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Abstract: Hepatocellular carcinoma (HCC) remains a global health challenge that urgently calls for
innovative therapeutic strategies. Chimeric antigen receptor T cell (CAR T) therapy has emerged as a
promising avenue for HCC treatment. However, the therapeutic efficacy of CAR T immunotherapy in
HCC patients is significantly compromised by some major issues including the immunosuppressive
environment within the tumor, antigen heterogeneity, CAR T cell exhaustion, and the advanced risk
for on-target/off-tumor toxicity. To overcome these challenges, many ongoing preclinical and clinical
trials are underway focusing on the identification of optimal target antigens and the decryption of
the immunosuppressive milieu of HCC. Moreover, limited tumor infiltration constitutes a significant
obstacle of CAR T cell therapy that should be addressed. The continuous effort to design molecular
targets for CAR cells highlights the importance for a more practical approach for CAR-modified
cell manufacturing. This review critically examines the current landscape of CAR T cell therapy for
HCC, shedding light on the changes in innate and adaptive immune responses in the context of HCC,
identifying potential CAR T cell targets, and exploring approaches to overcome inherent challenges.
Ongoing advancements in scientific research and convergence of diverse treatment modalities offer
the potential to greatly enhance HCC patients’ care in the future.

Keywords: hepatocellular carcinoma; chimeric antigen receptor; immunotherapy; adoptive T cell
therapy; tumor microenvironment; T cell exhaustion; cytotoxicity

1. Introduction

Hepatocellular carcinoma (HCC) is the most common primary liver cancer (more than
90%), and its incidence can vary depending on the geographical region, ethnicity, genetic
background, and other factors [1]. HCC remains a global health care challenge with a
million cases predicted to occur each year by 2025 [1]. Currently, HCC ranks as the fifth
most prevalent cancer worldwide and it has been associated with a five-year survival rate of
approximately 18%, standing as the third-leading cause of cancer-associated mortality [2–4].
The pathogenesis of HCC is still vague. Major etiological risk factors for HCC development
include viral hepatitis (hepatitis B and hepatitis C), alcoholic liver disease and metabolic
dysfunction-associated steatotic liver disease (MASLD). This background becomes more
complex when tobacco consumption, excessive aflatoxin accumulation, and even rare
monogenic disorders add on as possible pathogenic factors for HCC [5]. HCC is strongly
associated with liver cirrhosis in 90% of cases with an annual incidence of 2–4% in this
setting [1,3,6]. During the last decade, the management of HCC has significantly progressed,
with treatment decisions primarily based on the Barcelona Clinic Liver Cancer (BCLC)
staging system which takes into account the tumor stage and the anticipated benefits from
each intervention [7,8]. Surgical resection, liver transplantation and local ablation are the
most potent therapies for HCC; however, their effectiveness is restricted to patients with an
early diagnosis and those with sufficient liver function to tolerate surgery [1,3]. Patients at
intermediate stages are candidates for transarterial chemoembolization (TACE) whereas
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those with advanced disease undergo systemic and immune therapies [1,9,10]. However,
despite these therapeutic approaches and their combinations, the 5-year post-treatment
recurrence rate in the early HCC stage is very high, approaching 70%, whereas in the
advanced stages the median survival probability is very diminished [11]. Immunotherapy
aims to activate or enhance the immune system through an improvement of the natural
defense mechanisms that recognize, attack, and destroy tumor cells [12]. Immunotherapy
can be categorized into two main types based on the specificity of the targeted tumor,
i.e., tumor-specific immunotherapy and tumor-nonspecific immunotherapy. Non-specific
immunotherapy includes cytokines, cytokine-induced killer cells, and natural killer (NK)
cells. On the other hand, tumor-specific immunotherapy aims to enhance the immune
system’s ability to recognize and fight against tumor cells, leading to an anti-tumor effect.
In the context of tumor-specific immunotherapy, adoptive cell therapy (ACT) involves
strategies such as tumor-infiltrating lymphocytes (TIL) or genetically engineered T cells
expressing novel T cell receptors (TCR) or chimeric antigen receptors (CAR) [13–15].

The challenges associated with the in vitro expansion of tumor-specific T cells boosted
the creation of TCR-engineered lymphocytes; nonetheless, these cells have the limitation
of recognizing only the tumor antigens that are presented by the major histocompatibility
complex (MHC), also known as human leukocyte antigen (HLA) in humans [16]. On the
other hand, the introduction of synthetic CARs allows circumvention of MHC restriction,
enabling targeted cytotoxicity against a surface molecule on malignant cells [17]. T cells
isolated from a patient (or an allogeneic donor) undergo genetic modification to express
CARs, followed by expansion and subsequent infusion into this patient. This approach
addresses the fact that tumor cells frequently downregulate MHC molecules, rendering
them unable to present antigens to conventional T cells.

This review aims to provide a comprehensive exploration of the adoptive immunother-
apy for HCC, focusing on CAR T cells efficacy against tumors and the biological rationale
behind this process. In parallel, the most recent therapeutic advancements in the HCC
setting will be discussed. Special attention will be given on CAR T cell targets for HCC and
on promising strategies to ameliorate CAR-mediated T cell efficacy.

2. CAR T Cell Structure

TCR is located on the surface of a T cell enabling recognition and binding to specific
antigens (Figure 1).

