive cells.

4.2.5. Biodistribution

Animal positron emission tomography/computed tomography (PET/CT) was utilized
to evaluate the biodistribution of the intravenously administered exosome. The method for
isotope pre-labeling of 64Cu was performed as previously described with minor modifica-
tions [56]. First, the solution of exosomes was replaced with 0.1 M Na2CO3 buffer (pH 10)
by the PD-SpinTrap G-25 column (Cytiva, Tokyo, Japan). Separately, p-SCN-Bn-NOTA
(Macrocyclics, Plano, TX, USA) was dissolved in 0.1 M acetate buffer (pH 6.0) and incu-
bated with 64CuCl2 (138 MBq, PDRadiopharma Inc., Tokyo, Japan) at room temperature
for 20 min to provide 64Cu-SCN-NOTA. The concentration of p-SCN-Bn-NOTA in the
reaction was 190 µM (106.4 mg/L), and the radiochemical yield of this step was 89%, as
determined by thin-layer chromatography (TLC). 64Cu-SCN-NOTA (12.5 µg) was then
incubated with exosomes (526 µg) dissolved in 0.1 M Na2CO3 buffer (pH 10) at 37 ◦C for
3 h. Finally, the reaction mixture was purified by PD-SpinTrap G-25 column three times
to remove excess 64Cu-SCN-NOTA and other low-molecular-weight impurities. At the
time of this gel filtration, the reaction buffer was replaced with PBS. The radiochemical
purity of 64Cu-NOTA-exosome after the purification was 90.8%, as determined by TLC.
The overall radiochemical yield without decay correction was 8.1%. All TLC analyses
were performed using iTLC-SG plates (Agilent Technologies, Palo Alto, CA, USA), and
the developing solvent was 50 mM EDTA (pH 5.5). The radioactivity on TLC was quanti-
fied by autoradiography (Fla-7000, Fujifilm, Japan). In this TLC system, the Rf values of
64Cu-NOTA-exosome, 64Cu-SCN-NOTA, and [64Cu]CuCl2 (forming complex with EDTA
during the development) were 0.0, 0.5–0.8, and 0.9–1.0, respectively. The biodistribution of
64Cu-NOTA-exosome was evaluated in normal and spinal cord injury model rats (9-week-
old Sprague-Dawley). For spinal cord injury model rats, the experiment was performed
the day after the surgery. 64Cu-NOTA-exosome (100 kBq, 27 µg of exosome) was injected
into rats via the tail vein. The rats were sacrificed at 24 h post-injection, and the organs of
interest were removed and weighed. The radioactivity of these organs was determined
by a gamma counter (2480 Wizard 2 gamma counter, PerkinElmer, Waltham, MA, USA).
The uptake values of 64Cu-NOTA-exosome are expressed as % injected dose per gram of
organ (%ID/g). PET/CT imaging was performed on a spinal cord injury model rat (n = 1)
using an Inveon preclinical small-animal multimodality PET/CT system (Siemens Medical
Solutions, Knoxville, TN, USA). PET images of 64Cu-NOTA-exosome were acquired over
60–80 min after the administration of 64Cu-NOTA-exosome (8.8 MBq, 149 µg of exosome).
CT images were acquired following the PET scan. During the image acquisition, the rat
was anesthetized using 2.0–2.5% isoflurane. The PET and CT data were reconstructed using
the Feldkamp method and 3D-OSEM (2 iterations, 18 MAP iterations), respectively. PET
and CT images were analyzed using an Inveon research workplace software v. 4.1 (Siemens
Medical Solutions, Knoxville, TN, USA).

4.2.6. Statistical Analyses

All assessments were performed by blinded investigators. The data have been pre-
sented as mean ± standard error. Statistical analyses were performed using JMP Pro
14 software (SAS Institute Inc., Cary, NC, USA). Statistical comparisons between groups
were made using the Welch’s t-test or Wilcoxon test. Probability values of p < 0.05 were
considered statistically significant.
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5. Conclusions

AMSC-derived exosomes play a crucial role in mitigating spinal cord injury, partially
achieved by deactivating neutrophil NET formation via miR-125a-3p. Biodistribution
analysis further indicates that the majority of exosomes are concentrated in the liver
and spleen.
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