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Abstract: Subclinical inflammation in protocol biopsies relates to tacrolimus exposure and human
leukocyte antigen (HLA) matching. We aimed to characterize transcripts associated with rejection
and tacrolimus exposure and the latter’s association with transplant outcomes. We tested whether
gene expression is associated with rejection using strictly normal protocol biopsies (n = 17) and
biopsies with T cell-mediated rejection (TCMR) or antibody-mediated rejection (ABMR) according
to Banff criteria (n = 12). Subsequently, we analyzed these transcripts in a set of 4-month protocol
biopsies (n = 137) to assess their association with donor and recipient characteristics, the intensity of
immunosuppression, and the graft outcome. Differential expression (false discovery rate (FDR) < 0.01,
fold (change (FC) > 3) between normal and rejection biopsies yielded a set of 111 genes. In the protocol
biopsy cohort (n = 137), 19 out of these 111 genes correlated with tacrolimus trough levels at the time
of biopsy (TAC-C0), and unsupervised analysis split this cohort into two clusters. The two clusters
differed in donor age and tacrolimus trough levels. Subclinical rejection, including borderline lesions,
tended to occur in the same cluster. Logistic regression analysis indicated that TAC-C0 at the time of
biopsy (OR: 0.83, 95%CI:0.72–0.06, p = 0.0117) was associated with cluster 2. In a follow-up averaging
70 ± 30 months, this patient group displayed a significant decline in renal function (p = 0.0135). The
expression of rejection-associated transcripts in early protocol biopsies is associated with tacrolimus
exposure and a faster decline in renal function.

Keywords: renal transplantation; biopsies; rejection; gene expression; tacrolimus

1. Introduction

Routine graft monitoring in renal transplantation relies on non-invasive biomarkers
such as serum creatinine, proteinuria, and HLA antibodies. More than 30 years ago, to
explore the feasibility of histological monitoring, some centers started programs of protocol
biopsies and observed that there were grafts with stable function depicting histological
changes of rejection, leading to the definition of subclinical rejection (SCR) [1–3]. During
the cyclosporine era, SCR was prevalent (>30%) and it was proven that its treatment
better preserves renal function [2,4]. However, a clinical trial addressing SCR treatment in
patients on modern immunosuppression with tacrolimus/MMF yielded limited clinical
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benefit due to the low rate of SCR [5]. For this reason, it has also been explored whether
minor histological changes are associated with graft outcome. In a study including a large
set of 6-month protocol biopsies (n = 957), it was shown that interstitial inflammation
(i-score > 0) in otherwise normal protocol biopsies is associated with a significantly lower
15 y graft survival, comparable to SCR or interstitial fibrosis/tubular atrophy (IF/TA) with
inflammation [6].

Although the evaluation of renal biopsies based on the Banff classification for renal
transplant pathology has been refined since 1991 [7], some uncertainties persist, notably
concerning the presence of borderline changes suspicious for T cell-mediated rejection
(TCMR) and the incomplete phenotypes of antibody-mediated rejection (ABMR). To further
characterize underlying mechanisms leading to different histological phenotypes, an analy-
sis of the transcriptome has been incorporated [8–11]. It has been shown that molecular
diagnostics allow the detection of transcript sets strongly associated with TCMR and have
proven useful in differentiating borderline infiltrates likely to lead to the development of
overt TCMR and/or graft fibrosis [12]. Recently, we have shown that a rejection-associated
gene expression score is present in 83% of protocol biopsies with SCR but only in 17% of
protocol biopsies with borderline changes [13]. Importantly, to distill information from
RNA microarrays that evaluate thousands of genes, the Banff group has delineated gene
sets related to TCMR, ABMR, tissue-repair injury, and other pathways implicated in graft
dysfunction [9–14].

In studies of serial protocol biopsies performed in renal transplants, the prevalence
of SCR is maximal during the initial three months, progressively decreases until the first
year, and persists in a small number of patients after the first year. Risk factors associated
with SCR are the number of human leukocyte antigen mismatches, the degree of sensitiza-
tion, retransplantation, the presence of previous clinical acute rejection episodes, and the
immunosuppressive regimen being lower in patients treated with tacrolimus and MMF [3].
Our group and others have shown that reduced exposure to tacrolimus and/or MMF is as-
sociated with a higher incidence of subclinical inflammation in protocol biopsies performed
during the first year [15,16]. Furthermore, while certain studies have linked SCR to HLA
ABDR allelic mismatch [17], disparities at the molecular level might offer more informative
insights [18]. Notably, in liver transplant recipients, reduced immunosuppression exposure
and an increased number of HLA epitope mismatches between donor and recipient have
been implicated in the molecular pathogenesis of subclinical liver allograft damage driven
by an interferon gamma-orchestrated cellular immune response [19].

In this current study, we employ microfluidic cards to scrutinize the transcriptome
of a predefined set of genes related to different histological diagnoses (mainly TCMR and
ABMR) previously described by the Banff group [14]. We aim to determine whether tran-
scripts increase or decrease in biopsies with rejection, reflecting changes in resident and/or
infiltrating cells. To achieve this, we compare gene expression normal-protocol biopsies
and for-cause biopsies that meet the Banff criteria for TCMR or ABMR. Subsequently, we
quest these transcripts in a large set of early protocol biopsies to evaluate whether gene
expression is associated with donor and recipient characteristics, including the intensity of
immunosuppression and donor–recipient HLA mismatch at the allelic or molecular level.