In CAR T cell therapy, the TCR is often modified or replaced with a synthetic receptor.
The structure of a CAR T cell consists of four main functional domains: (a) the extracellular
structural domain, which is responsible for identification and attachment to antigens, (b) the
hinge region, (c) the transmembrane structural domain, which induces the functionality
and augments the expression of the CAR, and (d) the intracellular structural domain,
which is responsible for the co-stimulation and transmission of signals [18,19] (Figure 1).
A crucial component of the extracellular structural domain is the single-chain variable
fragment (scFv) which serves as the antigen recognition domain [20]. It typically derives
from a tumor antigen-reactive antibody and is specific to the target antigen expressed on
cancer cells, thus avoiding the restriction of MHC-peptide presentation. ScFv is a chimeric
protein composed of a light-chain and a heavy-chain antibody variable domain [20]. The
hinge region (or spacer) connects the scFv protein to the transmembrane domain of the
CAR [21]. It provides flexibility and allows the scFv to both move freely and bind to target
antigens [18]. The transmembrane domain anchors CAR to the T cell membrane and helps
with signal transduction [18,22]. The intracellular signaling domains (or endodomains)
are critical for the transmission of activation signals to the T cell when the scFv binds to
the target antigen [18]. There are typically two signaling domains in a CAR T cell, namely
the CD3ζ (CD3 zeta) and the co-stimulatory domain (Figure 1). The CD3ζ domain derives
from the TCR complex and is responsible for T cell activation [23]. In addition to CD3ζ,
many CAR T cells incorporate a co-stimulatory domain, such as CD28, 4-1BB, CD27 or
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CD134. Co-stimulatory domains enhance the persistence and efficacy of CAR T cells by
providing additional activation signals and promoting T cell proliferation [24].
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located on the surface of the tumor cell. This interaction triggers signaling in CAR T cell through the 
CD3ζ endodomain module, initiating cytotoxic functions that involve the generation of perforins, 
granzymes, and cytokines. Created with BioRender.com (accessed on 5 January 2024). 
Abbreviations: VL, variable fragment light chain; VH, variable fragment heavy chain; scFv, single-
chain variable fragment; TCR, T cell receptor; CAR, chimeric antigen receptor; TAA, tumor-
associated antigen. 
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Figure 1. (A). Schematic illustration of T cell receptor (TCR) and (B). chimeric antigen receptor
(CAR) structures. (C). Mechanism of CAR T cell treatment. CAR T cell employs the single-chain
variable fragment (scFv) domain to identify and attach to the tumor-associated antigen (TAA) located
on the surface of the tumor cell. This interaction triggers signaling in CAR T cell through the
CD3ζ endodomain module, initiating cytotoxic functions that involve the generation of perforins,
granzymes, and cytokines. Created with BioRender.com (accessed on 5 January 2024). Abbreviations:
VL, variable fragment light chain; VH, variable fragment heavy chain; scFv, single-chain variable
fragment; TCR, T cell receptor; CAR, chimeric antigen receptor; TAA, tumor-associated antigen.

The progress in CAR development over the past thirty years can be broadly categorized
into five generations (Figure 2) based on the structure and composition of the intracellular
signaling domain, with the fifth generation of CARs to be under active development.

2.1. From the First to the Fifth Generation of CAR T Cells

The first-generation of CARs is structured as an antigen-binding domain (scFv) linked
to a single intracellular signaling domain, typically CD3ζ. These CARs enable basic T cell
activation upon antigen recognition but exhibit limited persistence and efficacy due to the
absence of co-stimulatory and cytokine signaling [25,26]. Moving to the second-generation
of CARs, the design incorporates the components of the first-generation but adds one
or more co-stimulatory domains, such as CD28 or 4-1BB (CD137). This modification
results in improved T cell activation, proliferation, and persistence leading to enhanced
antitumor activity [27,28]. The third generation takes a step further with the inclusion of
multiple co-stimulatory domains alongside the CD3ζ signaling domain, creating a tripartite
structure. This evolution further enhances T cell activation, cytokine production, and
proliferation with even more improved anti-tumor responses [25]. In the fourth generation
of CARs, the structure builds upon the third generation by incorporating an additional
cytokine or immune modulator transgene, which is expressed either constitutively or
inducibly upon CAR activation. This addition is designed to modulate the local tumor
microenvironment with the secretion of cytokines, thereby enhancing T cell function and
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recruiting other immune cells. T cells transduced with this kind of CARs are called T cells
redirected for universal cytokine-mediated killing (TRUCKs) [29]. The fifth generation
of CARs introduces additional genetic modifications to CAR T cells providing them the
advantage to express synthetic receptors that respond to specific signals in the tumor
microenvironment. Thus, this generation of CARs grants a more adaptable and controlled
approach, allowing for the fine-tuning of CAR T cell responses based on signals received
from the tumor site [30].
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Recent developments in CAR T cell technology go beyond traditional CARs, introduc-
ing advanced systems known as Boolean logic-gated CAR T cells. These innovations aim
to enhance the specificity of CAR T cells by providing better control over their activities
and addressing limitations associated with conventional CARs [31,32]. These cutting-edge
CAR technologies are designed to increase the cancer-specificity of CAR T cells, ultimately
improving the treatment effectiveness while minimizing adverse toxicities. Various forms
of logic gating are employed, with AND-, OR-, NOT, and IF-Better logic gates being among
the most common options [32,33].

2.2. AND Logic Gate CAR

AND logic gate CAR, termed also as split-recognition CAR, involves the separation of
activation signals, with one receptor incorporating the primary activation signal (CD3ζ),
and the other construct containing co-stimulatory domains like CD28 and 4-1BB. AND
gate CAR systems become operational only in the presence of two antigens on a cancer
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cell. In this system, T cells are crafted with a CD3ζ CAR specific to one antigen and a
co-stimulatory receptor (CCR) directed toward a second antigen [34,35].

2.3. OR Logic Gate

In this logic gate, multiple potential input signals exist, and any of them can lead to
the desired outcome. This represents a multi-antigen approach where recognition of one or
more targeted CAR T cell antigens is required. Multi-antigen CAR T cells are created using
methods like bicistronic CAR, loopCAR or, tandem (tan) CAR, introducing two different
CARs into the same T cell. This is distinct from monovalent conventional CAR T cells,
which target only a single antigen [31]. This approach is beneficial in tackling the challenge
of antigen escape associated with tumors. Bicistronic or dual CARs transduce two CAR
constructs into the same T cell, enabling them to target multiple tumor-related antigens
(TAAs). CAR T cells may be genetically modified to express CARs directed at three or more
antigens, referred to as triCARs or quad-CARs. Conversely, tanCAR consists of two distinct
scFv binding domains joined in tandem within a single CAR, targeting two different TAAs.
This configuration demonstrates synergistic antitumor activity when both antigens are
recognized simultaneously. Additionally, loopCAR is a recent CAR characterized by a
looped structure of tanCAR constructs [36].

