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Abstract: Mitochondrial dysfunction, a feature of heart failure, leads to a progressive decline in
bioenergetic reserve capacity, consisting in a shift of energy production from mitochondrial fatty acid
oxidation to glycolytic pathways. This adaptive process of cardiomyocytes does not represent an
effective strategy to increase the energy supply and to restore the energy homeostasis in heart failure,
thus contributing to a vicious circle and to disease progression. The increased oxidative stress causes
cardiomyocyte apoptosis, dysregulation of calcium homeostasis, damage of proteins and lipids,
leakage of mitochondrial DNA, and inflammatory responses, finally stimulating different signaling
pathways which lead to cardiac remodeling and failure. Furthermore, the parallel neurohormonal
dysregulation with angiotensin II, endothelin-1, and sympatho-adrenergic overactivation, which
occurs in heart failure, stimulates ventricular cardiomyocyte hypertrophy and aggravates the cellular
damage. In this review, we will discuss the pathophysiological mechanisms related to mitochondrial
dysfunction, which are mainly dependent on increased oxidative stress and perturbation of the
dynamics of membrane potential and are associated with heart failure development and progression.
We will also provide an overview of the potential implication of mitochondria as an attractive
therapeutic target in the management and recovery process in heart failure.

Keywords: mitochondria; electron transport chain; oxidative stress; inflammation; heart failure;
cardiac disease; cellular recovery; cardiac rehabilitation

1. Introduction

The heart is an organ with high energy demand which contains, at the cardiomy-
ocyte level, an elevated concentration of mitochondria that are responsible for oxidative
metabolism and the majority (95%) of ATP production [1]. Mitochondrial dysfunction
occurs in patients with heart failure (HF) and is associated with a maladaptive response
and a progressive decline in bioenergetic reserve capacity irrespective of the etiology
of the disease [2]. Neurohormonal dysfunction, systemic inflammation, and cell stress
contribute to mitochondrial dysfunction in HF, with a consequent increase in reactive
oxygen species (ROS) production, nitric oxide synthase (NOS) uncoupling, and altered
cellular calcium regulation. These molecular mechanisms contribute to cellular apoptosis,
fibrosis, and cardiomyocyte hypertrophy finally leading to cardiac remodeling and HF
development [3–5].

In this review, we will discuss the pathophysiological mechanisms, dependent on
mitochondrial dysfunction, underlying HF development and progression as well as the
potential implication of mitochondria as an attractive therapeutic target to treat and recover
from HF (Figure 1).
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Figure 1. Pathophysiological mechanisms dependent on mitochondrial dysfunction in HF. Figure 
legend: Mitochondrial dysfunction is a typical feature of HF, being either a consequence or a cause 
of disease, and it leads to several molecular effects. The most relevant cellular pathways that are 
dysregulated in this condition, ending up as increased ROS level, are represented in the figure. The 
consequent cellular damage aggravates the disease contributing to HF progression. Abbreviations: 
ATP, adenosine triphosphate; DAMPs, damage-associated molecular patterns; ETC, electron 
transport chain; mPTP, mitochondrial permeability transition pore; NCLX, mitochondrial Na+/Ca2+ 
exchanger; OXPHOS, oxidative phosphorylation system; ROS, reactive oxygen species. 

2. Dysregulation of Fatty Acid Oxidation in HF 
HF is characterized by a shift of energy production from mitochondrial fatty acid 

oxidation (FAO) to glycolytic pathways with the aim to maintain sufficient ATP levels 
[6,7]. However, this adaptive process does not represent an effective strategy to increase 
the energy supply since the ATP generated from glycolysis alone normally contributes to 
less than 5% of the total consumed ATP [8]. Accordingly, the hypothesis of energy starva-
tion in HF suggests that mechanisms used to restore energy homeostasis might contribute 
to the vicious circle leading to cardiac remodeling and HF [9,10]. Indeed, increased glu-
cose uptake and metabolism inhibit the branched-chain amino acid (BCAA) catabolism, 
promoting the mammalian target of rapamicine (mTOR) activation and cardiomyocyte 
hypertrophy [11]. Moreover, the inability to oxidize fatty acids could lead to the accumu-
lation of lipotoxic metabolites [12]. In this regard, different studies demonstrated a dysreg-
ulation of several molecular mechanisms responsible for fatty acid metabolism. Evidence 
obtained in both animal models and humans showed that levels of peroxisome prolifera-
tor activated receptor-α (PPARα), a transcription factor responsible for fatty acid transport 
into the mitochondria and peroxisomes, and PPAR-γ co-activator (PGC)-1α are downreg-
ulated in HF [13–15]. On the other hand, malonyl-CoA levels are increased, resulting in 
the inhibition of carnitine O-palmitoyltransferase (CPT) 1 and mitochondrial fatty acid 
uptake [16]. Increased mitochondrial protein acetylation, including pyruvate and succin-
ate dehydrogenases, malate-aspartate shuttle, tricarboxylic acid cycle, and fatty acid oxi-
dation enzymes, has been described in HF models, also contributing to increased sensi-
tivity to mitochondrial permeability transition pore (mPTP) opening [17–19]. It has been 