2. Results
2.1. Patients and Biopsies

In the present study, we have included three groups of patients: patients with a strictly
normal early protocol biopsy (group I, n = 17); patients with a biopsy for cause displaying
rejection, either TCMR or ABMR, (group II, n = 12); and a large cohort of patients with a
protocol biopsy displaying different histological phenotypes (group III, n = 137). Donor
and recipient characteristics as well as transplant-related variables from the three studied
groups are shown in Table 1. Biopsies were evaluated according to the 2019 Banff criteria [9].
The timing of the biopsy and laboratory data at the time of the biopsy are detailed in Table 2.
In the rejection group II (n = 12), there was a mix of cases with TCMR (n = 5), active ABMR
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(n = 5), and mixed rejection (n = 2). In group III, which contained only protocol biopsies
(n = 137), the histological Banff categories were as follows: non-specific changes (n = 40),
subclinical TCMR (n = 5), subclinical ABMR (n = 3), borderline changes (n = 16), interstitial
fibrosis and tubular atrophy (IF/TA) without interstitial inflammation (n = 59) and IF/TA
with interstitial inflammation (IF/TA + i) (n = 14). These results agreed with the prevalence
of the different histological phenotypes in the cohort of early protocol biopsies (n = 397)
obtained at our center (40.1%, 3.1%, 2.7%, 11.5%, 34.3%, and 8.3%, respectively).

Table 1. Donor and recipient characteristics as well as transplant-related variables in the
3 study groups.

Variable Group I (n = 17) Group II (n = 12) Group III (n = 137)

Donor type (BDD/DCD/LD) 10/4/3 7/2/3 85/34/18

Donor age (years) 45 ± 18 59 ± 15 57 ± 14

Donor gender (m/f) 10/7 4/8 77/60

Recipient age (years) 46 ± 13 50 ± 16 55 ± 14

Recipient gender (m/f) 10/7 6/6 91/46

First transplant/retransplant 15/2 7/5 117/20

Primary renal disease
(GN/ADPKD/diabetes/others/unknown) 3/5/0/4/5 4/1/1/2/4 28/18/11/25/55

Class I HLA mismatch (A + B) 2.5 ± 0.9 2.1 ± 0.9 2.8 ± 1.0

Class II HLA mismatch (DR) 1.1 ± 0.5 1.3 ± 0.6 1.1 ± 0.6

Induction (basiliximab/thymoglobulin) 8/9 4/8 77/60

Cold ischemia time 14.3 ± 6.7 13.0 ± 7.0 13.4 ± 6.8

Delayed graft function (no/yes) 16/1 10/2 123/19

Previous episodes of rejection (no/yes) 17/0 9/3 134/7

DSA at the time of transplant (no/yes) 15/2 11/1 130/7

CMV infection (no/viremia/disease) 14/2/1 9/3/0 115/18/4

Group I—normal protocol biopsies; Group II—biopsies with rejection; group III—protocol biopsies with different
histological phenotypes BDD—brain death donor; DCD—donation after circulatory death; LD—living donor;
GN—glomerulonephritis; ADPKD—autosomal dominant polycystic kidney disease; DSA—HLA donor-specific
antibodies; CMV—cytomegalovirus. Mean ± SD or raw numbers are employed to describe variables.

Table 2. Data at the time of biopsy in the 3 study groups.

Variable Group I (n = 17) Group II (n = 12) Group III (n = 137)

Time of biopsy (months) 4.7 ± 1.7 43 ± 55 4.4 ± 1.4

Serum creatinine (mg/dL) 1.22 ± 0.31 2.72 ± 1.95 1.44 ± 0.32

eGFR (mL/min/1.73 sqm) 66.6 ± 23.0 35.1 ± 21.1 52.2 ± 14.6

Urine P/C ratio (mg/g) 260 ± 190 1890 ± 1340 265 ± 192

DSA at the time of biopsy (no/yes) 17/0 8/4 133/4

Tacrolimus dose (mg/day) 6.8 ± 4.2 7.6 ± 5.9 6.5 ± 4.2

TAC-C0 (ng/mL) 8.8 ± 2.0 7.9 ± 3.6 9.3 ± 2.7

MMF dose (g/day) 1.0 ± 0.2 0.9 ± 0.2 0.9 ± 0.2

Group I—normal protocol biopsies; Group II—biopsies with rejection; Group III—protocol biopsies with different
histological phenotypes; eGFR—estimated glomerular filtration rate according to the CKD-EPI formula; urine
P/C ratio; protein to creatinine ratio in a spot morning urine sample; DSA—HLA donor-specific antibodies;
TAC-C0—tacrolimus trough levels; MMF—mycophenolate mofetil. Mean ± SD or raw numbers are employed to
describe variables.
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To evaluate whether there was an association between subclinical inflammation and
donor/recipient characteristics, transplant-related variables, or immunosuppression, we
compare patients in whom the protocol biopsy showed interstitial inflammation (i > 0) and
patients in whom the protocol biopsy did not show interstitial infiltrates (i = 0). Among
the evaluated variables, subclinical inflammation was associated with prolonged cold
ischemia time (p = 0.040) and lower tacrolimus trough levels (TAC-C0) at the time of biopsy
(p = 0.002) (Tables 3 and 4).