2.4. NOT Logic Gate

The NOT logic gate, also called inhibitory CARs (iCARs), is designed to include
inhibitory signaling instead of activation domains as the internal signaling component of
the off-target CAR construct. Inhibitory signals are intended to prevent the activation of
the CAR T cell when exposed to an off-target antigen [37]. The NOT logic gate recognizes
antigens present on normal tissue but absent on tumor tissue and is linked to the signaling
domain of a suppressive co-receptor. iCAR is co-expressed with CARs that precisely target
the antigen of interest, mitigating the risk for autoreactivity to bystander tissues. This
represents a crucial strategy to avert the occurrence of on-target, off-tumor toxicity.

2.5. IF-Better Gate CAR

IF-Better gate CAR is an innovative CAR construct that permits killing solely in
response to high CAR target expression but not when low unless a CCR target is also
present. The interaction of CCR with the target antigen enhances co-stimulation and
avidity, thus enabling increased CAR sensitivity intentionally limited to target cells which
express both antigens [38].

2.6. SUPRA CAR System

The SUPRA CAR system is a CAR system consisting of a soluble antigen-binding
domain (zipFv) and a universal signal transduction receptor (zipCAR) expressed on T
cells, aiming to enhance specificity and controllability [39]. The zipFv incorporates a
scFv and a leucine zipper, while the zipCAR includes intracellular signaling domains and
an extracellular cognate zipper that specifically binds to the zipper on the zipFv. These
zippers facilitate the binding between the target antigen and the zipCAR-expressing T cells,
inducing T cell responses. This CAR design responds to combinatorial antigens in target
cells, allowing for ON/OFF switching to finely tune T cell activation and to implement
AND logic gating. The SUPRA CAR was further developed to incorporate a separate
suppressive domain, adding NOT logic to its capabilities [40].

3. CAR T Cell Manufacturing Process and Challenges

The CAR T cell manufacturing process involves leukapheresis to collect cells, followed
by elutriation for myeloid cell removal, T lymphocyte enrichment, transgene delivery with
a viral vector, and ex vivo T cell expansion [41]. A key challenge in cellular manufacturing
is the effective isolation of T cells from heterogeneous leukapheresis samples, containing
various cell types like T cells, myeloid cells, NK cells, erythroid cells, and malignant
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cells [41]. Contaminants, especially inhibitory cell types, can impact CAR T cell expansion,
both in vitro and in vivo. Further challenges include the contamination of autologous
peripheral blood mononuclear cells with monocytes, which lead to poor outcomes [42].
Moreover, in one rare case, CAR was inadvertently transduced in a leukemia cell during
T cell manufacturing. This resulted in CAR binding in cis to the CD19 epitope on the
surface of a leukemia clone that had undergone extensive expansion in a patient with acute
lymphoblastic leukemia, concealing the clone from detection by anti-CD19 CAR T cells [43].

To ensure clinical benefits from cell-based gene therapies, sustained transgene ex-
pression is often essential. Murine gammaretroviruses and lentiviruses, two clinical gene
therapy vector systems, provide prolonged CAR transgene expression [41]. Clinical ev-
idence supports the safety of retroviral vectors in human T cells with prolonged CAR T
cell persistence in patients treated for human immunodeficiency virus (HIV) infection [44].
However, retroviral vectors pose higher risks when utilized in human stem cells [45]. Con-
versely, lentiviral vectors, particularly third-generation self-inactivating ones, have a lower
risk of insertional mutagenesis and exhibit greater efficacy in genetically engineered human
T cells [46,47].

T helper (CD4+) and T cytotoxic (CD8+) cell subset compositions in cancer patients
differ from those in healthy individuals, with potential influences on the effectiveness
of CAR T cell products. Stem cell-like memory T cells (Tscm), identified by Gattinoni
et al., possess self-renewing and multipotent characteristics, demonstrating superior anti-
tumor activity when enriched during CAR T cell culture [48]. Manipulating CAR T cells to
have pre-defined CD4+:CD8+ compositions or infusing a defined ratio of early memory
CD8+ and CD4+ T cells may enhance efficacy [49,50]. Furthermore, considering that
the presence of antigen-experienced T cells can hinder the anti-tumor function of less
differentiated lymphocytes [50], adopting strategies to enrich early memory subsets at the
initiation of CAR T cell manufacturing or during culture could enhance the efficacy of the
engineered cellular product. In parallel, strategies like shortening culture duration [51],
preventing telomere loss [52], changing metabolic programming [53], utilizing homeostatic
cytokines [54] and modifying epigenetic modulation [55,56] can potentially enhance CAR
T cell potency.

4. The Role of Tertiary Lymphoid Structures (TLSs) in CAR T Therapy

TLSs are specialized, ectopic lymphoid-like formations that emerge at sites of pro-
longed inflammation or chronic immune activation, distinct from conventional lymphoid
organs like lymph nodes or the spleen. These structures share the features of secondary
lymphoid organs and develop in non-lymphoid tissues in response to persistent antigenic
stimulation, often seen in chronic infections, autoimmune disorders, transplanted organs,
or cancer [57–62]. Recent findings underscore the significance of TLSs in orchestrating
immune responses against tumors [63].

TLSs exhibit a degree of structural organization with discernible zones akin to sec-
ondary lymphoid organs [64]. These zones typically comprise areas enriched in T cells, B
cells, dendritic cells (DCs), follicular dendritic cells (FDCs), and high endothelial venules
(HEVs) [64]. TLSs can influence local immune responses by promoting the recruitment and
activation of immune cells, contributing to surveillance against tumor cells, shaping the dy-
namics of the tumor microenvironment and impacting overall anti-tumor immunity [62,65].
TLSs can be found in several solid tumors including HCC [66]. The prominent advantages
offered by TLSs have guided research focus on probable therapeutic applications; the
presence of TLSs is being explored both as a potential biomarker and a therapeutic target
either as an independent treatment modality or as a complement in adoptive transfer-based
cell therapies, such as CAR T cell therapy [65,67–70].

