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Abstract: This review focuses on non-surgical treatment options for rotator cuff injuries and highlights
the potential of mesenchymal stem cells (MSCs) as a potential regenerative approach. MSCs, sourced
from various tissues like bone marrow and adipose tissue, exhibit promising mechanisms in vitro,
influencing tendon-related gene expression and microenvironment modulation. Animal studies support
this, showcasing MSCs’ ability to reduce inflammation, improve tissue remodeling, and enhance repaired
tendon strength. Human trials, while varied and limited, suggest that MSCs might lower retear rates
and enhance post-repair outcomes, but randomized controlled trials yield mixed results, emphasizing
the necessity for standardized investigations. Ultimately, while cell-based therapies demonstrate an
excellent safety profile, more rigorous clinical trials are necessary to determine their efficacy in improving
patient outcomes and achieving lasting structural changes in rotator cuff injuries.

Keywords: orthobiologics; rotator cuff tears; mesenchymal stem cells

1. Introduction

Shoulder pain is the third-most-common musculoskeletal complaint (behind back and
knee pain) in the United States [1]. The prevalence of shoulder pain ranges from 14 to 34% [2–7]
each year; about 1% of the population who are 45 years and older present with shoulder pain
to primary care settings [8]. In the United States, the direct healthcare expenses attributable
to shoulder disorders was estimated to be USD 7 billion in 2000 [9], and rotator cuff tears
are considered one of the most expensive diseases treated in American hospitals [1]. Rotator
cuff disorders are the underlying problems in 65–70% of patients with shoulder pain [10,11].
Despite this enormous public health impact, there are no disease-modifying treatments for
rotator cuff tears.

The major symptomatic manifestations of rotator cuff tears include chronic shoulder
pain, impaired mobility, and functional impairments. These arise due to progressive patho-
logical remodeling of the tendon, leading to increased fibroblast cellularity, neovascularity,
thinning/loss of collagen matrix, and fatty infiltration [12]. Rotator cuff tears can be treated
non-operatively and operatively. The current non-surgical standard-of-care therapies such
as physical therapy address biomechanical and functional deficits but do not regenerate
the underlying structural tendon tear. In addition, non-steroidal anti-inflammatory drugs
(NSAIDs), modalities (acupuncture, iontophoresis, etc.), and glucocorticoids injections pro-
vide symptomatic relief but do not prevent the progression of disease. Moreover, the rotator
cuff tear size, muscle atrophy, and fatty infiltration may progress over 5 to 10 years with
non-operative treatments [13,14]. The current guidelines for pharmacological therapeutic
strategies that have been adopted by many professional organizations are largely focused
on symptom relief in partial-thickness rotator cuff tears and do not offer disease-modifying
benefits [14]. Alternative injections such as hyaluronic acid have limited evidence to support
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their use, and platelet-rich plasma has limited evidence that does not support routine use
for treatment of rotator cuff tears [14]. Surgical treatments such as rotator cuff repair are
also aimed at either debriding the tendon or anchoring a torn tendon back to the humeral
head and do not alter the underlying tendon biology. Moreover, incomplete or failed tendon
healing occurs in 20–25% of patients [14]. Thus, current treatments for rotator cuff tears are
sub-optimal, and there is a significant need for disease-modifying therapies (DMTs).

Given the overall frequency of shoulder pain and rotator cuff tears, further treatment
modalities are needed to aid with healing. Emerging regenerative options are based upon
repurposing mesenchymal stem cells (MSCs) to directly treat existing tears in muscle fibers or
augment surgical treatment options in cases of full-thickness tears. The purpose of this review
is to provide a brief overview of MSCs and an update of the current literature regarding their
clinical applications in treating rotator cuff tears.