Figure 1. Pathophysiological mechanisms dependent on mitochondrial dysfunction in HF. Figure
legend: Mitochondrial dysfunction is a typical feature of HF, being either a consequence or a cause
of disease, and it leads to several molecular effects. The most relevant cellular pathways that are
dysregulated in this condition, ending up as increased ROS level, are represented in the figure. The
consequent cellular damage aggravates the disease contributing to HF progression. Abbreviations:
ATP, adenosine triphosphate; DAMPs, damage-associated molecular patterns; ETC, electron transport
chain; mPTP, mitochondrial permeability transition pore; NCLX, mitochondrial Na+/Ca2+ exchanger;
OXPHOS, oxidative phosphorylation system; ROS, reactive oxygen species.

2. Dysregulation of Fatty Acid Oxidation in HF

HF is characterized by a shift of energy production from mitochondrial fatty acid
oxidation (FAO) to glycolytic pathways with the aim to maintain sufficient ATP levels [6,7].
However, this adaptive process does not represent an effective strategy to increase the
energy supply since the ATP generated from glycolysis alone normally contributes to less
than 5% of the total consumed ATP [8]. Accordingly, the hypothesis of energy starvation
in HF suggests that mechanisms used to restore energy homeostasis might contribute
to the vicious circle leading to cardiac remodeling and HF [9,10]. Indeed, increased glu-
cose uptake and metabolism inhibit the branched-chain amino acid (BCAA) catabolism,
promoting the mammalian target of rapamicine (mTOR) activation and cardiomyocyte
hypertrophy [11]. Moreover, the inability to oxidize fatty acids could lead to the accu-
mulation of lipotoxic metabolites [12]. In this regard, different studies demonstrated a
dysregulation of several molecular mechanisms responsible for fatty acid metabolism.
Evidence obtained in both animal models and humans showed that levels of peroxisome
proliferator activated receptor-α (PPARα), a transcription factor responsible for fatty acid
transport into the mitochondria and peroxisomes, and PPAR-γ co-activator (PGC)-1α are
downregulated in HF [13–15]. On the other hand, malonyl-CoA levels are increased, re-
sulting in the inhibition of carnitine O-palmitoyltransferase (CPT) 1 and mitochondrial
fatty acid uptake [16]. Increased mitochondrial protein acetylation, including pyruvate
and succinate dehydrogenases, malate-aspartate shuttle, tricarboxylic acid cycle, and fatty
acid oxidation enzymes, has been described in HF models, also contributing to increased
sensitivity to mitochondrial permeability transition pore (mPTP) opening [17–19]. It has
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been proposed that protein acetylation may be a consequence of an excessive concentration
of short-chain acyl-CoA due to either reduced FAO or to decreased sirtuin-dependent
protein deacetylation [20,21]. Indeed, sirtuin activity depends on NAD+ levels which are
reduced in the presence of mitochondrial dysfunction and cardiomyocyte hypertrophy [22].

Other studies have shown a role of liver X receptor alpha (LXRα) deficiency in the
development of impaired mitochondrial oxidative phosphorylation capacity. On the other
hand, LXRα overexpression in mice resulted in increased glucose uptake with the increased
expression of glucose transporter type 1 and 4 (GLUT1 and GLUT4) without significant
effects on hexokinase 2, which catalyzes the phosphorylation of glucose; on phosphorylated
adenosine monophosphate protein kinase (pAMPK), which regulates cardiac metabolism;
and on CD36, the fatty acid transporter at the mitochondrial membrane [23].

The overexpression of adenine nucleotide translocase 1 (ANT1) has been proven to
increase the activity of mitochondrial complexes II and IV and to decrease the release of
caspase 3, the mPTP opening, and cellular apoptosis in different animal models [24].

Oxidative stress can also cause cardiomyocyte apoptosis by activating both the ex-
trinsic pathway, through death receptor superfamily ligands, and the intrinsic pathway,
through B-cell lymphoma 2 (Bcl-2) family proteins and mPTP opening [25]. Moreover, ROS-
induced DNA damage may activate the transcription factor p53, which causes the translo-
cation of Bcl-2-associated X protein and Bcl-2-associated death promoter to the mitochon-
dria [26]. The overactivation of sympathetic system in HF also promotes norepinephrine-
mediated tumor necrosis factor alpha (TNFα) secretion and the ROS-dependent activation
of c-Jun N-terminal kinase (JNK) and p38-mitogen-activated protein kinase (MAPK) [27].