The presence of TLSs in the tumor microenvironment may present significant implica-
tions for CAR T cell therapy. These structures may influence CAR T cell therapy in several
ways; research has verified the role of TLSs in the infiltration of CAR T cells [71]. TLSs are
characterized by a rich population of immune cells capable of presenting antigens and by a
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stable endothelial system; this environment supports the survival of CAR T cells within the
tumor. In parallel, TLSs play a role in the promotion of ongoing influx of naive immune
cells, contributing to the maintenance of overall immunity. This continuous influx has
the potential to significantly enhance the effectiveness of CAR T cells [72]. Through the
promotion of TLSs maturation, the infiltration of CAR T cells would be enhanced, thus
leading to tumor tissue clearance. Furthermore, CAR T cells, through recognition and
engagement with cancer cells, release cytokines that can attract other immune cells [73,74].
This cytokine release may contribute to the formation and maintenance of TLSs within the
tumor [75,76].

The pivotal role of antigen-presenting cells in TLS formation and function [77], cou-
pled with the ability of TLSs to recruit effector cells in the tumor microenvironment [78],
highlights the development of an artificial or inducible TLS (iTLS) as an adjuvant for
therapies involving CAR T or the adoptive transfer of TILs [79].

5. The Role of T Cell Depletion in CAR T Cell Therapy

T cell depletion refers to the reduction or removal of T cells from a biological sample,
a process which can be performed in vivo, ex vivo, or in vitro [80]. This depletion can be
achieved by various mechanisms, such as physical separation methods including centrifu-
gation or filtration, chemical treatments including monoclonal antibodies specific to T cell
surface markers or chemotherapeutic agents which induce apoptosis of T cells. Other strate-
gies for T cell depletion may involve the use of immunomagnetic bead-based approaches,
photodynamic therapy in which T cells are sensitized to light through the incorporation
of photosensitive compounds and, lastly, by in vivo depletion using antibodies against T
cells [80,81].

The interest in T cell depletion in cancer has increased alongside the evolving research
on immunotherapies, particularly those directed against self-antigens. Snook et al. de-
scribed the mechanism of antigen-specific CD4+ T cell tolerance, where immunotherapeutic
reactions are restricted to the inherent self-antigen guanylyl cyclase c (GUCY2C) in col-
orectal cancer [82]. Nonetheless, in certain scenarios, the presence of selective CD4+ T
cell tolerance offers a distinctive therapeutic avenue to enhance immune and antitumor
responses targeting self-antigens. This can be achieved without triggering autoimmu-
nity, through the integration of self-antigen-independent CD4+ T cell epitopes into cancer
vaccines [82].

In the context of CAR T therapy, T cell depletion may contribute to the reduction
of the graft-versus-host disease (GVHD) risk in allogeneic CAR T therapies [83,84]. This
is crucial to ensure that the infused T cells primarily target cancer cells and not normal
tissues [83]. Prolonged anti-tumor activity could be achieved with the improvement of
CAR T cell persistence. Depletion of endogenous T cells before infusion can create space
and resources for the expansion and persistence of CAR T cells in the patient’s body [85].
Paszkiewicz et al. showed that targeting epidermal growth factor receptor with the IgG1
monoclonal antibody cetuximab led to the eradication of CD19 CAR T cells at both the
early and late stages following adoptive transfer in mice [85]. This results in the full and
durable restoration of functional normal B cells, preventing tumor relapse [85]. Relatively
common events during CAR T therapies are neurologic toxicity and the development of
cytokine release syndrome (CRS) which is characterized as an excess of immune-regulatory
cytokines and factors, as well as immune responses mounted by the recipient’s immune
system against the infused CAR T cells [86,87]. T cell depletion can reduce the likelihood of
an immune response against the infused CAR T cells, which might otherwise limit their
effectiveness or lead to their premature elimination. As far as CRS is concerned, T cell
depletion might probably contribute to the management of CRS severity [84,87].

6. CAR T Cell Therapy Targets for HCC

CAR T cell treatment has shown impressive results in hematological malignancies
and the U.S. Food and Drug Administration approved this therapy as gene therapy in this



Int. J. Mol. Sci. 2024, 25, 2631 8 of 22

setting [88,89], paving the way for the extension of this approach to solid tumors including
HCC. Currently, there has been significant progress in clinical trials and in preclinical
animal models utilizing CAR T cells in the setting of HCC (Figure 3).
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6.1. Glypican-3 (GPC3)

GPC3, a proteoglycan consisting of 580 amino acids with heparan sulfate, is upregu-
lated in various malignancies including HCC [90–92]. Conversely, it either lacks or exhibits
minimal expression in normal tissues, including normal liver and cirrhotic tissues. The
expression of GPC3 has been documented in 72% of HCC patients, and GPC3 serum lev-
els were significantly elevated in 53% of these patients [91]. The proposed role of GPC3
involves the induction of HCC development through stimulation of the Wnt signaling
pathway [93]. Silencing GPC3 on HCC cells resulted in impaired proliferation and invasion
capacities, indicating the involvement of GPC3 expression in these processes [94]. Further-
more, the influence of serum GPC3 (sGPC3) on CAR T treatment is important as sGPC3 has
been associated with poor prognosis in postoperative HCC patients [95]. Sun et al. have
shown that sGPC3 can competitively bind to CARs carrying GPC3 on their membrane but
is unable to effectively activate CAR T cells [96]. Given its high specificity and sensitivity,
GPC3 has been utilized as a target for both HCC diagnosis and treatment.

CAR T cells that target GPC3 have been constructed by Gao et al. [97]. The killing
efficacy between first (aGPC3-Z CAR T) and third (aGPC3-28BBZ CAR T) generation GPC3-
targeted CAR T therapy was compared and the findings demonstrated that GPC3 CAR
T cells effectively halted the development of HCC cells, both in vivo and in vitro, with
third-generation GPC3 CAR T cells exhibiting superior effectiveness compared to the first
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generation ones through higher secretion of both IL-2 and IFN-γ [97]. Li et al. revealed that
T cells signaling through CD28 demonstrated higher cytotoxicity in vitro, while CAR T
cells containing the 4-1BB co-stimulatory domain displayed enhanced proliferative activity,
both in vitro and in vivo [98]. These data suggest that the selection of the co-stimulatory
domain could influence the behavior of CAR T cells.