2. Methods

Given the overall paucity of human controlled trials regarding the use of MSCs for rotator
cuff pathology, the decision was made to pursue a scoping review. The aim of this study was
two-fold: (1) to synthesize the current basic science of MSCs, understand the different subtypes
of MSCs, and the current in vivo research of the use of MSCs for rotator cuff tears (RCTs),
and (2) to evaluate the current literature regarding the use of MSCs for RCTs in humans. A
detailed literature search (September 2023 to December 2023) in seven databases (PubMed
(NLM); CINAHL; Scopus (Elsevier); ClinicalTrials.gov; and Proquest Dissertation and Thesis)
in order to evaluate the evidence base for MSCs for RCTs (see Figure 1). For the purpose of
this review, MSCs were defined as nonhematopoietic multipotent cells, which are capable of
differentiating into a variety of cells of mesenchymal lineage [15], which could include tissue
derived from almost all organs, including bones, adipose tissue, etc. Randomized control
trials, as well as cohort studies and case series, were considered for inclusion.
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3. Basic Science of Mesenchymal Stem Cells

MSCs are defined as nonhematopoietic multipotent cells, which are capable of differ-
entiating into a variety of cells of mesenchymal lineage [15]. It is believed that they can be
derived from the connective tissue of almost all organs, including bones, adipose tissue,
dental pulp, as well as isolated from the human placenta, umbilical cord, and various fetal
tissues [16]. The minimal criteria for identifying MSCs, as defined by the International
Society for Cellular Therapy (ISCT), require the following: (1) must be plastic-adherent
when maintained in standard culture conditions, (2) must express CD73, CD90, and CD105,
and lack expression of CD11b, CD14, CD19, CD34, CD45, CD79a and HLA-DR surface
molecules, and (3) be able to differentiate into osteoblasts, adipocytes, and chondroblasts
in vitro [17].

Although initial studies theorized that MSCs repaired tissues through the differenti-
ation and engraftment into injuries’ tissues, more recent research has shown that MSCs
are able to mediate tissue repair, but they have only transient engraftment into the in-
jured issues [16,18]. Recent studies suggest that MSCs’ therapeutic effects are mediated
through the release of paracrine factors, mitochondrial transfer, and extracellular vesicle
secretion [16,18,19]. MSCs produce an abundance of paracrine factors, including cytokines,
chemokines, growth factors, and microRNA. Caplan and colleagues proposed that within
local injury, MSCs actively participate in the suppression of local immune reactions within
local tissues, as well as wound repair, tissue regeneration, and angiogenesis [20,21]. Fur-
thermore, research has shown that MSCs can mediate the stimulation of the recruitment,
proliferation, and differentiation of tissue-specific cells [21–23] and attenuate the oxidative
stress response [21,24].

Although the ISCT definition states that MSCs must be able to differentiate into
osteoblasts, adipocytes, and chondroblasts in vitro, some studies have shown that under
appropriate conditions, MSCs can differentiate into other tissues, like tendon, skeletal
muscle, myocardium, and smooth muscle [21,25,26]. Although MSCs can be harvested
from a variety of tissues, many of these cells share similar characteristics. Research has
shown some differences between these cells, which may, however, potentially lead to
differences in differentiation propensity. For example, the global miRNA expression profile
of MSCs varies according to the tissue of origin, which may affect cellular properties, such
as proliferation, differentiation, and paracrine activities [27]. As such, it is important to
understand the different MSCs’ harvesting sites/subtypes.

3.1. Mesenchymal Stem Cell Subtypes

MSCs can be harvested from multiple tissue sources of mesenchymal origin, includ-
ing the placenta, umbilical cords, adipose tissue, bone marrow, as well as other tissues.
Although multiple potential sources exist, the most commonly utilized adult sources are
bone marrow and adipose tissue in orthopedics [28]. This is in part due to the ease at
which these tissues are obtained, but also due to the success that these tissues have shown
in producing a large number of MSCs and paracrine effects [28–30]. For the purpose of
this review, we will further explore bone-marrow-derived MSCs, adipose-derived MSCs,
umbilical-cord-derived MSCs, muscle, and peripheral blood.