Table 3. Donor/recipient characteristics and transplant-related variables according to interstitial
inflammation in the protocol biopsy.

Variable i-Score = 0 (n= 99) i-Score ≥1 (n = 38) p-Value

Donor type (BDD/DCD/LD) 58/27/14 27/7/4 0.490

Donor age (years) 57 ± 14 56 ± 15 0.837

Donor gender (m/f) 56/43 21/17 0.793

Recipient age (years) 55 ± 14 57 ± 14 0.453

Recipient gender (m/f) 65/34 26/12 0.759

First transplant/retransplant 85/14 32/6 0.807

Class I HLA mismatch (A + B) 2.8 ± 0.9 2.9 ± 1.0 0.521

Class II HLA mismatch (DR) 1.1 ± 0.6 1.2 ± 0.6 0.233

Class I Eplet mismatch 14 ± 6 14 ± 8 0.845

Class II Eplet mismatch 15 ± 10 17 ± 15 0.305

PIRCHE-II class I 49 ± 27 49 ± 29 0.914

PIRCHE-II class II 34 ± 25 34 ± 22 0.996

DSA at the time of transplant (no/yes) 96/3 34/4 0.074

Induction (Basiliximab/ATG) 53/46 24/14 0.367

Cold ischemia time 12.6 ± 6.9 15.3 ± 6.2 0.040

DGF (no/yes) 87/12 31/7 0.339

TCMR before protocol biopsy (no/yes) 94/5 36/2 0.960

BDD—brain death donor; DCD—donation after circulatory death; LD—living donor; DGF—delayed graft
function; DSA—donor-specific antibodies. Mean ± SD or raw numbers are employed to describe variables.

Table 4. Data at the time of biopsy according to interstitial inflammation in the protocol biopsy.

Variable i-Score = 0 (n= 99) i-Score ≥1 (n = 38) p-Value

Time of biopsy (months) 4.3 ± 1.4 4.6 ± 1.7 0.169

Serum creatinine (mg/dL) 1.5 ± 0.3 1.4 ± 0.3 0.747

eGFR (mL/min/1.73 m2) 52 ± 14 53 ± 16 0.790

Urine P/C ratio (mg/g) 275 ± 206 239 ± 148 0.331

DSA at the time of biopsy (no/yes) 96/3 37/1 0.901

Tacrolimus dose (mg/day) 6.7 ± 4.5 6.0 ± 3.3 0.425

TAC-C0 (ng/mL) 9.7 ± 2.7 8.2 ± 2.2 0.002

C/D tacrolimus (ng/mL/mg) 1.72 (1.06–2.80) 1.54 (1.05–1.98) 0.220

CV TAC- C0 from day 7 to biopsy (%) 36.5 ± 23.3 36.6 ± 14.3 0.990

Time in TR (%) 67 ± 31 69 ± 33 0.738

Time above TR (%) 24 ± 28 17± 26 0.184

Time below TR (%) 7 ± 14 10 ± 18 0.303

MMF dose (g/day) 0.9 ± 0.2 0.9 ± 0.2 0.735

eGFR decline (mL/min/1.73 m2/year) −0.8 ± 4.3 −1.1 ± 2.9 0.163

eGFR—estimated glomerular filtration rate by MDRD-4 formula; urine P/C ratio—urine protein creatinine ratio;
TAC-C0—tacrolimus trough levels at the time of biopsy; CV of TAC-C0—coefficient of variability of tacrolimus;
C/D—concentration dose ratio of tacrolimus. Mean ± SD or raw numbers are employed to describe variables.
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Donor and recipient demographics, HLA mismatches at the allelic or molecular level,
the presence of delayed graft function, the timing of the biopsy, and renal function did
not differ between groups (Table 3). At the time of biopsy, three out of four patients with
DSA displayed subclinical ABMR. Multivariate logistic regression analysis showed that
TAC-C0 (odds ratio [OR]: 0.76; 95% confidence interval [CI]: 0.63–0.92; p-value = 0.004)
was associated with i-score > 0 while cold ischemia time was on the verge of significance
(OR: 1.06; 95% CI:.0.99–1.13; p-value = 0.077).