To enhance therapeutic efficacy, CAR T cells expressing IL-7 to stimulate proliferation
and CCL19 to boost migration were developed. Research findings demonstrated that
the inclusion of IL-7 and CCL19 into CAR T cells significantly enhanced their antitumor
capacity. Remarkably, in a phase I clinical trial (NCT03198546), these modified CAR T
cells completely eradicated the tumor 30 days after intra-tumor injection in a patient with
advanced GPC3+ HCC [99]. Another study confirmed that pretreating the tumor with
a recombinant adeno-associated virus bearing the CCL19 gene (AAV-CCL19) increased
the infiltration of GPC3 CAR T cells into the tumor tissue and significantly extended
the survival of mice [100]. A phase I trial showed promising antitumor capacity and
manageable safety profile of CT017 CAR T cells (cells engineered to co-express GPC3 and
RUNX3, a trigger of CD8+ T cell infiltration) in patients with advanced HCC [101].

Double-target CAR T cells against GPC3 and PD-1 were evaluated and the results
showed limited PD-1-PD-L1 binding and sustained cytotoxicity to PD-L1+ HCC cells [102].
The low expression of inhibitory receptors in double-target CAR T cells facilitated the
suppression of tumor and extended survival in PD-L1+ HCC models compared to their
single-target cells [102]. Jiang et al. established three patient-derived xenograft (PDX)
models of HCC with GPC3-positive expression [103]. This research validated that GPC3
CAR T cells inhibited tumor growth, albeit with varying effectiveness attributed to the
different expression of PD-L1 on tumor cells [103]. This implies that a plausible strategy
for achievement of enhanced efficacy in the elimination of PD-L1-positive HCC involves
combining CAR T therapy with immune checkpoint inhibitors. Up to date, numerous
clinical trials investigating GPC3 CAR T therapy for advanced HCC are underway.

6.2. Alpha-Fetoprotein (AFP)

AFP, a secreted glycoprotein, is comprised of 591 amino acids with 4% carbohy-
drate residues. AFP is implicated in several crucial physiological processes, including
transport, immunosuppression and apoptosis [104]. The serum concentration of AFP is
over-expressed in conditions such as HCC, hepatoblastoma and teratoma in adults, featur-
ing this protein as a valuable serum marker for tumor diagnosis and drug resistance and
for monitoring therapeutic efficacy [105,106]. Taking into consideration that CAR T cells
recognize tumor surface antigens but not secreted or intracellular ones, Liu et al. developed
AFP CAR T cells capable of selective binding to the AFP158–166 peptide which is presented
by HLA-A02:01 on the surface of tumor cells in vivo [107]. Subsequently, these CAR T cells
degranulated, secreted various cytokines and lysed HLA-A02:01+/AFP+ tumor cells [107].
Furthermore, the administration of AFP-CAR T cells in NSG mice bearing Hep G2 tumors
intravenously resulted in swift and significant inhibition of tumor growth [107]. In a pre-
existing intraperitoneal liver cancer xenograft model, AFP-CAR T cells exhibited potent
antitumor activity [107].

6.3. CD133

CD133, a transmembrane glycoprotein, is highly expressed in various cancers in-
cluding HCC [108]. It has been characterized as a marker for cancer stem cells (CSCs),
playing an important role in tumor survival, proliferation, metastasis, and recurrence.
CD133 cells are exclusively present in HCC tissues, but not in non-malignant liver tissues,
suggesting that CD133 expression in HCC cells may contribute to tumor growth and metas-
tasis potential [109]. Evidence has shown that increased CD133 levels in HCC patients
correlate with shorter overall survival and elevated recurrence rates [110]. Thus, CD133
may be considered as a potential molecular target for immunotherapy in patients with
CD133+ HCC. CD133-specific CAR-modified T cells (CAR T-133) were generated and their
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use demonstrated impressive lytic capabilities and high production of cytokines against
CD133+ cells [111]. Also, these cells significantly inhibited tumor growth in vivo, and the
tumor tissue exhibited a higher level of CAR gene copies compared to other groups [111].
In a clinical phase II trial (NCT02541370), the antitumor effects of CAR T-133 cells were
assessed in patients with advanced HCC [112]. The results showed disease stability in
14 out of 21 patients [112]. The median progression-free survival of HCC patients treated
with CAR T-133 cells was 6.8 months, whereas the overall survival was 12 months [112].
In individuals with previously treated advanced HCC, CAR T-133 cell therapy exhibited
promising antitumor activity along with a manageable safety profile [112]. Additionally,
early alterations in circulating molecules were identified as potential biomarkers indicative
of response to CAR T-133 cells [112].

In recent studies, non-viral approaches have been evaluated for the generation of
bispecific CAR T cells [113,114]. The sleeping beauty transposon system from minicircle
vectors was used to generate CD133-specific CAR T cells secreting PD-1 blocking scFv
(CD133 CAR T and PD-1 cells) [113]. This system demonstrated reduced immunogenicity,
lower cost, and significantly increased safety compared to viral vectors [113]. The results
also showed high efficacy of the CD133 CAR T and PD-1 scFv cells through in vitro and
in vivo experiments, suggesting that a strategy involving CD133 CAR T and PD-1 scFv
cells could be a feasible therapeutic option for male patients with advanced HCC and
elevated CD133 expression [113]. Non-viral minicircle DNA (mcDNA) vector has also been
investigated for the insertion of anti-CD133 and anti-GPC3 scFv structures into T cells [114].
The generation of CAR T cells by this technology yielded exceptional transfection efficacy
while, on the other hand, prevented adverse effects associated with viral methods [114].
The bispecific CAR T cells prompted a higher count of effector cells targeting double-
positive HCC cells, and displayed antitumor features related to cancer stem cells, thus,
effectively disrupting the tumor microenvironment [114]. Moreover, the incorporation of
parallel-connected scFv structures on CoG133-CAR T cells facilitated precise recognition,
both in vitro and in vivo [114]. Prolonged survival and tumor elimination were observed
in Huh7 xenograft mice which received CoG133-CAR T cells, highlighting the substantial
potential of mcDNA vectors and bispecific CAR T cells [114].