3.1.1. Bone-Marrow-Derived MSCs

Bone-marrow-derived MSCs (BM-MSCs) were the first MSCs identified and, thus, have
been the most extensively studied, both in vitro and for their therapeutic properties [31,32].
BM-MSCs have been shown to comprise 0.001% to 0.01% of total marrow mononuclear
cells [21,33,34]. As with all MSCs, BM-MSCs are thought to exert therapeutic effects through
their ability to regulate cell proliferation/differentiation, ability to secrete trophic factors,
and immunomodulatory activity. However, research has shown specific differences in
BM-MSCs compared to other subtypes. Immunologically, BM-MSCs have been shown to
strongly express CD49f, PODXL, CD 106, and cytochrome p450 and not express or minimally
express CD54 and CD34, as compared to other MSCs [21,35,36]. In addition, some studies
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have demonstrated that BM-MSCs are more prone to osteogenic differentiation than other
MSCs [21,35,37]. Additionally, some in vitro studies have found that some MSCs have
decreased chondrogenic differentiation potential when compared to BM-MSCs [21,36,38].

As previously stated, this was the first stem cell discovered, and as such, it has been
extensively investigated as a potential therapy for a wide variety of conditions, including,
but not limited to, cardiovascular, neurological, orthopedic, oncologic, rheumatologic, and
gastrological diseases.

3.1.2. Adipose Tissue MSCs

Adipose tissue MSCs (AT-MSCs) have been also extensively studied due to their
advantageous ability to be conveniently sourced as subcutaneous AT, which is abundantly
found throughout the body. Unlike BM-MSCs, it is estimated that approximately 98–100%
of cells obtained through AT are viable [39,40]. Thus, when compared to BM MASCs,
AT-MSCs contain a 500-fold greater number of MSCs when isolated from an equivalent
amount of adipose tissue [21,41]. MSCs can be harvest by either enzymatically digesting
adipose tissue to yield a stromal vascular fraction (SVF) or through mechanical breakdown
to yield micro-fragmented adipose tissue (MFAT). Studies have shown that MFAT contains
higher concentrations of AT-MSCs when compared to SVF making it an ideal choice in
clinical applications, especially given its comparative ease of accessibility [42,43]. However,
one limitation of AT-MSCs is that certain donor characteristics, like age, can affect the
ability of AT-MSCs to expand and differentiate, notably in the chondrogenic and osteogenic
lineages [21,40,44,45]. However, these effects have not been clinically verified.

3.1.3. Umbilical Cord Blood MSCs

Umbilical cord blood MSCs (UCB-MSCs) are considered an abundant source of mes-
enchymal stem cells. Since the MSCs derived from UCB are typically discarded at birth,
some consider this a less expensive and the least invasive method of collecting MSCs
compared to their adult source counterparts [46,47]. Another potential advantage of UCB
is that, due to their immaturity, UCB-MSCs have been shown to be less immunogenic.
In addition, they have been found to have a similar doubling time when compared to
BM-MSCs [39,46–48]. Lastly, research has shown that they may have the highest expansion
potential among all subtypes of MSCs [47].

3.1.4. Muscle-Derived MSCs

As with other MSCs, muscle-derived MSCs (M-MSCs) are able to differentiate into
multiple mesenchymal tissues, like myogenic, chondrogenic, and osteogenic linages. Of
note, M-MSCs are committed to a myogenic lineage, while satellite cells are capable of
multi-lineage differentiation [49]. Satellite cells are mononuclear cells that surround each
muscle fiber and the plasma membrane of the fiber. These are thought to be the main cell
type responsible for skeletal muscle regeneration. Studies have shown multiple potential
applications for M-MSCs, including augmenting muscle healing following injury, both
skeletal and cardiac, the promotion of peripheral nerve regeneration, and the promotion of
vascular regeneration [39,50,51].

3.1.5. Peripheral Blood MSCs

Peripheral blood progenitor cells have been shown to be mobilized through the use of
filgrastim, a granulocyte-CSF [48,52]. An advantage of using mobilized peripheral blood
MSCs (PB-MSCs) is the ease at which they can be accessed and obtained. They share
the same ability to differentiate into mesenchymal lineages as other subtypes of MSCs;
however, studies have shown that the doubling time of PB-MSCs is almost 95 h, which is
longer than most other sources [48,53]. Lastly, another disadvantage of this subtype is that
their capacity to differentiate into bone and chondral lineages has been shown to be lower
than BM-MSCs.
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4. MSCs for Rotator Cuff Injury
4.1. In Vitro Data

Tendon disruption seen in rotator cuff tears (RCTs) leads to decreased muscle fibers
and mass, which subsequently leads to increased fat content [54,55]. That being said, RCTs
are thought to induce fatty infiltration, and classification systems have been developed
to quantify the severity of rotator cuff tears based on the degree of fatty infiltration [56].
It has been shown that surgical rotator cuff repairs have lower surgical success rates in
patients with a more advanced Goutallier stage [55,57]. It is believed that the use of MSCs
for tendinopathy reduces the inflammatory environment, shifting to a more reparative
environment [58,59].

