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Abstract: Mitochondria are involved in multiple aspects of neurodevelopmental processes and play a
major role in the pathogenetic mechanisms leading to neuro-degenerative diseases. Fragile-X-related
disorders (FXDs) are genetic conditions that occur due to the dynamic expansion of CGG repeats
of the FMR1 gene encoding for the RNA-binding protein FMRP, particularly expressed in the brain.
This gene expansion can lead to premutation (PM, 56–200 CGGs), full mutation (FM, >200 CGGs),
or unmethylated FM (UFM), resulting in neurodegeneration, neurodevelopmental disorders, or no
apparent intellectual disability, respectively. To investigate the mitochondrial mechanisms that are
involved in the FXD patients, we analyzed mitochondrial morphology and bioenergetics in fibroblasts
derived from patients. Donut-shaped mitochondrial morphology and excessive synthesis of critical
mitochondrial proteins were detected in FM, PM, and UFM cells. Analysis of mitochondrial oxidative
phosphorylation in situ reveals lower respiration in PM fibroblasts. Importantly, mitochondrial
permeability transition-dependent apoptosis is sensitized to reactive oxygen species in FM, PM,
and UFM models. This study elucidated the mitochondrial mechanisms that are involved in the
FXD phenotypes, and indicated altered mitochondrial function and morphology. Importantly, a
sensitization to permeability transition and apoptosis was revealed in FXD cells. Overall, our data
suggest that mitochondria are novel drug targets to relieve the FXD symptoms.

Keywords: fragile-X-related disorders (FXDs); neurodegeneration; donut-shape mitochondria;
apoptosis; permeability transition pore; ATP synthase

1. Introduction

Fragile-X-related disorders (FXDs) are a group of genetic conditions associated with the
dynamic mutation of a trinucleotide CGG repeat in the 5′UTR of the FMR1 gene, encoding
the fragile X messenger ribonucleoprotein 1 (FMRP). Fragile X syndrome (FXS) is the most
common monogenic form of inherited intellectual disability and autism [1,2] and occurs
due to the presence of full mutation (FM, >200 CGGs) that becomes methylated, resulting
in the absence of FMRP [3]. A distinct condition is found in individuals with premutation
(PM, 56–200 CGGs) [4,5]. These individuals can develop fragile-X-associated tremor/ataxia
syndrome (FXTAS) [6,7]. At the molecular level, the PM condition is characterized by
decreased levels of the FMRP. Additionally, rare individuals with an apparently normal
phenotype are carriers of unmethylated FM alleles (UFM) that allow FMRP production,
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although these are subjected to neurodegeneration [8,9]. In individuals with FXDs, most
of the clinical and molecular phenotypes are linked to the absence or decreased amount
of FMRP. In the brain, this RNA-binding protein associates with mRNAs and regulates
multiple steps of their metabolism, mainly at the synapses [10]. FMRP functions as an
mRNA-binding translation suppressor, but recent findings have enormously expanded its
proposed roles to involvement in RNA-, channel-, and protein-binding leading to calcium
signaling, activity-dependent critical period development, and excitation–inhibition neural
circuitry balance [11–13].

In neurons, the energy metabolism is finely regulated, and dysfunctions of mitochon-
drial oxidative phosphorylation (OXPHOS) can result, on one hand, in reduced ATP levels
and, on the other, in increased reactive oxygen species (ROS) production, as superoxide
anion (O2

−•), hydrogen peroxide (H2O2), and hydroxyl radical (OH•), leading to oxidative
stress and Ca2+ deregulation. Derangements of Ca2+ and ROS homeostasis can induce
opening of the permeability transition (PT) pore (PTP), a channel located in the inner
mitochondrial membrane and dysregulated in several neurodegenerative diseases [14].
Binding to the ATP synthase of cyclophilin D (CyPD), the receptor for the PTP inhibitor
cyclosporine A (CsA), and favors the Ca2+-dependent PTP formation [14], further pro-
moted by thiol oxidation and membrane depolarization [15]. Pharmacological treatments
causing PTP desensitization or targeting the CyPD were shown to be effective against
neurodegeneration in autoimmune encephalomyelitis, superoxide dismutase 1-associated
or Alzheimer’s disease models [14,16] (Scheme 1).
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Proteomic data show dysregulations of mitochondrial proteins in fibroblasts from
UFM and PM carriers [17]. Specifically, the upregulation of the mitochondrial superoxide
dismutase isoform correlated with an increased number of morphological mitochondrial
abnormalities and depolarization of the mitochondrial inner membrane [17]. A decrease
in basal and ATP synthesis-coupled mitochondrial respiration was found in fibroblasts
derived from FXD patients [18–20], although this finding is controversial [21]. High levels
of precursor of the mitochondrial ATP synthase β subunit were detected in the cortex of
carries with FXTAS [18]. These findings are in line with the high level of the ATP synthase
β and c subunits revealed in brain mitochondria of a FXS mouse model Fmr1-ly [22]. In
Fmr1-ly mouse neurons, a mitochondrial membrane proton leak was shown to contribute to
a metabolic shift towards glycolysis [22]. Closure of the ATP synthase proton leak channel
by mild depletion of the c subunit or its pharmacological inhibition decreased lactate
production and normalized synaptic maturation [22].