3. Hyperglycemia and Mitochondrial Dysfunction

In diabetes, mitochondria switch the source of ATP production from glucose to fatty
acid oxidation due to the lack or the insufficient action of insulin [28]. Hyperglycemia
induces ROS production via the activation of NADPH oxidase, xanthine oxidase, and NO
synthase, resulting in the disruption of the oxidative phosphorylation process [29]. Because
of ROS damage, proteins and lipids are oxidized into reactive lipid peroxides and play
a role in increasing the activity of uncoupling proteins (UCPs). The latter produce heat
generation without ATP formation, resulting in impaired cellular insulin signaling [30].

The increased oxidative stress is associated with the generation of superoxides and
hydrogen peroxide which contribute to cellular and mitochondrial damage in a vicious
circle [31]. In addition, the imbalance of antioxidant defenses increases the susceptibility to
oxidative damage, with the inactivation of the ETC complexes and mitochondrial proteins,
and the impairment of the respiratory chain. In addition, the production of advanced
glycation end products (AGEs) associated with hyperglycemia results in the AGE receptor
(RAGE)-induced production of ROS and in the mPTP opening [31].

4. Mitochondrial Dysfunction and Ion Dynamics

Mitochondria can influence the Ca2+ dynamic since membrane-bound pumps, respon-
sible for cytosolic Ca2+ release and removal, are energy-dependent [32].

A dysregulation of Ca2+ homeostasis occurs in HF, which consists in both an impaired
reuptake by the sarcoplasmic reticulum and an increased leak through ryanodine receptors,
contributing to mitochondrial dysfunction [33]. Indeed, Ca2+ regulates mPTP opening,
mitochondrial membrane potential, ROS scavenging, and oxidative phosphorylation [34].
The deletion of the mitochondrial Na+/Ca2+ exchanger (NCLX), which is responsible for
the efflux of Ca2+ into the cytosol, has been associated with mitochondrial Ca2+ overload,
cellular necrosis, and sudden death in mice models [35]. However, the overexpression of
NCLX does not improve mitochondrial function, suggesting that other mechanisms are
involved in the regulation of Ca2+ levels [36].

With regard to mitochondrial Ca2+ uptake mediated by the Ca2+ uniporter (mtCU), the
two regulators MICU1 and MICU2 were shown to be increased in failing human hearts com-
pared to controls. This evidence suggested a possible role for adaptive/maladaptive changes
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in the mtCU composition and that the increase in the MICU1/MCU pore ratio correlated with
a decrease in cardiac contractile function [37]. A dysfunction of mitochondria-associated endo-
plasmic reticulum membranes (MAMs) has also been described in HF, resulting in alterations
in lipid and Ca2+ homeostasis, mitochondrial dynamics, and autophagy [38].

The dysfunction of ryanodine receptor 2 (RyR2) is also involved in the development of
HF since it causes diastolic Ca2+ leaking, depleting sarcoplasmic reticulum stores and reduc-
ing cytoplasmic transients [39]. Both oxidative stress and hyperphosphorylation by protein
kinase A and Ca2+/calmodulin-dependent protein kinase II (CaMKII) may contribute
to RyR2 and Ca2+/ATPase (SERCA) alterations and Ca2+ overload [40]. Abnormal Ca2+

leaking may induce Na+ entry via the NCLX, resulting in the formation and propagation
of delayed after-depolarizations and promoting ventricular arrhythmias [39,40]. ROS also
promote the opening of L-type Ca2+ channels, thus inducing early after-depolarizations
(EADs) [41]. ROS-derived fluctuations in the action potential cause areas of inhomogeneous
excitability, which may trigger ventricular arrhythmias through re-entrant circuits [41].
Oxidative stress also contributes to interstitial fibrosis and alters the expression of connexin
43 (Cx43), the main component of cardiac gap junctions, further inducing arrhythmias [42].

In addition to the dysregulation of Ca2+ homeostasis, an impairment of K+ influx may
occur in HF, resulting in mitochondrial depolarization and matrix swelling [43].

Mitochondrial K+ channels are involved in the regulation of energy production, Ca2+

retention capacity handling, membrane potential, and protection from ischemic/reperfusion
injury [44]. Since most of these channels are opened by cyclic adenosine monophosphate
(cAMP), cyclic guanosine monophosphate (cGMP), or both, the impaired mitochondrial
bioenergetic associated with HF contributes to the dysregulation of K+ homeostasis in a
bidirectional process [45].

A correct homeostasis of transition metals, such as iron, copper, and manganese,
is fundamental for different metabolic pathways, including fatty acid oxidation, oxida-
tive phosphorylation, the tricarboxylic acid (TCA) cycle, and glycolysis, which involve
mitochondrial and non-mitochondrial enzymes such as electron transport chain (ETC)
complexes, citrate synthase, ferro chelatase, aconitase, and xanthine oxidase [46].

ABC transporters in mitochondria regulate iron homeostasis and iron–sulfur cluster
assembly. The deficiency of ABC transporters contributes to reduced mitochondrial ETC
complex activity, iron overload, increased ROS production, and altered mitochondrial
bioenergetics in HF [47].