In vitro culture studies have attempted to better understand the mechanisms by which
MSCs can aid in the repair of tendinopathies like RCTs. One study found that crosstalk
between tendon cells and MSCs led to an upregulation of tendon-related genes, like scelraxis
and tenomodulin, as well as tendon ECM markers, like type 1 collagen and decorin [59–61].
Another theory is that paracrine factors play a role in MSCs, supporting tendon cells.
Sevivas and colleagues found that pre-conditioning tendon cells in vitro with the BM-MSCs’
secretome results in improved biomechanical performance when transferred to a rat model
of rotator cuff tears [62]. Another potential mechanism by which MSCs treat RTC is through
the generation of tendons like tissue. In one in vitro study, researchers were able to culture
BMMSCs in fibrin gels and spontaneously generate collagen fibrils similar to embryonic
tendons [59,63]. The rationale by which this occurs in vitro is due to TGF-B3 signaling.

Further studies have examined the potential cellular mechanisms by which AT-MSCs
are able to improve tendon healing. AT-MSCs may also use a cellular crosstalk mecha-
nisms in order in upregulate tendon-related genes [64,65]. Furthermore, in co-cultures
with AT-MSCs and tendon explants, it was found that the collagenolytic activity of matrix
metalloproteinase (MMPs) was increased. In addition to fastened extracellular matrix
remodeling, the same study by Costa-Almeida and colleagues found an accelerated depo-
sition of type 1 college and increased ratio of type 1 to type 3 collagen [66]. Thus, MSCs
may play a role in shifting the microenvironment to induce repair and reduce fibrotic heal-
ing. Altogether, in vitro studies support the potential therapeutic effect for MSCs though
multiple different mechanisms that lead to modulation of the microenvironment.

4.2. Clinical Applications of Mesenchymal Stem Cells in Rotator Cuff Disease
4.2.1. In Vivo Studies

RCTs can manifest in varying severity and with varying levels of fibrosis and fatty
infiltration. In a study conducted by Mora et al. in 2014, a rat model of acute supraspina-
tus tear followed by repair was used to investigate the effects of AT-MSCs [67]. Their
findings a revealed notable reduction in acute inflammation, edema, and a decreased
presence of neutrophils in histology. Similarly, Chen et al. (2015) conducted a study using
human-adipose-derived MSCs in a rat model of RCT [68]. They observed improved fiber
arrangement and tendon organization, as well as reduced inflammation. These findings
suggest that AT-MSCs can help mitigate the initial inflammatory response following RCT.
They also show promise in chronic disease, as seen in a study by Gunmucio et al. (2016),
who investigated stromal vascular stem cell treatment in conjunction with surgical repair
in a rat model of chronic RCT [69]. Their results showed a significant reduction in muscle
fibrosis, up to 40% when compared to repair alone.

Furthermore, MSCs have shown promise in enhancing functional outcomes following
RCT repair. In a rabbit model of chronic RCT, researchers demonstrated that adipose-
derived MSC exosomes, when injected after surgical repair, led to a significantly higher
tendon load to failure, increased muscular stiffness, and improved tendon stress tolerance
compared to surgical repair alone [70]. This suggests that MSCs can play a pivotal role
in augmenting the mechanical integrity and functional performance of repaired tendons.
Shin (2020) utilized adipose-derived MSC cell sheets in a rat model to improve tensile
strength, particularly at the enthesis following rotator cuff repair [71]. The nearly two-fold
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increase in tensile strength highlights the potential of MSC-based therapies to enhance the
structural integrity of the repaired tendon, which is crucial for functional recovery. Finally,
multiple studies have employed scaffold matrices populated with MSCs in rat models of
RCT, resulting in increased tendon tensile strength [72,73].