Considering the limited and controversial studies present in the literature on cells
from PM individuals [23–25], it is of utmost importance to address the molecular mech-
anisms of mitochondrial dysfunction in cells derived from FXDs patients. This might
help in the future to define novel therapeutic strategies that might potentially improve
patient conditions.

2. Results
2.1. Mitochondria of FXD Patients Show Altered Morphology

FXD patient fibroblasts were analyzed to characterize their mitochondrial morphology
and clarify whether the number of cristae or other membrane alterations might be a
consequence of the mRNAs dysregulation. The occurrence of donut-shaped mitochondria
in FXS, PM, and UFM patient fibroblasts is the most relevant abnormality revealed by
transmission electron microscopy (TEM) analysis (Figure 1A–C), which is in line with
previous observations by fluorescent staining of the organelles [17]. Moreover, TEM analysis
shows that the number of mitochondria (Figure 1B) and the number of cristae or cristae
junctions (Figure 1A,D) are not significantly different in FXS, PM, and UFM fibroblasts
from that observed in controls. Nonyl acridine orange (NAO) fluorescent probe, which
measures the levels of cardiolipin, was used to quantify mitochondrial membranes. FXS
fibroblasts, but not PM and UFM patient cultures, show a higher level of NAO fluorescence
normalized per cells or per cristae junctions (Figure 1E,F), suggesting the presence of a
higher expansion of mitochondrial membranes than in controls.

2.2. Mitochondrial OXPHOS Complexes and Other Proteins Are Upregulated in FXDs

Mitochondrial structure and function are strictly connected. The mitochondrial OX-
PHOS complexes and function were investigated in cells showing mitochondrial morphol-
ogy alterations. Subunits participating in the assembly of the OXPHOS complexes were
detected by Western blotting (Figure 2A). FXD cell lysates show higher levels of protein
complexes than controls (Figure 2A), suggesting that the OXPHOS machinery might be
under the FMRP control in FXS, PM, and UFM cells. Higher levels of complex I, complex
II, complex IV, and ATP synthase were observed in FXS, PM, and UFM samples than
in controls (Figure 2(Aii)). In line with our findings, the accumulation of ATP synthase
subunits was previously observed in a FXS mouse model [22]. The increase in OXPHOS
subunits was matched by Western blotting analyses of cell lysates from a different cohort
of patients carrying methylated FM, PM, or UFM alleles compared with a different healthy
donor (Figure S1). However, the high amount of the OXPHOS subunits in FXS and UFM
cells does not affect the mitochondrial respiration as shown by in situ measurements of
the oxygen consumption rate (Figure 2B). The ATP synthesis-coupled respiration (basal)
and rotenone-sensitive respiration of PM fibroblasts were significantly lower than the ones
measured in control cells (Figure 2(Bii)). The lowest basal respiration in PM fibroblasts
inversely correlates with the highest level of the subunits detected for complex I, II, and
IV, and that of ATP synthase (Figure 2(Aii)) in the FXD genotypes, suggesting that the
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supernumerary complexes are not properly assembled and functional. Moreover, the mea-
surements by TMRM fluorescence do not show significant differences in the mitochondrial
membrane potential of the different cell types (Figure 2C).
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Figure 1. Characterization of mitochondrial morphology in FXD patient fibroblasts. In (A), represen-
tative transmission electron microscopy images of CTR1, FXS1, PM1, and UFM1 patient fibroblasts.
Mitochondrial morphology is shown. Scale bar, 0.5–2 µm. In (B), histogram represents the total
number of mitochondria as % of control (CTR) and their donut-shaped sub-population of mitochon-
dria is shown as % of total mitochondria (C); in (D), the mean number of cristae junctions (CJs)
per mitochondrion ± SEM (three independent experiments, at least 16 images are analyzed each
genotype). In (E), the nonyl acridine orange (NAO; 200 mM) fluorescence (a.u.) normalized to total
events; in (F), the NAO positive cells normalized on CJs as % of control (mean ± SEM at least three
independent experiments) are shown. Student’s t test, * p ≤ 0.05, ** p = 0.009.
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oxy) phenylhydrazone (FCCP), rotenone (ROT), and antimycin A (AA). Representative OCR meas-
urement (i) is shown of adherent patient cells in situ. Quantification (ii) of mean OCR ± SEM is from 
four independent experiments. In (C), histogram shows TMRM fluorescence monitoring the mito-
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To investigate specific mitochondrial proteins that might be involved in mitochon-
drial dysfunction in patients’ fibroblasts, the ATP synthase β, b, OSCP, and c subunits 
were independently analyzed (Figures 3A and S2A). Interestingly, the ATP synthase sub-
unit c was found upregulated in FXS, PM, and UFM patients, as previously described in 
a FXS mouse model [22] and in line with the described proton leak in PM fibroblasts 
[18,19]. The ATP synthase OSCP subunit, which is the binding site for CyPD [26,27] and 
might be involved in the PTP modulation [28,29], is also overexpressed in FXD patient 