Iron metabolism is regulated by two proteins (IRP1 and IRP2) which bind the iron
response element (IRE) region of the transcripts of iron transporters such as ferroportin,
transferrin, ferritin, and L-type calcium channels. IRP deficiency has been associated
with impaired iron homeostasis, reduced mitochondrial performance, and increased ATP
demand with an increased risk of HF after dobutamine challenge or MI in mice [48]. Metal
manganese is an essential component of manganese-dependent superoxide dismutase
(MnSOD/SOD2) and pyruvate carboxylase enzymes in mitochondria. It regulates Mg2+

and Ca2+ dependent mitochondrial enzymes [49]. Knock-out MnSOD mice show increased
levels of mitochondrial ROS, complex I dysfunction and cardiomyocyte necrosis [50].

5. ROS-Induced Mitochondrial Damage

HF is associated with increased ROS production by components of the ETC at various
sites within the inner mitochondrial membrane (IMM) and in the mitochondrial matrix
through the Krebs cycle [9]. ROS may contribute to the damage of proteins and lipids,
trigger the cell-death cascade, and compromise the cellular energy grid [51]. Aberrant
mitochondrial membrane phospholipids, mainly consisting in cardiolipin decrements, play
a role in the dysfunction of ETCs, mitochondrial ion homeostasis, and ROS production in
HF [52]. Accordingly, the cell-permeable peptide MTP-131, a compound that targets cardi-
olipin in the mitochondria, was found to localize in the IMM and to improve bioenergetics
by forming respiratory super-complexes [53]. Mitochondrial damage related to increased
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oxidative stress causes a further excessive production of ROS, resulting in a vicious circle
of ROS-induced ROS release [54].

Under physiological conditions, superoxide is dismutated to hydrogen peroxide by
superoxide dismutase, whereas hydrogen peroxide is removed by the antioxidant systems
of peroxiredoxin (Prx) and glutathione peroxidase (Gpx) in the mitochondria [55]. In HF, an
excessive mitochondrial ROS production occurs, contributing to cellular damage. A continu-
ous reduction in thioredoxin 2 (Trx2) is necessary for the correct function of the mitochondrial
Prx and Gpx systems and for the conversion of oxidized glutathione to glutathione using
NADPH. Isocitrate dehydrogenase 2 (IDH2) and nicotinamide nucleotide transhydrogenase
(Nnt) supply NADPH; thus, their dysfunction may play a role in the development and pro-
gression of HF [56]. However, other studies have shown that these enzymes divert NADH
away from ATP production, resulting in a detrimental compensatory mechanism [57].

The phosphorylation of NAD+ by NAD kinase (NADK) in the cytosol (NADK1) and
mitochondria (NADK2) is the only known mechanism by which NADPH is produced de
novo. A reduced NADK activity has been documented in HF, contributing to the impaired
capacity of detoxifying ROS [58].

6. ROS-Induced Mitochondrial Morphological and Functional Damage

The mitochondrial ROS level has been shown to be higher in peripheral blood mononu-
clear cells (PBMCs) from HF patients compared to controls both in the baseline condition
and after lipopolysaccharide (LPS) and H2O2 stimulation. A parallel significant decrease in
SOD and GPx activities was observed [59]. The cytofluorimetric analysis of mitochondrial
membrane potential by tetramethylrhodamine methyl ester (TMRM) and JC-1 staining
reflected a significant mitochondrial depolarization in HF subjects [59]. HF mitochondria
showed significant ultrastructural changes with a reduced area carrying intact cristae and a
convolution loss of IMM as detected by the IMM/outer MM (OMM) index [59]. When us-
ing the grading scale of mitochondrial damage (Mt-G), HF mitochondria showed a burden
of overall damage, based on the distribution of Mt-G1 to Mt-G3 levels, significantly higher
with respect to controls both at baseline and after LPS stimulation [59]. The flow cytometric
analysis showed that the percentage of apoptotic cells in HF patients was significantly
higher [59]. Transmission electron microscopy (TEM) revealed that the PBMCs of HF
patients showed several features of cellular damage, such as apoptotic nuclei with areas of
marginal, dense-stained chromatin, caryorrexis, caryolisis, fragmentation of cellular mem-
branes, and a significant reduction in the mitochondrial area and perimeter, with a smaller
total mitochondrial volume density. In addition, the mitophagic process (responsible for
mitochondrial degradation), identified by the expression of Beclin 1, Parkin, and LC3, was
downregulated in HF PBMCs [59].

Consistently with these results, other studies have shown an impaired morphology
of mitochondrial cristae, with disorganization and reduced cristae density [60]. These
structural changes were also detected in Parkin-knock-out cardiomyocytes which presented
reduced mitophagy, altered cardiomyocyte size, and global cardiac structure with cardiac
dysfunction [61]. The disruption of dynamic-related protein 1 (Drp1), which occurs in HF,
results in the inhibition of mitophagy and contributes to cardiac dysfunction, leading also
to increased susceptibility to ischemic/reperfusion injury [62]. Moreover, the impairment
of mitophagy plays an important role in the development of diabetic cardiomyopathy
favoring hypertrophy, diastolic dysfunction, and lipotoxicity [63].