6.4. CD147

CD147 is a type I transmembrane glycoprotein which is highly expressed in most
liver cancers and various other malignant tumors [115]. Studies have demonstrated that
CD147 plays a pivotal role in promoting tumor progression, invasion, and metastasis
through activation of the production of matrix metalloproteinases (MMPs) [116]. Moreover,
CD147 expression has been associated with aggressive behavior and poor prognosis in
HCC patients [115,117]. A specific monoclonal antibody 131I-labeled CD147 has been
developed and utilized combined with radiofrequency ablation or TACE for HCC treatment,
suggesting its potential use as a targeted therapy for HCC [118]. A novel inducible CAR
T cell, regulated by the Tet-On system, was capable of reverse activation or deactivation
of the CAR gene expression in the presence or absence of doxycycline (Dox) [119]. Dox
can be promptly interrupted if severe adverse events occur, leading to the return of CD147
CAR expression on T cells to baseline within 24–48 h [119]. In in vitro experiments, (Dox+)
Tet-CD147CAR T cells exhibited increased cytotoxicity and elevated cytokine production
compared to (Dox−) Tet-CD147CAR T cells and peripheral blood mononuclear cells [119].
In parallel, (Dox+) Tet-CD147CART cells effectively inhibited the growth of cancer cells in
the HCC xenograft model [119]. A logic-gated (log) GPC3-synNotch-inducible CD147 CAR
was also generated to mitigate potential on-target/off-tumor toxicity [120]. LogCD147-
CAR specifically targeted and lysed dual-antigen (GPC3+CD147+) without affecting single-
antigen (GPC3-CD147+) positive cells [120]. Importantly, no severe toxicity was observed
in a human CD147 transgenic mouse model (hCD147TG) [120].
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6.5. NK Group 2 Member D (NKG2D)

NKG2D is a type II transmembrane glycoprotein that is predominantly expressed on
cytotoxic immune cells, NK cells, several autoreactive CD4+ T cells, and subsets of γδ T
cells [121]. Typically, NKG2D ligands (NKG2DL) are absent from normal cells but show
increased expression on tumor cells, featuring them as potential targets for immunother-
apy [122]. The second-generation human NKG2D CAR T cells effectively eradicated
NKG2DL-expressing HCC cells, in vitro [122]. However, their efficiency decreased when
dealing with NKG2DL-silenced or -negative cells [122]. A subcutaneous xenograft model
illustrated that NKG2D CAR T cells significantly inhibited tumor growth [122]. Intrigu-
ingly, NKG2D CAR T cells obtained from HCC patients exhibited anti-tumor capabilities
and, more specifically, they eliminated HCC cells with high expression of NKG2DL [122].
Non-viral technology was used to prepare NKG2D CAR T cells, utilizing electroporation of
CAR-encoding piggyBac transposon plasmids and in vitro expansion with K562 artificial
antigen-presenting cells [123]. This approach not only did not compromise the in vitro
anti-tumor activity of NKG2D CAR T cells, but also reduced the expression of T cell ex-
haustion markers [123]. In addition, in order to improve the safety profile of NKG2D
CAR T cells, a full-length CD20 elimination transgene was integrated tandemly into the
CAR construct via the P2A self-cleaving peptide; this incorporation facilitated antibody-
dependent cell-mediated cytotoxicity by autologous NK cells and complement-mediated
cytotoxicity [123].

Data from clinical trials that evaluated NKG2D CAR T cells seems promising, and
ongoing research focuses on refining CAR constructs and exploring combination thera-
pies [124]. While most trials involve the use of αβT cells, the utilization of NKG2D CAR
NK cells or γδ CAR T cells represents an innovative approach that enables autologous cell
transfer presenting the potential for off-the-shelf therapies [124].

6.6. Epithelial Cell Adhesion Molecule (EpCAM)

EpCAM, a transmembrane glycoprotein, exhibits high expression in numerous human
cancers originating from epithelial tissues including HCC [125]. Data has shown that
EpCAM(+) HCC cells display hepatic stem cell-like characteristics, such as self-renewal
and differentiation, which play pivotal role in the growth and invasiveness of HCC [126].
Additionally, HCC patients with EpCAM+AFP+ demonstrated higher survival and portal
vein invasion rates compared to those with EpCAM−AFP− [127], implicating its potency
as an early biomarker and therapeutic target for HCC. Currently, EpCAM CAR T cells
are being developed for the treatment of colorectal cancer [128], but their application in
HCC has not yet been explored. Several clinical trials are under recruitment to evaluate
the efficacy and safety of EpCAM CAR T cells in patients with advanced HCC or in
cases of postoperative relapse, as well as in refractory HCC (NCT02729493, NCT03013712,
NCT05028933).

6.7. c-Met

c-Met consists of a tyrosine kinase receptor encoded by the MET proto-oncogene that
possesses a high-affinity ligand known as hepatocyte growth factor (HGF). Upon binding
to HGF, c-Met activates downstream MAPK, STAT3 and PI3K pathways [129], leading
to a cascade of biological functions [130]. The HGF/c-Met signaling pathway plays a
vital physiological modulatory role in the growth and development of various tissues.
Evidence has highlighted the role of c-Met as an activator of hepatocyte proliferation,
survival, and regeneration [131]. However, c-Met overexpression can contribute to the
development and progression of HCC, limiting this molecule’s potential as a therapeutic
target for HCC. Several c-Met inhibitors, such as tivantinib, INC280 and cabozantinib, are
currently under investigation in HCC patients [132,133]. The design of bispecific CAR
T cells targeting both c-Met and PD-L1 demonstrated significant cytotoxicity against c-
Met+PD-L1+ HCC cells [134]. Furthermore, dual-targeted T cells exhibited potent growth
suppression activity compared to single-targeted CAR T cells in vivo [134]. Huang et al.
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developed the second and third generation of c-Met CAR T cells and assessed their anti-
tumor efficacy, both in vitro and in vivo [135]. Their findings confirmed the lysis of HCC
cells by c-Met CAR T cells, with the third-generation CAR T cells demonstrating enhanced
anti-tumor capabilities in vivo [135]. In a recent study, CAR T cells specific to target HCC
with MET overexpression were assessed, irrespective of MET activation status. MET-
specific CARs CD28ζ and MET-specific CARs 4-1BBζ were constructed; in comparison to
MET-CAR.4-1BBζ, MET-CAR.CD28ζ T cells exhibited increased effectiveness against HCC
but also displayed a heightened degree of T cell exhaustion [136].