Figure 2. Mitochondrial oxidative phosphorylation and glycolysis in FXD patient fibroblasts. In (A),
Western blotting is shown (i) of the indicated OXPHOS complex subunits and glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) in CTR1, FXS1, PM1, and UFM1 fibroblast lysates. The molecular
markers are indicated on the left. Quantification (ii) is shown of band pixels, and each complex
subunit is normalized on GAPDH (mean ± SEM of four independent experiments). In (B), oxygen
consumption rate (OCR) is shown of CTR1, FXS1, PM1, and UFM1 fibroblasts. OCR is measured
before (BASAL) and after treatment with oligomycin (OLIGO), carbonyl cyanide p-(trifluoromethoxy)
phenylhydrazone (FCCP), rotenone (ROT), and antimycin A (AA). Representative OCR measurement
(i) is shown of adherent patient cells in situ. Quantification (ii) of mean OCR ± SEM is from four
independent experiments. In (C), histogram shows TMRM fluorescence monitoring the mitochondrial
membrane potential in CTR1, FXS1, PM1, and UFM1 fibroblasts. Data are expressed in arbitrary
units (a.u.) and are mean ± SEM of at least three independent experiments. In (D), histogram shows
extracellular acidification rate (ECAR) of CTR1, FXS1, PM1, and UFM1 adherent fibroblasts. Data are
mean ± SEM of three independent experiments. Student’s t test, * p ≤ 0.05, ** p ≤ 0.01 on the control.
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Measurements of the pH acidification rate of the extracellular compartment in situ,
representing the rate of glycolysis, correlated with the oxygen consumption rate in the
different cell models. This suggests that the glycolytic pathway is not increased in any of
the patient fibroblasts to compensate for a limitation in the mitochondrial ATP synthesis
(Figure 2D).

To investigate specific mitochondrial proteins that might be involved in mitochondrial
dysfunction in patients’ fibroblasts, the ATP synthase β, b, OSCP, and c subunits were
independently analyzed (Figures 3A and S2A). Interestingly, the ATP synthase subunit c
was found upregulated in FXS, PM, and UFM patients, as previously described in a FXS
mouse model [22] and in line with the described proton leak in PM fibroblasts [18,19].
The ATP synthase OSCP subunit, which is the binding site for CyPD [26,27] and might
be involved in the PTP modulation [28,29], is also overexpressed in FXD patient cells
(Figures 3(Ai,Aii) and S2). Moreover, the mitochondrial ATPase inhibitor protein IF1, the
PTP modulators adenine nucleotide translocator (ANT) or CyPD, and citrate synthase were
assessed (Figures 3B and S2B). CyPD and IF1, which represent two modulators of both the
ATP synthase catalytic activity [26,30,31] and the PTP opening [26,32], are highly expressed
in FXS, PM, and UFM fibroblasts (Figure 3B).