While the precise mechanisms underlying these improvements remain unclear, it is
believed that MSCs may modulate this process through a paracrine activity of suppressing
pro-inflammatory cytokines, which can hinder tendon healing after injury, and by simul-
taneously promoting angiogenesis to improve cellular healing [74]. Nevertheless, these
in vivo trials provided compelling evidence for the therapeutic potential of mesenchymal
stem cells in addressing both the structural and functional aspects of tendon healing in
RCTs. These studies suggest that MSCs can reduce inflammation, enhance tissue remod-
eling, and improve the mechanical properties of repaired tendons, which has prompted
human clinical trials.

4.2.2. Human Trials

Overall, our review found 18 case reports/series, RCTs, and case control series ex-
amining the effects of MSCs of rotator cuff tears (see Table 1) [75–92]. The most notable
features of each study are summarized in Table 1. Of note, one of the included studies was
a 2-year follow-up from the initial study. While human trials for MSC use in musculoskele-
tal applications have been on the rise in recent years, there continues to be a paucity of
well-designed studies, especially randomized controlled trials, that examine the effects of
MSCs of RCT. There is a lot of variance in target populations, MSC type and application,
and follow-up time frames. We aim to synthesize the available evidence below.

Of the 18 studies reviewed, 12 were either case series, case reports, or case-controlled
studies. Five of the included non-randomized controlled studies examined BMAC, while the
other seven examined AT-MSCs/MFAT. In an earlier human-based study involving MSCs,
Hernigou and colleagues showed, in their 2014 case-controlled study, that using bone-marrow-
derived MSCs as an adjunct to surgical rotator cuff repair could help prevent retears in the
future (as seen at 10 yr follow-up) and improve the quality of the repair [82]. Interestingly,
they also found that the number of MSCs that were transplanted positively correlated with a
patient’s tendon integrity. Similarly, a cohort study conducted by Kim et al. (2017) showed that
using adipose-derived MSCs to augment surgical rotator cuff repair significantly decreased
retear rates, as seen on MRI [87]. However, they did not note any clinical differences in
patients on follow-up. On the other hand, 10 of the 12 included studies found improvements
in pain and/or functional outcome scores. In fact, Jo et al. (2018) found improvements in
pain of up to 80%, with arthroscopic evaluation demonstrating near-full healing of the tear
defect [85,86]. The positive results from these types of studies helped open the door to future
randomized control trials. Currently, there are nine registered trials on clinical trials.gov
classified as “recruiting, unknown status, active, or completed” (see Table 2).
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Table 1. Current published studies examining MSCs for rotator cuff tears. Included are the study name, study design, pathology, number of total participants,
harvesting site, outcomes, and results.

Study Study Design Pathology
Number

of
Patients

Type of MSCs
Adjunctive
Treatment
Modalities

Outcome Follow-Up Results

Centeno, et al., 2015 [75] Case Series
GH OA and/or

partial/full rotator
cuff tears

115 (81
RCT and
34 OA)

Bone Marrow
Concentrate

(BMAC)
NA DASH and NPS 3 months Significant improvement of

DASH and NPS scores

Centeno, et al., 2020 [76]
Randomized
Controlled

Crossover trial

Chronic partial or
full thickness
non-retracted

rotator cuff tears

25
Bone Marrow
Concentrate

(BMAC)

Control-Exercise
Therapy

Primary-DASH
Secondary-NPS,

SANE

1, 3, 6, 12,
24 months

Significant differences for
BMAC over exercise group
at 3 and 6 months for pain,

and for function and
reported improvement

Cherian et al., 2019 [77] Case Report Chronic rotator
Cuff Tear 1

Microfragmented
adipose tissues

(MFAT)
NA NRS, WUSPI,

BPI-17, PGIC
1, 2, 3, 6,

12 months

Complete pain relief in all
outcome measure from

1–12 months

Chun et al., 2022 [78] Randomized
control trial

Partial tear of
supraspinatus

tendon

24 across
3 groups

Microfragmented
adipose tissues

(MFAT)