6.8. Mucin 1 (MUC1)

Mucin 1 (MUC1) is a transmembrane glycoprotein primarily located to the apical
membranes of normal epithelial cells. However, it is overexpressed in various epithelial
tumors and some hematological ones. MUC1 serves as an anti-inflammatory molecule;
however, prolonged activation can contribute to cancer development including HCC [137].
Reports have shown that the MUC1/JNK/TGF-β signaling pathway promotes the migra-
tion and invasion of HCC cells [138]. Therefore, MUC1 is considered an appealing target
for HCC therapy. Both first and third-generation CAR T cells targeting MUC1 have been
developed, which are able to specifically eliminate HCC cells with high MUC1 expres-
sion, while causing minimal damage to normal hepatic cells with low MUC1 expression
levels [139]. A recent study has reported the use of Tn-MUC1-targeted CAR T cells in
intrahepatic cholangiocarcinoma (ICC) [140]. Tn-MUC1 expression was associated with
poor ICC prognosis [140]. Moreover, Tn-MUC1-targeted CAR T cells could selectively
eliminate Tn-MUC1-positive ICC cells, both in vitro and in vivo, while there was no effect
in Tn-MUC1-negative ICC cells [140]. Currently, a clinical trial involving MUC1 CAR T
cells for HCC is actively underway (NCT02587689).

6.9. Other Targets

Delta-like homologue 1 (DLK1), a transmembrane protein, exhibits increased expres-
sion in HCC [141]. Zhai et al. assessed the potential of DLK1-targeted CAR T cells and
the results showed robust cytotoxic activity against DLK1-positive HCC cells in vitro and
in vivo [142]. Moreover, the DLK1-directed CARs promoted T cell proliferation and ac-
tivation in a DLK1-dependent manner. Notably, DLK1-targeted CAR T cells effectively
restrained both subcutaneous and peritoneal xenograft tumors originating from human
liver cancer cell lines HepG2 or Huh-7 [142].

Elevated serum levels of carcinoembryonic antigen (CEA) have been observed in
various adenocarcinomas suggesting a potential use of CEA as a prognostic indicator for
HCC [143]. In a phase I clinical trial, six patients with liver metastases underwent hepatic
artery infusions (HAI) without experiencing toxicity. Remarkably, one patient remained
alive and stable 23 months post-treatment, underlying the safety of CEA CAR T HAI
treatment (NCT02416466) [144]. Subsequently, in the phase 1b Hepatic Immunotherapy
for Metastases-Selective Internal Radiation (HITM-SIR) trial, six patients with CEA+ liver
metastases received anti-CEA CAR T HAI in conjunction with selective internal radiation
therapy (SIRT). Importantly, no severe CRS or neurotoxicity occurred during the trial,
re-affirming the safety profile of CAR T therapy [145,146].

7. Strategies to Improve the Efficacy of CAR T Cell Therapy for HCC

Novel approaches and strategies have been utilized aiming to design more powerful
CAR T cells with ameliorated anti-tumor activity and decreased toxic effects in order to
overcome the significant challenges that have emerged (Figure 4).
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7.1. Improvement of Persistence

The infusion of CAR T cells into the human body leads to T cell exhaustion. This
process limits antitumor effects, primarily due to the blunt response resulting from chronic
antigenic stimulation. The cells lose their capacity to proliferate, secrete cytokines and
eradicate tumor cells, and express high levels of inhibitory receptors including PD-1, TIM-3
and LAG-3 [147]. In order to enhance their persistence, CAR T cells expressing various cos-
timulatory molecules were constructed [148]. Additional strategies involve augmentation
of the expression of cytokines in the CAR structure, such as IL-12, IL-15 and IL-21, in order
to promote CAR T cell proliferation and to increase T naïve cell expression [149].

7.2. Improvement of TME

Although CAR T cells can reach tumor sites successfully, their ability to exhibit anti-
tumor effects is hindered. Only a limited number of cells demonstrate efficacy due to the
prevailing immunosuppressive microenvironment. This environment is characterized by
various inhibitory factors, including metabolic elements, inflammatory factors, immuno-
suppressive cells, and immune checkpoints. Thus, consideration should be given to gene
editing against immune checkpoints on TAA CAR T cells, coupled with targeted drugs
to negate the tumor’s immunosuppressive microenvironment and to improve the local
metabolism [150–152]. This intricate network collectively diminishes HCC growth through
inhibition of T cell attacks.
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7.3. Improvement of Trafficking and Infiltration

Typically, CAR T cells are administered via peripheral infusion, and their ability to
migrate to the tumor site is imperative for the achievement of cytolytic effects. However,
T cells typically lack the expression of chemokine receptors, which are instrumental in
T cell transportation to tumor sites through their binding to chemokines produced by
tumor cells [153]. Furthermore, HCC tissue creates a dense fibrotic matrix, leading to the
downregulation of chemokine expression. This substantially diminishes the migration
and infiltration capabilities of CAR T cells towards the tumor. To enhance the trafficking
and infiltration abilities, chemokine receptors bearing CAR T cells [154] and CAR T cells
expressing heparinase have been developed [155]. In parallel, endeavors for local injection
of CAR T cells significantly improved the antitumor effects [156].