7. ROS-Induced Inflammation and Cellular Damage

Because of ROS-induced damage, a leakage of mitochondrial DNA may occur, trigger-
ing inflammatory responses, stimulating the production of highly toxic peroxynitrate with
a decrease in nitric oxide (NO) bioavailability and an increase in both hypoxia signaling
and the MAP kinase pathway [64]. Different mechanisms are involved in the ROS-induced
recruitment of circulating inflammatory cells and fibroblast progenitors including the secre-
tion of chemokines, the activation of neutrophil integrins, and the expression of surface
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adhesion molecules by endothelial cells [65]. Moreover, the activation of the nuclear en-
zyme poly (ADP-ribose) polymerase stimulates the expression of inflammatory mediators
and promotes the development of a subclinical inflammatory state which contributes to
cardiac remodeling and HF progression [66]. HF is characterized by elevated levels of
interleukin-6 (IL-6) and TNFα which play an important role in mitochondrial DNA damage,
antioxidant factors’ inhibition, and ETC dysfunction with reduced ATP synthesis [32].

Excessive TNFα stimulation has been demonstrated to exert negative inotropic ef-
fects by reducing the release of Ca2+ from the sarcoplasmic reticulum, downregulating
SERCA2a, uncoupling β-adrenergic receptors from adenylyl cyclase, inducing cardiomy-
ocyte hypertrophy or cardiomyocyte apoptosis, and stimulating fibroblast proliferation
and the secretion of MMPs [67]. The infusion of TNFα caused a progressive left ventricular
(LV) dilatation and dysfunction [68]. Other studies have shown that the inhibition of TNFα
improved the oxidative imbalance and reduced cellular apoptosis [69]. In addition to
TNFα, elevated levels of IL-1b, IL-6, and IL-17 were described in patients with LV systolic
dysfunction [70]. Accordingly, after the induction of an ischemic injury, a smaller infarct
size with less fibrosis in the non-infarcted myocardium and reduced LV dilatation and
systolic dysfunction have been reported in mice lacking IL-17 [71].

ROS-induced mitochondrial functional and morphological alterations contribute to
myofibroblast differentiation and Smad signal transduction leading to fibrosis. In addition,
ROS stimulate the TGF-β1 and NADPH oxidase 4 (NOX4) profibrotic signaling pathways
in fibroblasts [72].

In such a context, it has been reported that the glucagon like peptide-1 receptor
agonist (GLP1-RA) alogliptin alleviated interstitial fibrosis in diabetic rabbits by reducing
the production of mitochondrial ROS and improving the swelling of mitochondria [73].
Also, mitoquinone (MitoQ), a mitochondrial-targeted antioxidant, has been proposed to
inhibit fibrosis in pressure-overloaded hearts via targeting the above-mentioned biological
pathways [74]. Similarly, ephedrine-4 could reduce cardiac fibrosis by maintaining the
integrity of the mitochondrial membrane and preventing the release of cytochrome C53 [75].

Different studies proposed an initial protective role of inflammation during acute phases
of cardiac damage such as ischemia–reperfusion injury through the upregulation of free
radical scavengers and heat shock proteins [76]. Indeed, a larger LV infarct size has been
documented in mice lacking TNFα receptors [77]. However, the persistence of inflammation
becomes a maladaptive process which causes myocardial damage and contributes to HF
pathophysiology. A continuous stimulation of toll-like receptors (TLRs) sustains chronic
cardiac inflammation and damage [32]. Heat shock protein 60 (HSP60) has been found on
the cell surface of cardiomyocytes from end-stage HF patients with a consequent activation
of TLR4 [78]. Other studies have shown that the blockade of TLRs decreased inflammatory
cytokine production and improved LV function after an ischemic injury [76,77].

In addition, the development of HF is favored by the release of damage-associated
molecular patterns (DAMPs) derived from mitochondria, which are rich in unmethylated
CpG motifs and N-formyl peptides that stimulate the NLRP3 inflammasome contributing
to NAD+/NADH redox imbalance [79].