Control-Normal
Saline (NS)

Group 2-Fibrin
glue and NS

Primary: VAS at
3 months

Other: VAS,
ASES, MRI

Imaging

6 weeks, 3,
6,12 months

No significant difference
found in pain scores

3 months post injection

Cole et al., 2023 [79] Randomized
control trial

Supraspinatus
tendon tears
undergoing

rotator cuff repair
(RCR)

91
Bone Marrow
Concentrate

(BMAC)

BMAC + RCR
versus NS +

RCR

PROMs, ASES,
SANE, Veterans

RAND, MRI

6,
12,24 months

Functional outcomes
significantly improved in
both groups. The control
group had significantly

greater evidence of rotator
cuff retear at 1 year MRI

Ellera Gomes et al., 2011 [80] Case series Full thickness
rotator cuff tear 14

Bone Marrow
Concentrate

(BMAC)

Rotator Cuff
Repair Surgery UCLA, MRI 12 months

Improved functional score.
Tendon integrity in all cases

at 12 months

Ferrell, JL et al., 2023 [81] Case Report Full thickness
Supraspinatus tear 1

Microfragmented
adipose tissues

(MFAT)
NA DASH, MRI 1, 6, 8 months Improved DASH Scores
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Table 1. Cont.

Study Study Design Pathology
Number

of
Patients

Type of MSCs
Adjunctive
Treatment
Modalities

Outcome Follow-Up Results

Hernigou, et al., 2014 [82] Case Control
Study

Full thickness
supraspinatus

tears
90

Bone Marrow
Concentrate

(BMAC)

BMAC + RCR
versus RCR

Imaging
findings on US
(monthly) or

MRI

US (monthly)
or MRI at 3, 6,
12, 24 months
as well as MRI

At 10 years

BMAC improved the rate of
healing at 6 months and
decreases retear rate at

10 years

Hogaboom et al., 2021 [83] Pre-post clinical
trial

Chronic Rotator
cuff Tear 10

Microfragmented
adipose tissues

(MFAT)
NA NRS, WUSPI,

BPI-17, PGIC
6 and

12 months

WUSPI, NRS, and BPI-I7
scores were significantly
lower 6 and 12 months

post-procedure

Hurd, et al., 2023 [84] Randomized
Control Trial

Partial thickness
rotator cuff tears 20

adipose
tissue-derived
mesenchymal

stem cells
(AT-MSCs)

Control-
Corticosteroids

Primary-
Adverse
outcomes

Secondary-
ASES, RAND,

VAS, MRI

Assessments at
3, 6, 9, 12, 24,
32, 40, and
52 weeks.

MRI at 24 and
52 weeks

No adverse outcomes were
reported 12 months post

treatments.
Those in intervention group
showed significantly higher
mean ASES total scores at

W24 and W52 post
treatment

Jo et al., 2018 (and follow
up paper in 2020) [85,86] Case Series Partial Thickness

tears 18

adipose
tissue-derived
mesenchymal

stem cells
(AT-MSCs)

NA

SPADI, Adverse
events, Constant
score, VAS, and

MRI

1, 3, 6 months
and 2 year

study follow
up

No serious adverse events
through 2 years. SPADI and
CS significantly improved

in mid- and high-dose
groups. Shoulder pain

recuded by 90% at 2 years
by the mid and high dose

groups.

Kim, et al., 2017 [87] Cohort Study Full thickness
rotator cuff tears 70

adipose
tissue-derived
mesenchymal

stem cells
(AT-MSCs)

AT-MSCs+ RCR
versus RCR

VAS, ROM,
UCLA, MRI 12 months

No functional difference.
MRI with significantly

higher retear rate in just
RCR group (28.5 vs. 14.3)

Kim et al., 2017 [88] Case Series Partial Thickness
rotator cuff tears 12

Bone Marrow
Concentrate

(BMAC)
BMAC + PRP ASES, VAS, US 3 weeks,

3 months

Significant improvement in
pain (VAS) and ASES scores

after 3 months.
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Table 1. Cont.