7.4. Improvement of Safety

CAR T cell infusion often results in significant adverse effects, including on-target,
off-tumor toxicity, CRS and neurotoxicity among others. Hence, enhancing the safety of
CAR T cells is of paramount importance. Introduction of novel systems, such as the Tet-On
inducible gene system can effectively regulate the expression and activity of CAR [119]. In
case of CRS which leads to neurotoxicity, CAR expression can be promptly deactivated,
increasing their safety compared to the traditional CAR T cells. For example, incorporation
of the iCaspase-9 gene into the structure of CARs could facilitate the disruption of T cell
activation by inducing apoptosis in CAR T cells. The use of inhibitors for extracellular
vesicles (EVs), which function as carriers transporting functional molecules that promote
tumor growth and metastasis, potentially interfering with CAR immunotherapy, is a viable
approach [157]. Preliminary data have shown that nanomedicine has great potential for
treating HCC [158,159]. Photothermal therapy is an innovative strategy to improve the
accumulation and function of CAR T cells within the solid tumors by using light-absorbing
substances to generate heat when exposed to light, typically in the near-infrared (NIR)
range [160]. Lastly, structural modifications have demonstrated the potential to reduce
CAR T cells toxicity while maintaining their efficacy in tumor elimination [161]

7.5. Improvement of Specificity

One major challenge impeding the success of CAR T cell therapy against HCC lies on
the difficulty of pinpointing the ideal TAAs. In numerous solid tumors, only a subset of
cells expresses the target antigen. Even if the TAAs are consistently expressed in the HCC
tissue, there still exists a risk for antigen loss or antigen escape, contributing to notable
antigen heterogeneity. Due to this heterogeneity, a singular CAR T therapy approach
may not be effective for all HCC patients. Thus, a promising strategy involves targeting
multiple TAAs. Additionally, TAAs are not exclusive to cancer cells; they are also expressed
at low levels in normal cells, leading to on-target, off-tumor toxicities in healthy tissues.
Thus, dual-targeted CAR T cells [162,163], affinity-tuned CAR T cells [164], and CAR T
cells targeting cancer stem cells [111] were constructed to ameliorate the specificity of
tumor antigens.

7.6. Improvement of Drug Resistance

Drug resistance during CAR T cell therapy refers to cancer cells’ development of
mechanisms to evade or counteract the effects of CAR T cells, leading to a reduction in
treatment efficacy [165]. Addressing and overcoming this challenge in CAR T cell therapy is
complex. Cancer cells may downregulate or completely lose the expression of the targeted
antigen, making them less susceptible to CAR T cell recognition and, subsequently, resistant
to treatment [166]. In addition, tumor cells may exhibit heterogeneity in antigen expression,
as cancer cells within the same tumor may lack the targeted antigen, thus escaping CAR
T cell detection. To overcome these challenges, researchers are actively exploring various
strategies to enhance the effectiveness of immunotherapies. Such strategies could be the
use of combination therapies; checkpoint inhibitors in conjunction with CAR T cell therapy
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can enhance T cell activity and overcome immune suppression. Moreover, combination of
different immunotherapies, such as CAR T cell therapy with oncolytic viruses or cancer
vaccines, may lead to synergistic effects. Moreover, one further step to overcome drug
resistance could be the modulation of the cytokine milieu within the TME; this might help
to create a more supportive immune context for CAR T cell function. Engineering CAR T
cells with the ability to recognize multiple antigens simultaneously can broaden their target
specificity, reducing the risk for antigen loss escape. Alongside, the incorporation of a third
specificity in CAR T cells can further enhance their ability to recognize and attack cancer
cells. Genetic engineering may be one more step towards improvement of CAR T cells
persistence; cytokine secretion or resistance to inhibitory signals may enhance CAR T cells’
therapeutic effects or the blockade of immune checkpoint inhibition can help maintain
CAR T cells’ functionality in the presence of inhibitory signals. Lastly, further optimization
of CAR framework structures and new CARs design, such as the arrival of switchable
CARs, logic-gated CARs, or armored CARs, may provide greater control and flexibility in
response to evolving challenges, particularly in solid tumors which present unique features
due to the biological complexity of the solid TME.

8. Conclusions and Prospects

The introduction of CAR T cells has revolutionized the treatment landscape for specific
hematological malignancies, extending CAR T cell application to solid tumors. However,
despite these advancements, numerous challenges persist. The selection of antigens holds
paramount importance in the functionality of CAR T cells. In the context of HCC, the
direction of CAR T cells towards tumor infiltration poses a great challenge, especially when
considering the immunosuppressive microenvironment. Additionally, effective treatment
introduces the risk for CAR T cell-associated toxicities, such as CRS and neurotoxicity. De-
spite these challenges, ongoing research offers a promising path towards more efficacious
and safer future therapies. Over recent years, in depth understanding of the immuno-
suppressive environment has led to novel approaches augmenting tumor elimination and
sustained cytotoxicity of CAR T cell therapy. Several clinical trials of CAR therapy in HCC
are underway to confirm improved outcomes. Administration of antitumor-associated
cytokines may improve immune responses and intensify the HCC cell-killing effect of CAR
-T cells. Combined therapies integrating enhanced T cell activity (such as infiltration and
precise targeting) with improvements in the intra-tumoral environment (such as addressing
physical and biochemical barriers), may pose effective approaches for HCC treatment.
Assessing photothermal therapy or the blockade of EVs released in the HCC TME could
prove crucial to overcome the challenges presented with TME. Additionally, understanding
the molecular mechanisms within the TME enables researchers to adeptly design molecular
targets for CAR cells in order to restore sensitivity to TME resistance.

Although CAR T cell therapy has shown remarkable outcomes, there remains a long
way ahead in CAR research to establish an applicable treatment for solid tumors, particu-
larly in the setting of HCC. Future research should focus on a more in-depth exploration
of the mechanisms governing the establishment of tumor barriers and the intricate struc-
tural characteristics involved. This exploration has the potential to reveal an extended
range of therapeutic targets suitable for sequential interventions. Undoubtedly, the conver-
gence of various treatment modalities, coupled with the continuous progress in scientific
investigation, holds promise to advanced HCC patients’ care.
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