2.3. Cells from FXD Patients Are Sensitized to Apoptotic Stimuli

Given the overexpression of both the c and OSCP subunits of ATP synthase together
with the upregulation of CyPD and the IF1 inhibitor in FXD models, the PTP opening
modulation was investigated. Fibroblasts were analyzed through the Ca2+ retention ca-
pacity assay, which reveals the mitochondrial Ca2+ threshold required for PTP opening
(Figure 4A). PM and UFM cells showed higher sensitivity to Ca2+, inducing PTP opening,
while FXS mitochondrial behavior was similar to that of controls (Figure 4A). The higher
Ca2+ threshold for PTP opening in the FXS cells, among the FXD phenotypes, correlates
with higher mitochondrial membrane content, as measured by NAO fluorescent staining
and normalized for cell number (Figure 1E). This might indicate a higher Ca2+-buffering
capacity of FXS mitochondria, which is due to a higher matrix volume or to expanded mito-
chondrial membranes. Therefore, the Ca2+ levels promoting PTP opening in FXS cells may
be in line with those required in PM and UFM patients if normalized to the mitochondrial
membrane content. We further tested the effect of arachidonic acid, which sensitizes cells
to PTP opening through channel activation by ROS and Ca2+ [33,34]. Apoptotic cell death
was analyzed through the annexin V staining in two different cohorts of cells derived from
patients and healthy donors (Figures 4B and S3). Arachidonic acid treatment stimulated
higher PTP-dependent apoptosis in FXS, PM, and UFM fibroblasts (Figures 4B and S3).
These findings indicate a higher sensitivity, upon Ca2+ and ROS stimuli, to PT of these
cells compared to controls. The effect of an alternative treatment with Bz 423 was studied.
This compound is a PTP-inducer, which was demonstrated to activate the channel by its
direct binding on the OSCP subunit of ATP synthase, and to displace both CyPD and IF1
from their binding sites [26,32]. In our results, Bz 423 treatment was not efficient to induce
apoptosis (Figures 4B and S3), probably due to the high levels of CyPD and IF1 masking its
binding site [32] in FXS, PM, and UFM fibroblasts.
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Figure 3. Quantification of mitochondrial proteins in FXD patient fibroblasts. In (A), Western
blotting (i) is shown of the ATP synthase β, b, OSCP, and c subunits in CTR1, FXS1, PM1, and
UFM1 cell lysates. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is detected as loading
control. Molecular markers are on the left. Mean ratio (ii) ±SEM is shown between each ATP
synthase subunit and GAPDH band pixels in CTR1, FXS1, PM1, and UFM1 fibroblast of at least
three independent experiments. In (B), Western blotting (i) is shown of citrate synthase (CS), adenine
nucleotide translocator isoform 3 (ANT), cyclophilin D (CyPD), IF1 (ATPase inhibitor) in CTR1, FXS1,
PM1, and UFM1 cell lysates. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is detected
as loading control. The molecular marker is indicated on the left. Mean ratio (ii) ±SEM is shown
between each protein and GAPDH band pixels in CTR1, FXS1, PM1, and UFM1 fibroblast of at least
three independent experiments. Student’s t test, * p ≤ 0.05, ** p ≤ 0.01 to the control.
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is shown in the left panel (i). Ca2+ Green-5N fluorescence baselines are graphically shifted upward 
to avoid trace overlap. Right panel (ii), the histogram represents nanomoles of Ca2+ per µg of protein 
retained by the cells under basal conditions. Data represent the mean ± SEM (at least three inde-
pendent experiments). In (B), histogram shows the mean quantification ± SEM of apoptotic annexin-
V-positive cells (expressed as %) derived from CTR1, FXS1, PM1, and UFM1 patients. Treatment 
conditions are: 200 µM arachidonic acid (ARA) for 2 or 3 h, 100 µM benzodiazepine 423 (Bz423) for 
8 h, or 2 µM staurosporine (STS) for 24 h. Data are from at least three independent experiments. 
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Figure 4. FXD patient fibroblasts are more sensitive to apoptosis than controls. In (A), Ca2+ retention
capacity (CRC) is assessed in permeabilized CTR1, FXS1, PM1, and UFM1 cells in KCl-based medium
containing respiratory substrates and the membrane-impermeable Ca2+ sensor Ca2+ Green-5N. Ca2+

Green-5N fluorescence was monitored following repeated addition of Ca2+ pulses. A return of Ca2+

Green-5N fluorescence to baseline reflects uptake of Ca2+ by mitochondria, whereas a sudden increase
in fluorescence is indicative of PTP opening. A representation of at least three experiments is shown
in the left panel (i). Ca2+ Green-5N fluorescence baselines are graphically shifted upward to avoid
trace overlap. Right panel (ii), the histogram represents nanomoles of Ca2+ per µg of protein retained
by the cells under basal conditions. Data represent the mean ± SEM (at least three independent
experiments). In (B), histogram shows the mean quantification ± SEM of apoptotic annexin-V-positive
cells (expressed as %) derived from CTR1, FXS1, PM1, and UFM1 patients. Treatment conditions
are: 200 µM arachidonic acid (ARA) for 2 or 3 h, 100 µM benzodiazepine 423 (Bz423) for 8 h, or
2 µM staurosporine (STS) for 24 h. Data are from at least three independent experiments. Two-way
ANOVA, * p < 0.05 to the control.