2.2. Transcriptome Analysis by Microfluidics

The gene expression in the three groups of biopsies was firstly analyzed by principal
component analysis (PCA), and it can be observed that biopsies from group I (normal) and
biopsies from group II (TCMR/ABMR) cluster in different areas of the plot while the largest
sample of protocol biopsies (group III) clusters in between (Figure 1). The most relevant
genes in PCA were ADAMDEC1, CCL5, CLEC4C, CXCL13, and CXCL9 for component 1;
and COL1A1, NPHS1, NPHS2, SLC22A2, and SLC4A1 for component 2. As expected, the
gene expression comparison between group I and group II (adjusted p-value < 0.01 and
fold change > 3) yielded as many as 111 differentially expressed genes (Supplementary
Table S1). These 111 genes extracted from the list provided by the Banff group [14] were
mainly related to TCMR (72 genes), ABMR (16 genes), and tissue damage (8 genes).
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2.3. Transcriptome Analysis and Clinical Variables

We evaluated whether there was an association between TAC-C0 at the time of biopsy
and the 111 genes associated with rejection (Supplementary Table S2). In group I (strictly
normal protocol biopsies) there was a close correlation between TAC-C0 at the time of
biopsy and expression of IKZF3 and CD2 genes (Figure 2). Conversely, in group II (biopsies
for cause with TCMR/ABMR) there was no correlation between TAC-C0 at the time of
biopsy and the expression of any gene. Finally, 19 genes mainly related to TCMR (12 out of
19) correlated with TAC-C0 in group III.
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Unsupervised cluster analysis allowed two clusters of biopsies to be defined, one
containing all normal protocol biopsies (with one exception) and the other containing all
biopsies with rejection (Figure 3).
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Protocol biopsies from Group III were distributed in a similar proportion in both
clusters (77 in Cluster 1 and 60 in Cluster 2). We compared both clusters of biopsies from
group III and observed that older donors and lower tacrolimus trough levels at the time of
biopsy were grouped in cluster 2 (Table 5).

Table 5. Donor/recipient characteristics, transplant-related variables, and data at the time of biopsy
in patients from both clusters according to gene expression.

Variable Cluster 1 (n = 77) Cluster 2 (n = 60) p-Value

Donor type (BDD/DACD/LD) 47/17/13 38/17/5 ns

Donor age (y) 54 ± 13 60 ± 15 0.0316

Patient age (y) 54 ± 13 57 ± 15 ns

Patient sex (m/f) 53/24 38/22 ns

First transplant/retransplant 68/9 49/11 ns

Class I HLA mismatch (A + B) 2.7 ± 1.0 3.0 ± 1.0 0.039

Class II HLA mismatch (DR) 1.1 ± 0.7 1.2 ± 0.6 0.571

HLA eplet class I mismatch 13 ± 6 15 ± 7 0.061

HLA eplet class II mismatch 14 ± 11 16 ± 9 0.335

HLA AbV eplet DRB mismatch 2.8 ± 2.4 3.6 ±2.4 0.059

HLA AbV eplet DQB mismatch 2.6 ± 2.6 2.5 ± 2.3 0.757

PIRCHE-II class I 48 ± 28 52 ± 28 0.446

PIRCHE-II class II 34 ±28 34 ± 19 0.999

Induction (basiliximab/thymoglobulin) 44/33 33/27 ns

DGF (n/y) 67/10 51/9 ns

TCMR before protocol biopsy (n/y) 72/5 68/2 ns

eGFR (mL/min/1.73 sqm) biopsy 53 ± 13 51 ± 16 ns

Urinary protein/creatinine (g/g) biopsy 0.24 ± 0.17 0.30 ± 0.24 ns

TAC-C0 (ng/mL) biopsy 9.8 ± 2.6 8.6 ± 2.6 0.0133

CV of TAC-C0 from day 7 to biopsy (%) 34.9 ± 22.4 39.2 ± 20.5 0.2483

Time in TR (%) 68 ± 32 50 ± 30 0.430

Time above TR (%) 25 ± 30 15 ± 25 0.304

Time below TR (%) 5 ± 15 12 ± 18 0.070

MMF dose (g/day) 0.9 ± 0.2 0.9 ± 0.2 ns

eGFR decline (mL/min/1.72 m2/year) −0.2 ± 3.7 −1.9 ± 4.1 0.0145

BDD—brain death donor; DCD—donation after circulatory death; LD—living donor; DGF—delayed graft
function; TCMR. T cell-mediated rejection; N—normal; BL—borderline lesions; SCR—subclinical rejection;
IFTA—interstitial fibrosis—and tubular atrophy; eGFR—estimated glomerular filtration rate; TAC-C0—tacrolimus
trough levels at the time of biopsy. Mean ± SD or raw numbers are employed to describe variables.

Noticeably, subclinical rejection including borderline lesions (19 out of 24 cases) and
biopsies with IF/TA + i (8 out of 14 cases) also tended to be grouped in cluster 2 (Figure 4).
Logistic regression analysis showed that only TAC-C0 at the time of biopsy (OR: 0.83, 95%
CI: 0.72–0.96, p-value = 0.0117) was associated with cluster 2.
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2.4. Renal Outcome and Protocol Biopsies

At a mean follow-up of 70 ± 30 months, the mean decline in renal function was
−0.9 ± 3.9 mL/min/1.73 m2/year in the group of patients with a protocol biopsy (group III).
While the mean annual decline in renal function did not differ significantly between patients
with (i > 0) or without inflammation (−1.1 ± 2.9 vs. −0.8 ± 4.3 mL/min/1.73 m2/year,
Table 4), it was significantly higher in patients from cluster 2 than in patients from cluster 1
(−1.9 ± 4.1 vs. −0.2 ± 3.7 mL/min/1.73 m2/year; p = 0.0135; Table 5). Moreover, this
difference was independent of the presence of inflammation in the protocol biopsy (cluster 1
with i = 0 (n = 66) −0.20 ± 3.9; cluster 1 with i > 0 (n = 11) +0.19 ± 1.99; p = 0.691; and
cluster 2 with i = 0 (n = 33) −2.03 ± 4.8; cluster 2 with i > 0 (n = 27) −1.71 ± 3.23; p = 0.763).