Study Study Design Pathology
Number

of
Patients

Type of MSCs
Adjunctive
Treatment
Modalities

Outcome Follow-Up Results

Kim et al., 2018 [89] Case control study Partial Thickness
rotator cuff tears 24

Bone Marrow
Concentrate

(BMAC)

BMAC + PRP
versus

rehabilitation
alone control

ASES, VAS, US 3 weeks,
3 months

Significant improvement in
pain at 3 months for

experimental versus control
group. The change in the

tear size did not differ
significantly between groups

Marathe, et al., 2021 [90] Case Study Partial thickness
Supraspinatus tear 1

Microfragmented
adipose tissues

(MFAT)
MFAT + PRP VAS, ROM, US 14 and

28 weeks

Significant improvement in
pain and mobility at

28 weeks. Resolution of the
tear on US

Striano, et al., 2018 [91] Case Series Chronic Rotator
Cuff Tear 18

Microfragmented
adipose tissues

(MFAT)
NA NPS, ASES

1 and 5 weeks,
3, 6, and

12 months

Significant improvement in
pain and ASES scores at all

timepoints

Randelli, et al., 2022 [92] Randomized
control trial Rotator Cuff Tears 44

Microfragmented
adipose tissues

(MFAT)

MFAT + RCR
versus RCR

Constant Murley
Score, ASES,

VAS, Strength

3, 6, 12, 18,
24 months

Significant difference
favoring experimental group
of CMS scores at 6 months.

No significant differences in
rerupture rate or adverse
events between groups

Table 2. This table represents currently registered studies on clinicaltrails.gov when searching for “Rotator Cuff Tear” and “Stem Cells”. Only studies classified as
recruiting, unknown status, active, or completed were included in the table. Any study classified as withdrawn or suspended was not included. The quality of these
studies was not evaluated as they are currently ongoing.

Indication Study ID Location Intervention Control Number of Patients Source of MSCs

MSCs in reconstruction
Surgery of Supraspinatus

Muscle Lesions
NCT03068988 Hospital Znojmo, Czechia Single Injection of

BM-MSCs intra-op
Surgical Repair
without MSCs 50 BM-MSCs

Use of MSCs in patients
with supraspinatus partial

thickness tear
NCT02298023 Seoul National University

Hospital, South Korea
Single Injection of

AT-MSCS Saline Injection 24 AT-MSCs
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Table 2. Cont.

Indication Study ID Location Intervention Control Number of Patients Source of MSCs

Use of MSCs in patients
undergoing Arthroscopic

Rotator Cuff Repair
NCT02484950 Rush University Medical

Center
Single Injection of
BM-MSCs intra-op

Surgical Repair
without MSCs 100 BM-MSCs

AT-MSC for partial
Thickness rotator cuff tear NCT04077190 Fargo, North Dakota Single Ultrasound guided

Injection of AT-MSCs Cortisone Injection 15 AT-MSCs

AT-MSCs for symptomatic
partial thickness rotator cuff

tears
NCT03752827 Mutli-center Single Ultrasound guided

Injection of AT-MSCs Corticosteroid 246 AT-MSCs

BMAC for non-retracted
supraspinatus tendon tear NCT01788683 Broomfield, Colorado Single injection of BMAC

under imaging guidance Exercise Therapy 51 BM-MSCs

Use of AT-MSCs on clinically
diagnosed rotator cuff tear

or lateral epicondylitis
NCT03279796 Zhejiang University, China Single Injection of

AT-MSCs Betamethasone 200 AT-MSCs

Use of MSCs with
reconstructive surgery in

patient with complete
supraspinatus tendon tears

NCT01687777 Hospital San Carlos, Spain MSCs included within
collagen type 1 membrane

Surgical repair with
collagen type 1

membrane
10 Not specified

Use of MFAT in SCI patients
with diagnosed rotator cuff

disease
NCT03167138 Kessler Institute for

Rehabilitation, New Jersey

Single Injection of
micro-fragmented adipose

tissue
None 10 AT-MSCs
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4.2.3. Human Randomized Control Trials