Regarding inflammatory cells, macrophages with an M1 phenotype as well as type 1
T-helper cells were associated with an inflammatory response, whereas an anti-inflammatory
action of type 2 T-helper cells and T-regulatory cells has been described [80]. Indeed, fewer
circulating T-regulatory cells have been documented [81]. This pro-inflammatory status
is common also in HF with preserved ejection fraction (HFpEF), in which comorbidities
such as obesity, diabetes, and hypertension promote the production of both cytokines (IL-1,
IL-6, IL-23, TNFα, and TGFβ) and adipokines [82]. In the context of stressed adipose tissue,
neutrophils and mast cells are attracted and promote the shift of quiescent macrophages to
the M1 form. Adipokines, mainly leptin, stimulate the production of aldosterone and the
activation of the sympathetic nervous system and neprilysin, with a consequent increased
degradation of natriuretic peptides (NPs) and neurohormonal dysregulation [82]. A similar
paracrine response at the epicardial fat tissue level also promotes microvascular rarefaction,
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fibrosis, and arrhythmogenesis [82]. Insulin resistance and hyperglycemia also contribute
to inflammation through the increase of phosphoenolpyruvate carboxykinase, MAPK,
extracellular signal-regulated kinase 1/1 and phosphoinositide 3-kinase activity, the re-
duction of adenosine monophosphate activated protein kinase, peroxisome proliferator
activated receptor-γ and nuclear factor erythroid-related factor 2, the dysregulation of
miRNAs and exosomes and the worsening of inflammatory and hypertrophic response
and glucose metabolism [83]. Pressure overload in hypertensive patients has also been
associated with the activation of the immune cascade of p38-MAPK, increased levels of
cytokines, and the activation of TLRs and heat shock proteins [84]. Chronic kidney disease,
another condition frequently coexistent with HF, is also related to a state of persistent
subclinical inflammation, oxidative stress, and impairment of endothelial and vascular
smooth muscle cell function [85].

8. Mitochondrial Dysfunction and Cardiomyocyte Hypertrophy

Dual-specificity tyrosine-regulated kinases (DYRKs) can reduce mitochondrial ox-
idative phosphorylation and activate Drp-1-mediated mitochondrial fission, accelerating
cardiac hypertrophy and HF progression [86]. DYRK1B binds STAT3, inducing its phos-
phorylation, nuclear accumulation, and the downregulation of peroxisome proliferator-
activated receptor γ coactivator-1α (PGC-1α) expression, finally resulting in impaired
mitochondrial bioenergetics [87]. DYRK1B overexpression has been associated with a sig-
nificantly increased weight-to-tibia length ratio, with larger heart size and cross-sectional
area and with a thinner left ventricular wall [85]. Consistently, the mRNA expression of
atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and sarcomeric protein
α-skeletal actin (Acta1), all markers of cardiac hypertrophy, were upregulated in DYRK1B
transgenic hearts [87]. In addition, excessive fibrosis, consisting in extensive collagen
deposition, increased collagen 1A1 mRNA expression, and reduced matrix metallopro-
teinase 9 (MPM9), was observed [87]. DYRK1B deletion restored cardiac performance,
resulting in 28% and 38% increases in LV ejection fraction and LV fractional shortening,
respectively [87]. DYRK1B overexpression also resulted in impaired mitochondrial mor-
phology and density as detected by TEM. STAT3, an IL-6-activated transcription factor that
plays a role in inflammation, cell growth, and metabolic regulation, was upregulated in
the presence of DYRK1B-overexpression [88]. On the other hand, the expression of the
transcriptional coactivator PGC-1α was significantly downregulated with a consequent
impairment in mitochondrial bioenergetics [87].

The reduced expression in cardiomyocytes of Ndufc2, a subunit of mitochondrial
complex I, has been associated with cellular hypertrophy [89]. An increase in cell size
was detected in Ndufc2 silenced H9c2 cells, with the parallel upregulation of the expres-
sion of known markers of hypertrophy such as ANP and β-myosin heavy chain (MHC)
mRNA levels [87]. Ndufc2 knockdown impaired mitochondrial function by compromising
the redox status and unbalancing the oxidized form of nicotinamide adenine nucleotide
(NAD+) and its reduced form (NADH). A decrease in the NAD+/NADH ratio was detected
in parallel with reduced levels of sirtuin 3 (SIRT3) and MnSOD, decreased activation of
AMPK, and increased phosphoAKT and ROS levels in Ndufc2 knock-out cells [89]. The
supplementation of NAD+ through nicotinamide reduced hypertrophy, as documented
by the decrease in cell size and the hypertrophy markers, and it was associated with an
improvement in the mitochondrial membrane potential and a reduction in intracellular
ROS [89]. In hypertensive patients, the TT genotype at NDUFC2/rs11237379, associated
with significantly reduced gene expression [90], was associated with LV hypertrophy, with
a significant increase in septal thickness, posterior wall thickness, relative wall thickness
(RWT), and LV mass/BSA compared to subjects carrying either CC or CT genotypes. Pa-
tients carrying the A allele at NDUFC2/rs641836 also showed a significant increase in septal
thickness, posterior wall thickness, LV mass, LV mass/BSA, and LV mass/height2.7 [89].
It is likely that hypertensive patients carrying the NDUFC2 gene variants may have an
increased occurrence of HF, although studies are still lacking in this regard.
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Consistently, different studies have demonstrated the protective mechanisms of sirtuins.
Indeed, sirtuins activate the pAMPKα pathway, increase Bcl2 protein levels, inhibit NF-κB,
decrease phosphoprotein kinase B protein, regulate energy metabolism through acetylation,
suppress Wnt3a expression, and reduce Caspase3 mRNA and PARP1 protein levels. As a
result, sirtuins exert protective effects against hypoxia-induced mitochondrial dysfunction,
cytosolic release of cytochrome C, cardiac hypertrophy, and HF development [91].