The total number of patients developing de novo DSA during follow-up in our cohort
was low (n = 4; 2.9%). Kaplan–Meier analysis showed that patients with and without
inflammation have a non-different rate of development of de novo DSA (p = 0.876), while
this rate tended to be higher in patients from cluster 2 (p = 0.073).

3. Discussion

We conducted a prospective study on a set of 4-month protocol biopsies to evaluate
whether validated rejection-associated transcripts are associated with tacrolimus exposure
at the time of biopsy. The main findings of our study are that we confirm the discrimination
capacity between normal and rejection biopsies of a large set of these genes and that the
expression of 19 rejection-associated transcripts in early protocol biopsies is associated with
tacrolimus exposure at the time of biopsy. Cluster analysis using this set of 19 genes identi-
fied a pool of patients with a higher proportion of inflammatory phenotypes, including
TCMR, borderline lesions, and IFTA with inflammation. Interestingly, patients from this
cluster had less exposure to tacrolimus and displayed a faster decline in renal function
during follow-up. The low rate of de novo DSA development in our cohort (2.9%) limits
further analysis of its association with subclinical inflammation. Thus, our results suggest
that adjusted immunosuppression during the early months after transplantation favors a
better control of the inflammatory response without deleterious effects on renal function in
the mid-term.

Tacrolimus is the mainstay of immunosuppressive regimens for kidney transplantation
since it prevents T cell activation and proliferation. Although tacrolimus reduces the acute
rejection rate and improves short-term outcomes after kidney transplantation, it is associ-
ated with both acute and chronic nephrotoxicity and triggers serious side effects. Although
monitoring of tacrolimus exposure relies on clinical practice for determining trough levels,
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there is no agreement on the target levels during the first year in renal transplant recipients.
While the largest clinical trial supported the minimization of tacrolimus exposure [20],
one randomized clinical trial has shown that in case of steroid discontinuation and MMF
reduction, maintaining TAC-C0 > 7 ng/mL after the fourth month reduces the risk of acute
rejection and appearance of de novo DSAs without increasing renal toxicity [15]. Similarly,
in low-immunological-risk renal transplants treated with TAC, reduced MMF, and low-dose
steroids, TAC-C0 levels are associated with subclinical inflammation in patients monitored
by protocol biopsies [16]. Additionally, it has been described that the effect of tacrolimus
trough levels was modulated by the recipient’s baseline alloimmune risk, as defined by
their class II HLA donor–recipient eplet mismatch [18].

In the present study, we analyzed whether interstitial inflammation is associated with
clinical characteristics of donors and recipients as well as with transplant-related variables.
In our cohort, the presence of interstitial inflammation was associated with lower TAC-C0
at the time of biopsy and with longer cold ischemia time, but it was not associated with
mid-term renal function deterioration or the development of de novo DSA. Importantly, in
our cohort, as in several others [6,16], few cases met the criteria for subclinical borderline
rejection (11.7%) or TCMR/ABMR (5.8%). Since the presence of interstitial inflammation
(i > 0) in otherwise normal biopsies has been associated with 15-year death-censored graft
survival [6] in a similar way to SCR, we chose this threshold for our analysis. Notably,
in other studies including patients treated with a steroid-free regimen, the incidences of
borderline rejection and TCMR were significantly more frequent (31% and 20.8%) [21]. In
this study, the authors did not find associations between TAC-C0 and subclinical inflamma-
tion, but it should be noted that at the time of the 3-month protocol biopsy, the TAC-C0
average was close to 10 ng/mL [22]. In this study, SCR within the first post-transplant
year is associated with a significantly greater hazard of subsequent clinical rejection and
death-censored graft loss. On the contrary, other studies have shown that T cell-mediated
inflammation detected in protocol biopsies mostly reflects the injury–repair response to
implantation stresses and has little relationship with future events and outcomes [23].
Acute kidney injury (AKI) after renal transplantation can also induce interstitial infiltration
and tubulitis [24] leading to a histological picture indistinguishable from that of TCMR.
In this sense, in our cohort of protocol biopsies, we observed an association between in-
terstitial inflammation and longer cold ischemia time. Thus, the presence of interstitial
inflammation is uncommon in our cohort of low-immunological-risk kidney transplants
maintaining steroids (27.7%) and it is associated with tacrolimus exposure and cold is-
chemia time, suggesting that both immune and non-immune factors may contribute to
subclinical inflammation in well-functioning grafts.