This set of experiments suggests that FXD fibroblasts are sensitized to apoptotic death
through mechanisms that involve PTP opening.

3. Discussion

This study shows that donut-shaped mitochondrial morphology and excessive syn-
thesis of critical mitochondrial proteins are associated with the dynamic expansion of CGG
repeats of the FMR1 gene encoding for the RNA-binding protein FMRP in fragile-X-related
disorders (FXDs). In FXD cells, the increased sensitivity of the permeability transition pore
opening to Ca2+ and ROS correlates with altered mitochondrial morphology and causes
higher apoptotic cell death than in healthy donors (Scheme 2).
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Scheme 2. Schematic representation of patho-physiological events occurring in fragile-X-related
disorders.

Early signs of neurodegeneration such as ubiquitin-positive inclusions were shown
in UFM [8,35], as well as PM carriers who developed FXTAS [36,37]. Many neurodegen-
erative diseases exhibit abnormal morphology and biochemical dysfunction of mitochon-
dria [38,39]. In FXTAS, evidence of mitochondrial dysfunctions was firstly detected in
fibroblasts and brain samples of PM carriers and when present, they predisposed individu-
als to FXTAS [20]. Other studies supported the role of mitochondrial dysfunction in the
pathogenesis of FXTAS, indicating lower mitochondrial membrane potential, and decreased
basal respiration and ATP synthesis or iron accumulation in PM patients [18,19,25,40,41].
Mitochondrial dysfunction was assessed in plasma of PM carriers, displaying Warburg-like
shift with increases in lactate levels and altered Krebs cycle intermediates, neurotransmit-
ters, markers of neurodegeneration, and increases in oxidative-stress-mediated damage [42].
On the contrary, lymphoblasts of PM carriers showed a significant increase in mitochondrial
respiratory activity without any sign of abnormal mitochondrial morphology [21].

In this study, donut-shaped mitochondria were confirmed and finely characterized
in FXD fibroblasts through TEM analysis. As previously observed [17], the total number
of mitochondria remains unmodified in all genotypes. This finding was matched by un-
altered cristae number. FXS fibroblasts showed abnormal mitochondria not seen before,
and expanded mitochondrial membranes. These abnormalities support a role of mitochon-
dria in neurodevelopmental disorders such as FXS [43], and suggest that compensatory
mechanisms like biogenesis might occur in this specific phenotype.

Morphological abnormalities correlated with protein dysregulation. FXD patient cells
exhibited higher levels of OXPHOS and other mitochondrial proteins compared to controls.
We hypothesize that protein accumulation depending on the alteration of a normal FMRP
function may lead to oxidative stress. Through a comparative proteomic analysis between
control, FXS, and UFM fibroblasts an upregulation of superoxide dismutase isoform 2 in
UFM cells emerged, also present in PM cells [17]. In UFM and PM cells, the high superoxide
dismutase isoform 2 levels correlated with morphological abnormalities (donut-shaped
mitochondria). These mitochondrial phenotypes reverted after knocking-down FMR1
transcript through siRNA, suggesting that in PM and UFM carriers, the dysregulation
of protein transcripts may lead to mitochondrial dysfunction. Similar conclusions came
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from the work of Hukema and co-workers [44], who showed in a Fmr1 transgenic mouse
model that expanded CGG RNA expression can cause mitochondrial dysfunction [44].
Recently, these data were further supported by the finding that FMRpolyG exerted a toxic
gain-of-function effect, altering mitochondrial function, bioenergetics, and initiating cell
death [45,46].

In our functional studies, oxygen consumption was normal except for the basal respi-
ration of PM fibroblasts, which was significantly lower than in control, indicating lower
ATP synthesis. This result is in line with previous observations [18–20]. Overall, the oxy-
gen consumption results support the hypothesis that the OXPHOS accumulation in FXD
phenotypes may cause complex aggregates that are non-functional, and do not participate
in the oxidative phosphorylation.