ROS have been involved in different signaling pathways leading to cardiomyocyte
hypertrophy. In HF, neurohormonal dysregulation with angiotensin II, endothelin-1, and
phenylephrine overproduction stimulates ventricular cardiomyocyte hypertrophy through
the redox-dependent activation of apoptosis signal-regulating kinase 1 (ASK1) and NF-
kB [92]. The renin-angiotensin system also activates nicotinamide adenine dinucleotide
phosphate oxidases (Nox) which induce cellular hypertrophy regardless of blood pres-
sure levels. Nox activity is stimulated under pressure overload conditions and activates
ROS-dependent extracellular signal-regulated kinases 1/2 [93]. Nox2-derived ROS activate
the JNK/nuclear factor of the activated T-cell signaling pathway, inducing the differen-
tiation and proliferation of cardiac fibroblasts [94]. Nox2 has been also demonstrated to
induce the upregulation of connective tissue growth factor (CTGF), NF-kB, and matrix
metalloproteinases (MMPs), causing an excessive collagen deposition and a consequent
structural modification of the extracellular myocardial matrix [95]. After the exposure
to angiotensin II and aldosterone, fibrosis was significantly reduced in Nox2-null mice
compared to wild-types [96].

9. Mitochondria as Potential Therapeutic Targets in HF

According to the abovementioned evidence, mitochondria may represent a suitable
therapeutic target in HF [97].

Effective therapies may include fatty acid (FA) metabolic regulators, glucose metabolic
modulators, mitochondrial OXPHOS regulators, antioxidants, and mitochondrial quality
control regulators [98,99].

FA metabolism may be regulated by PPARα agonists and L-Carnitine. Fibrates, activat-
ing PPARα, have shown promising evidence in HF by improving LV function, preventing
myocardial fibrosis, and improving diastolic function [100].

In an animal model of HFpEF, L-Carnitine treatment has been shown to restore LV free-
carnitine levels, to attenuate LV fibrosis and stiffening, and to improve survival. In cultured
cardiac fibroblasts, L-Carnitine reduced angiotensin II-induced collagen production [101].
Another study conducted in 246 patients with HF due to coronary artery disease showed
that L-Carnitine improved LV function [102].

Besides their role in regulating glucose metabolism, SGLT2i have been shown to
increase FA oxidation and ketogenesis and to rebalance the relationship between glycolysis
and OXPHOS. These biological properties may contribute to explaining the cardioprotective
effects of SGLT2i in HF (reduction in cardiovascular mortality and HF hospitalizations
across the entire LVEF) [103].

An increasing body of evidence has suggested a potential therapeutic role of the stim-
ulation of mitochondrial biogenesis through the activation of the AMPK and NO/soluble
guanylyl cyclase (sGC)/cGMP pathways [99]. Different drugs with cardioprotective effects
such as metformin, thiazolidinediones, and statins indirectly activate AMPK [99]. Direct
AMPK activators, including 5-aminoimidazole-4-carboxamide riboside (AICAR), A-769662,
and PT-1, are currently under various stages of development [104].

Based on previous evidence that abnormal mitochondrial structure and function are
associated with altered mitophagy and increased oxidative stress in HF with reduced
ejection fraction (HFrEF) [59], a recent study tested the impact of ANP (able to stimulate
autophagy/mitophagy in cardiomyocytes [105]) in HFrEF patients by both ex vivo and
in vivo approaches [106]. In the ex vivo study, PBMCs isolated from HFrEF patients were
directly exposed to αANP. The in vivo study included HFrEF patients who received a
treatment with sacubitril/valsartan, a first-line pharmacological therapy consisting in the
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association of the type 1 angiotensin II receptor and neprilysin inhibitors, the latter causing
an increase in NPs, mainly αANP [106]. Both the ex vivo direct exposure to αANP and the
higher αANP level upon in vivo treatment were able to restore mitochondrial membrane
potential, to stimulate the autophagic process with an increase in the mitochondrial mass in-
dex, to reduce mitochondrial damage with an increased IMM/OMM index, and to decrease
ROS levels [106]. According to these results, the favorable effects of NPs on mitochondrial
function may contribute to explain, at least in part, the efficacy of sacubitril/valsartan in
reducing cardiovascular mortality and HF hospitalizations and their role as a first-line
strategy in the therapeutic management of HF.

With regard to antioxidants and mitochondrial quality control regulators, different
studies have shown a potential role of CoQ10 [107]. In a zebrafish model, the depletion
of UBIAD1, a nonmitochondrial CoQ10-forming enzyme, resulted in increased oxidative
stress and cardiac damage. In animal models of isoproterenol-induced HF, CoQ10 levels
were significantly reduced and their supplementation improved LV function [108]. In a
mouse model of diabetic cardiomyopathy, CoQ10 supplementation reduced cardiomyocyte
hypertrophy and fibrosis and improved LV diastolic function [109].