The disagreement between different studies on the prevalence of subclinical inflamma-
tion and its association with later clinical outcomes is partly explained by the inclusion of
different populations and different maintenance immunosuppression regimens. However,
there is general agreement that conventional biopsy assessment is limited due to poor
interobserver reproducibility of individual lesions [11,25]. To overcome these limitations,
it has been proposed that molecular phenotyping be incorporated. The application of
microarrays to transplant biopsies has been an ongoing effort by many groups and the inter-
pretation of molecular changes aided by the understanding of their biological mechanisms
led to the grouping of different transcripts [10,14,26,27]. To summarize information derived
from RNA microarrays, which evaluate thousands of genes, in the last reports of the Banff
meetings gene sets containing a few hundred genes related to TCMR, ABMR, tissue-repair
injury and other pathways leading to graft dysfunction were described [6,26,28,29]. In
the present study, we evaluated the panel of genes described in the Banff meeting in 2017
via RT-PCR [14]. As expected, we confirm the discrimination capacity of a high number
of these genes (111 out of 308 evaluated genes) to differentiate normal protocol biopsies
from biopsies for cause with rejection. In the principal component analysis, we observed
that TCMR-selective genes expressed in activated effector T cells (ADAMDEC1) and genes
encoding different cytokines and their receptors mainly related to TCMR (CCL5, CXCL13
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and CXLC9) were the most relevant in component 1, while genes encoding matrix pro-
teins and solute transporters (COL1A1, SCL22A2 and SCL4A1) were the most relevant in
component 2.

Regarding the derived gene set, we were interested in evaluating its relationship with
tacrolimus exposure at the time of biopsy. We found that 19 of these 111 genes, mainly
related to TCMR, were mildly correlated with TAC-C0, suggesting that a higher tacrolimus
exposure contributes to a better control of subclinical inflammation. Interestingly, in the
small set of normal protocol biopsies, we observed a close correlation between TAC-C0
and the expression of 2 out of these 19 genes (IKZF3 and CD2, Figure 4) IKZF3, expressed
mostly in the lymph and spleen, is found in several immune cell types, including B cells,
NK cells, CD4+, and CD8+ T cells. It is expressed most strongly in B cells and studies of
IKZF3 knockout mice indicate a critical role for IKZF3 in B-cell differentiation, maturation,
proliferation, and T cell-dependent B-cell responses. IKZF3 is upregulated in pre-B cells,
and it has been found to play a role in executing the transition from large pre-B cells
to small pre-B cells during normal B-cell development. IKZF3 has also been found to
play an important role in T cell regulation. It is expressed in interleukin-17-producing
helper T cells and promotes differentiation through silencing of interleukin 2 production.
Recently, it has been shown that IKZF3 is upregulated not only in ABMR but also in TCMR
urinary cell specimens suggesting that B cells may play a more active role in TCMR than
previously recognized, perhaps functioning as classical antigen-presenting cells [30–32].
The CD2 family of costimulatory and adhesion molecules has also been shown to play
a significant role in the execution of an alloimmune response since it is constitutively
expressed by all T cells and upregulated upon antigen recognition. Importantly, CD2 is
more highly expressed on effector memory T cells relative to central memory T cells and
therefore more effectively targets those cells that are poised to rapidly exert effector function
upon encounter with cognate antigen. In addition to its role in facilitating the adhesion
of T cells to antigen-presenting cells during the immunological synapse, CD2 ligation
results in the direct transmission of co-stimulatory signals to promote T cell activation and
differentiation [33,34]. Importantly, in the evaluated set of biopsies, the expression of these
19 genes associated with TAC-C0 and split our protocol biopsy group into two clusters
one containing all but one normal protocol biopsies and the other containing all rejection
biopsies. The large set of protocol biopsies was distributed in a similar proportion in both
clusters. Patients with protocol biopsies grouped in cluster 2 received a lower exposure to
tacrolimus, showed more frequently an inflammatory phenotype, and displayed a faster
decline of renal function in the mid-term. Thus, our results suggest that more adjusted
immunosuppression during the early months after transplantation favors a better control
of the inflammatory response and better preserving renal function in the mid-term.

Our effort to detect associations between gene expression, tacrolimus exposure, and
HLA compatibility at the allelic or molecular level did not show significant associations
in the multivariate analysis. It should be remarked that HLA typing in this cohort was
performed according to clinical practice and thus, high-resolution HLA typing was not
performed and the availability of HLA typing for all loci (especially DQ) was limited.
However, in this cohort of successfully immunosuppressed renal transplant recipients, the
number of patients developing de novo DSA was very low (2.9%) and although patients
from cluster 2 tended to develop de novo DSA more frequently, this association did not
reach statistical significance. Additionally, the present study has other important limitations,
since associations between tacrolimus exposure and histological findings or gene transcripts
were based on a single determination of TAC-C0 on the day of biopsy and a more refined
evaluation of tacrolimus pharmacokinetics (e.g., area under the time–concentration curve)
or pharmacodynamics (e.g., calcineurin activity) was not done. Finally, patients in group
II (acute rejection) underwent biopsies later in comparison to patients in the other groups
(protocol biopsies), and the impact of biopsy timing on gene expression has been widely
acknowledged [11,35,36].
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4. Materials and Methods
4.1. Patients