Of the 18 studies, our review found that only 5 were randomized control trials. Two of
these RCTs examined BMAC, while the other three studies examined AT-MSCs/MFAT. One
of the most recently published trials was by Cole et al. (2023) in 2023, where they compared
arthroscopic rotator cuff repair alone versus repair augmented with concentrated bone
marrow aspirate in 91 patients [79]. They found that patient-reported pain and function
outcomes were not statistically different between groups. However, they noted significantly
lower retear rates (18% vs. 57%; p < 0.001) in the augmented repair group based on Sugaya
classification on one-year MRI scans. In contrast, Randelli et al. (2022) conducted a similar
trial but, this time, using adipose-derived MSCs in the form of microfragmented adipose
tissue to augment arthroscopic repair [92]. They followed patients for a total of 24 months
and found that at 6 months, the augmented repair group had statistically significant
improvements over the control group in patient-reported pain and function. Interestingly,
these differences were not seen at any other follow-up point. These studies suggest that
MSCs can certainly help augment the healing process when used in conjunction with
arthroscopic repair, but their clinical significance for patient-reported metrics needs to be
further investigated.

Mixed results were noted in studies that investigated non-surgical MSC injections as
well. Centeno et al. (2020) compared bone marrow concentrate plus PRP injection to exercise
therapy in partial-thickness supraspinatus tear and found significant improvements in
pain and function outcomes at 12 months [76]. Similarly, Hurd et al. (2020) compared
injections of adipose-derived MSCs versus steroids in partial-thickness rotator cuff tears
who had failed treatment with physical therapy [84]. They found statistically significant
improvements in pain and function outcomes at 12 months [84]. However, this was in
a small sample size of 16 patients, as their published results were pilot data, and the
study is still ongoing. On the other hand, Chun et al. (2022) compared injections with
adipose-derived MSC plus fibrin glue, fibrin glue only, and saline only for the treatment
of partial-thickness supraspinatus tears and found no significant differences in pain or
functional patient-reported outcomes [78].

While some studies [76,84,92] suggest there may be short-term clinical benefit for
patients, larger, more rigorous trials will be required to fully elucidate the extent of the
clinical benefit that can be expected from this orthobiologic treatment. For instance, future
studies can include comparisons between different formulations of MSCs (bone marrow
vs. adipose, etc.), a comparison of treatment efficacy in full-thickness vs. partial-thickness
tears, and long-term follow-ups.

5. Future Directions with MFAT

A major challenge in developing drug-modifying therapy is the necessity to modulate
several dysregulated pathways that impact pain, intra- and peri-tendinous inflamma-
tion, and structural tendon loss. One approach to achieve such disease modification is
through orthobiologic agents, such as MSCs, that are formulated with specific tendon
stem/progenitor cells that can potentially reduce tendon inflammation and pain, enhance
overall function, and repair tendon tear loss [93].

Overall, there are limited RCTs examining the effect of MSCs on rotator cuff tears. To
date, there is only one double-blinded randomized control trial that shows the beneficial
effects of MSCs at 6 months [80]; however, this is in conjunction with arthroscopic repair of
large rotator cuff tears compared to arthroscopic repair alone and does not include a non-
operative injection arm of MSCs alone. In addition, only a few unblinded prospective trials
evaluating MSC-based therapies for rotator cuff tears exist and demonstrate an excellent
safety profile; however, translating the results of these trials into clinical practice is challeng-
ing due to key limitations, including the following: (1) heterogeneity of MSC formulations,
(2) lack of standardization for dosing and/or administration frequency, (3) lack of trials
utilizing endpoints that assess disease-modifying properties [85–87]. Moreover, no trial
has comprehensively defined a formulation that is reproducible with specific biological
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properties in patients with partial-thickness rotator cuff tears. Given this, it is important
that future clinical trials focus on standardizing formulations and developing standardized
administration frequencies in order to properly assess the outcomes of MSCs when used
for rotator cuff tears.

6. Conclusions

Cell-based therapy has certainly been shown to be safe in human use when derived
from both bone marrow and adipose tissues. This review has clearly shown that a fair num-
ber of studies have been conducted to demonstrate safety; however, more well-designed
robust clinical trials need to be carried out to assess its efficacy in patient outcomes and
determine mechanistically if structural modification is a resulting long-term outcome.
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