Different studies have investigated the role of CoQ10 supplementation in patients
with HF with controversial results. The myocardial CoQ10 levels were inversely related to
the NYHA class in 43 HF patients. In the Controlled Rosuvastatin Multinational Study in
HF (CORONA), patients in the lowest tertile of CoQ10 had significantly lower LVEF and
higher NT-proBNP levels [110]. However, elevated CoQ10 levels were associated with an
increased risk of mortality in 236 patients hospitalized for HF [111]. A meta-analysis which
included 395 patients from 13 studies showed a 4% improvement in LVEF in those who
received CoQ10 compared to a placebo [112]. A study enrolling 914 patients did not show
any significant improvement in LVEF or exercise capacity after treatment with CoQ10 [113].
The Q-SYMBIO (Coenzyme Q10 as Adjunctive Treatment of Chronic Heart Failure: A
Randomised, Double-blind, Multicentre Trial With Focus on Symptoms, Biomarker Status)
study, which enrolled 420 patients, demonstrated that CoQ10 reduced the composite
primary endpoint of cardiovascular death, hospital stays for HF and mechanical support or
cardiac transplant, as well as the secondary outcomes of death from cardiovascular causes
and all-cause mortality, compared to the placebo [114]. However, the study had significant
limitations such as the incomplete enrollment that would have required an 8-year period,
the small number of events, and the limited sample size [107]. In patients with ischemic
heart disease, CoQ10 at 300 mg/day for 3 months demonstrated a significant reduction in
inflammatory markers, such as TNFα and IL-6, compared with a placebo [115].

In a mouse model of HFpEF, myocardial fibrosis was reduced by the inhibition of the
NLPR3 inflammasomes with histone deacetylation and improvement in mitochondrial
hyperacetylation and dysfunction [116].

Another potential mitochondrial target is represented by the mitochondrial pyruvate
carrier (MPC), that mediates the import of pyruvate into the mitochondrial matrix across
the mitochondrial inner membrane. Thus, MPC blockers might restore mitochondrial
dysfunction by modulating the oxidative phosphorylation system [117].

Mitochondrial function might be also regulated by inhibitors of mPTP such as cy-
closporine A and by lipid-binding molecules such as the cardiolipin (CL)-binding peptide
elamipretide [97]. In rats with myocardial injury, the chronic administration of elamipretide
significantly reduced ROS production and cytosolic cytochrome c levels in the peri-infarcted
region restoring cardiac function [118].

Sonlicromanol, a new molecule acting as redox modulator (via mPGES-1 inhibition)
and as an antioxidant (via the thioredoxin/peroxiredoxin system), has been tested in
patients with mitochondrial diseases demonstrating a good safety and tolerability profile
without significant cardiovascular adverse events [119].

Another molecule targeting mitochondrial ROS production is OP2113 [5-(4-methoxyphenyl)
dithiole-3-thione], also known as anethole trithione or Sulfarlem. It has been shown that OP2113
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inhibits up to 80% of superoxide and hydrogen peroxide production by respiratory complex I (IQ
site) [120]. However, no clinical trials have specifically investigated the efficacy of OP2113 in HF.

In spontaneously hypertensive rats, the pharmacological inhibition of poly(ADP-
ribose) polymerase (PARP) improved mitochondrial morphology by reducing mitochon-
drial fragmentation and increasing mitochondria size and cristae density, thus resulting
in the prevention of LV hypertrophy [121]. In mice with pressure overload-induced HF,
treatment with the mitochondrial division inhibitor (Mdivi) and with berberine, a substance
able to activate mitophagy via the PINK1/Parkin pathway, decreased ventricular fibrosis
and preserved cardiac function [122,123].

Other promising pharmacological classes are represented by agents interacting with
the respiratory chain components. In such a context, idebenone is a synthetic short-chain
analogue of coenzyme Q10 with improved solubility and pharmacokinetics [124]. Also,
imeglimin, a new antidiabetic drug that amplifies stimulated insulin secretion (GSIS) and
enhances insulin action, has been observed to rebalance respiratory chain activity by
correcting the deficiency of Complex III activity and preventing mPTP opening [125].

10. Conclusions

Mitochondrial dysfunction is a feature of HF, being either a consequence or a cause of
disease. Therefore, HF shows a maladaptive response, a progressive decline in bioenergetic
reserve capacity, a shift of energy production from mitochondrial fatty acid oxidation to
glycolytic pathways, a dysregulation of ion homeostasis, and an increased production
of ROS. Oxidative stress is related to morphological and functional dysfunction which
contributes to the development of cardiac hypertrophy and to the progression of HF.

Although further studies are needed to confirm and extend the available evidence, a
promising role of mitochondria as a therapeutic target in HF is emerging and may pave the
wave for future effective strategies in the management of this condition.
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