We considered renal transplants included in a prospective, observational study with
an early (at 3–5 months) protocol biopsy performed between 2012 and 2019 as previously
described [16]. Surveillance biopsies were performed in patients fulfilling the following
criteria: (a) serum creatinine lower than 2 mg/dL; (b) stable renal function defined as
a variability of serum creatinine lower than 15% between the determination at the time
of biopsy and the previous one; (c) urinary protein creatinine ratio lower than 1 g/g;
(d) non-use of oral anticoagulants; (e) non-technical difficulties to perform a renal biopsy
(e.g., patients with large abdominal obesity, patients with large perirenal hematomas or
patients with an idiomatic barrier were not considered) and (f) written informed consent.
Two control groups of biopsies were selected from our biobank: strictly normal protocol
biopsies (group I, n = 17) and biopsies for cause with either TCMR or ABMR (group II,
n = 12) to generate a set of genes associated with rejection. Later, we selected a large
sample of protocol biopsies (group III, n = 142) to evaluate whether gene expression was
associated with donor and recipient characteristics or the intensity of immunosuppression.
The flowchart of the study is shown in Figure 5.
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Figure 5. Flow chart of the patients and biopsies included in the study. PB—protocol biopsies.

Demographic characteristics of donors and recipients as well as transplant-related
variables were recorded. Patients were followed in the outpatient area and the decline in
renal function was estimated from the linear regression of all available measurements and
expressed as mL/min/1.73 m2/year to adjust for the different timings of follow-up.

The present study has been approved by our Ethics Committee (Comité Etico de
Investigación Clínica del Hospital Universitari Vall d’Hebron PR(AG)369/2014, approval
date 1 December 2014) and all participants signed written informed consent. The study was
conducted by the Declaration of Helsinki and adhered to the Principles of the Declaration
of Istanbul on Organ Trafficking and Transplant Tourism.
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4.2. HLA Typing and HLA Antibodies

The recipients’ and donors’ HLA typing was performed by DNA-based low-resolution
typing with sequence-specific primers (SSP). For class I (A and B loci) and for class II (DR
loci), results were available for all donor/recipient pairs. HLA C typing was available in
116 cases from donors and 47 cases for recipients. HLA DQ loci typing was available for
40 donors and 26 recipients.

The HLA Matchmaker program (Rene Duquesnoy, 2016, University of Pittsburgh
Medical Center, Pittsburgh, PA HLA-ABC Eplet Matching Version 3.1 and DRDQDP Eplet
Matching Program V3.1 from http://www.epitopes.net/downloads.html, (accessed on
17 November 2022) was used to calculate eplet scores. Donor and recipient typing was
converted to high resolution using a local frequency table typed by sequence-based typing.
Total numbers of incompatible eplets and antibody-verified eplets were calculated.

PIRCHE-II scores were calculated using version 3.3 from https://www.pirche.org
(accessed on 22 May 2023). The NetMHCIIpan 3.0 algorithm predicted nonameric-binding
cores of donor mismatched HLA-derived peptides that could bind to recipient HLA-DRB1.
For cases with only low-resolution HLA typing, PIRCHE-II generates a potential high-
resolution HLA typing and PIRCHE-II was calculated for each potential typing for both
donors and recipients. These values were weighted by haplotype frequencies in the general
population as validated in a previous study [37].

Anti-HLA antibodies on the day of transplant, biopsy, and during follow-up were
determined using a single-antigen class-I and class-II flow beads-assay kit (LIFECODES,
division of Immucor, Stanford, CA, USA). Beads with a normalized MFI > 500 were
considered positive if (MFI/MFI lowest bead) > 5.

4.3. Immunosuppression

Induction and maintenance of immunosuppression with tacrolimus, MMF, and steroids
were performed as previously described [16]. Target TAC-C0 levels during the first 3 months
were 8–12 ng/mL and 6–10 ng/mL thereafter. Exposure to tacrolimus was evaluated us-
ing a concentration dose ratio (C/D), coefficient of variation of TAC-C0 until the day of
biopsy, and TAC-C0 at the time and time in/above/below therapeutic range of biopsy, as
previously described [38].

4.4. Biopsies

Ultrasound-guided renal biopsies were performed with a 16G automated needle,
and 3 cores of tissue were obtained: one was processed for optical microscopy; one was
embedded in OCT for immunofluorescence and the other one was stored in RNA later.
Histological lesions were evaluated according to the last Banff criteria [9] and the definition
of borderline changes were foci of tubulitis (t1–t3) with mild interstitial inflammation (i1) or
mild tubulitis (t1) with moderate–severe interstitial inflammation (i2–i3). C4d was stained
with indirect immunofluorescence with a monoclonal antibody (Quidel, San Diego, CA,
USA) and deposition in peritubular capillaries was graded according to the Banff criteria.
The third core was stored with Ambion® RNAlater® Tissue Collection at −80 ◦C (Applied
Biosystems, Austin, TX, USA).

4.5. Analysis Using Fluidigm Microfluidics Dynamic Arrays

Total RNA extraction, assessment of RNA quality, and cDNA synthesis were done as
previously described [13]. The aim of the study was the quantitative analysis of 318 genes
(308 target genes and 10 housekeeping genes: ECD, EIF1, FUBP3, GGNBP2, GNB1, RPN1,
RPN2, SERBP1, UBC, UBE2D3) in the biopsies. The 308 target genes were selected from
a list of identified, non-repeated prime gene lists reported in the Banff 2017 meeting [14].
For this purpose, we used the Biomark HD Nanofluidic Quantitative PCR (qPCR) system
(Fluidigm Corporation, San Francisco, CA, USA) combined with GE 96.96 Dynamic Arrays
IFCs. For sequence detection, predesigned Primetime qPCR primer assays or custom
primer assays were used for amplification and detection using the EvaGreen fluorochrome.

http://www.epitopes.net/downloads.html
https://www.pirche.org
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The assays have been divided into four IDT assay plates and all housekeeping genes have
been included in all plates. Samples were treated with Exonuclease I (Exo I) (Thermo
Scientific EN0582, Willmington, DE, USA) to remove unincorporated primers. QIAGEN®

Multiplex PCR Kit Cat N.206143 (Hilden, Germany) was used for the specific target am-
plification. According to the manufacturer’s instructions, 13 genes were eliminated due
to potential amplification of genomic DNA and 12 genes were also not considered due to
lack of expression in more than half of the samples. The analysis of the expression of the
cDNA was performed with Biomark HD Nanofluidic qPCR system (Fluidigm Corporation,
San Francisco, CA, USA) combined with 96.96 Dynamic Arrays IFCs by employing the
Master Mix Sso FastTM Eva Green® Supermix with Low ROX (Bio-Rad Laboratories, Her-
cules, CA, USA). The Ct (Cycle Threshold) data and the Quality Call of the amplification
curve were determined by the Fluidigm Real-Time PCR Analysis Software version 4.1.3.
Samples with a Ct value higher than 27 (n = 5) were eliminated since they are not reliable
according to Fluidigm, the owner of the technology (https://www.fluidigm.com, accessed
on 21 December 2020). All procedures were conducted as part of the genomics and pro-
teomics service of the Universidad del País Vasco Science Park (Centro de Biotecnología
María Goyri).

4.6. Statistics

Results are expressed as raw numbers for categorical variables, as the mean ± standard
deviation for continuous normally distributed variables and median (interquartile range)
for non-normally distributed variables. To compare unpaired data, Fisher’s exact test,
Mann–Whitney U test, Student’s t-test, Kruskal–Wallis, and analysis of variance were ap-
plied according to the distribution of variables. Logistic regression analysis was employed
for multivariate analysis. Kaplan–Meier analysis was employed for survival analysis
with a log-rank test for comparisons between groups. All p-values were two-tailed and a
p-value < 0.05 was considered significant.

4.7. Bioinformatic Analysis

Bioinformatic analysis was performed at the Statistics and Bioinformatics Unit (UEB) of
the Vall d’Hebron Institute of Research (VHIR, Barcelona, Spain). The analyses were carried
out with the statistical program “R” (R version 3.6.3 (), Copyright (C) 2021 The R Foundation
for Statistical Computing, https://www.R-project.org/, accessed on 29 February 2020). A
comprehensive quality control process was applied to assess the suitability of all samples
for inclusion in the study. The calculation of relative quantification (RQ = 2−∆∆Ct) was
performed according to Livak’s method [39]. A principal component analysis (PCA) was
performed to describe how the samples are grouped according to the Ct values obtained.
Because the variability between genes used as normalizers was low, all were used as
housekeeping genes. The geometric mean of the Ct values of the housekeeping genes
was obtained as described by Vandesompele et al. [40]. In the process of normalization,
the Ct values of each gene were subtracted from the geometric mean value of the two
housekeeping genes selected to obtain the ∆Ct values. Later, they were used to make
comparisons. Spearman’s correlation between the expression of each of the genes and
tacrolimus levels was performed to select significant genes following criteria of fold change
(FC) and statistical significance (FC > 3 and p-value < 0.01).

5. Conclusions

In summary, we evaluated a cohort of patients with an early protocol biopsy and
observed that lower tacrolimus through the level at the time of biopsy was associated
with interstitial inflammation and a higher expression of rejection-associated transcripts in
stable grafts. Cluster analysis allowed the detection of a group of patients who had lower
tacrolimus through levels at the time of biopsy, who showed an inflammatory phenotype
and displayed a faster decline in renal function in the mid-term. Thus, our results suggest
that adjusted immunosuppression during the early months after transplantation favors

https://www.fluidigm.com
https://www.R-project.org/
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better control of the inflammatory response without deleterious effects on renal function
in the mid-term. Furthermore, although transcriptomic analysis is not currently widely
available in most renal transplant units, its future integration into clinical practice could con-
tribute to improving the management of immunosuppression in renal transplant recipients.
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Abbreviations
ABMR Antibody-mediated rejection.
DSA Donor-specific HLA antibodies.
FC Fold change.
FDR False discovery rate.
eGFR Estimated glomerular filtration rate by CKD-EPI formula.
IF/TA Interstitial fibrosis and tubular atrophy.
IF/TA + i Interstitial fibrosis and tubular atrophy with interstitial infiltrates.
SCR Subclinical rejection.
TAC-C0 Tacrolimus trough levels.
TCMR T cell-mediated rejection.
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