Interestingly, the subunit c of ATP synthase was found to be upregulated in all FXD
fibroblasts, as previously described in a FXS mouse model [22], and according to the proton
leak described in PM fibroblasts [18,19].

The binding site for CyPD [26,27] that might be involved in the PTP modulation [28,29],
namely the OSCP subunit of the ATP synthase [47], is also overexpressed in FXD cells.
Consistently, CyPD and IF1, two modulators of both the ATP synthase catalytic activity [26,30]
and PTP opening [26,32], are significantly overexpressed in FXD fibroblasts.

The PTP opening was indeed sensitized in all the FXD cells. The Ca2+ threshold for
the channel activation in FXS fibroblasts correlates with higher mitochondrial membrane
content, as assessed by NAO fluorescent staining. This might indicate a higher Ca2+-
buffering capacity of FXS mitochondria, which is due to a higher matrix volume or to
expanded mitochondria. Therefore, the Ca2+ levels promoting PTP opening in FXS cells
may be considered in line with those required in PM and UFM cells if normalized to the
mitochondrial membrane content.

Finally, we showed that the treatment with arachidonic acid but not with Bz 423 in-
creased apoptosis in FXD fibroblasts. Bz 423 is the PTP-inducer that demonstrates activating
the channel by direct binding to the OSCP subunit of ATP synthase, and displaces both
CyPD and IF1 from their binding sites [26,32]. This compound was not efficient in inducing
cell apoptosis, probably due to the high levels of CyPD and IF1 masking its binding site in
FXD fibroblasts [32]. The higher sensitivity to PTP opening in these patients might lead to
neurodegenerative processes, as previously demonstrated for other neurodegenerative dis-
eases [28,29,48,49]. Transient mitochondrial membrane depolarization or osmotic pressure
have been proposed as factors promoting donut-shaped morphology [50]. Donut-shaped
mitochondria formation, induced by FCCP treatment, was demonstrated to be prevented
by PTP inhibitors [51], suggesting that in FXD fibroblasts, both membrane depolarization
and PTP opening might promote the formation of donut-shaped mitochondria.

4. Materials and Methods
4.1. Experimental Model

Fibroblasts derived from two unaffected control males (CTR), two FXS patients, two
PM, and two UFM carriers were employed in this study. Fibroblasts from FXS, UFM, and
PM carriers were from skin biopsies obtained after a signed informed consent of different
donors. Ethics Committee at the Catholic University of Rome approved this study (prot.
N. 15152/15, approval date 1 July 2015). Cell lines were anonymously cultured in the
Institute of Genomic Medicine at the Catholic University (Rome, Italy). Fibroblasts from
healthy donors (CTR) were purchased by Coriell Institute. Cell cultures were grown in
Dulbecco’s modified Eagle’s medium (DMEM, Thermo Fisher Scientific, Waltham, MA,
USA), supplemented with fetal bovine serum (FBS, 20% v/v, Thermo Fisher Scientific),
2 mM L-glutamine, penicillin/streptomycin (1% v/v, Thermo Fisher Scientific) at 37 ◦C
with 5% CO2.
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4.2. Electron Microscopy

Patient fibroblasts were seeded at 20,000 (CTR, FXS, PM, UFM) cells/well in a
24-well plate in order to reach 70–80% of confluence. The samples were post-fixed with 1%
(v/v) osmium tetroxide in 0.1 M sodium cacodylate buffer for 1 h. After three water washes,
samples were dehydrated in a graded ethanol series and embedded in an epoxy resin
(Sigma-Aldrich, St. Louis, MO, USA). Ultrathin sections (60–70 nm) were obtained with an
Ultrotome V (LKB) ultramicrotome, counterstained with uranyl acetate and lead citrate,
and viewed with a Tecnai G2 (FEI, Hillsboro, OR, USA) transmission electron microscope
operating at 100 kV. Images were captured with a Veleta (Olympus Soft Imaging System,
Tokyo, Japan) digital camera. Mitochondria were analyzed by counting the number of
donut-shaped organelles. Cristae junctions per mitochondrion were quantified by monitor-
ing the points of contact between the inner and the outer membranes in each mitochondrion
as in [52].

4.3. Nonyl Acridine Orange Staining

Nonyl acridine orange (NAO) staining has been used to measure the mitochondrial
membrane content in cells. The dye specifically binds cardiolipin in mitochondria. Cells
were seeded at 200,000 cells/well in a 12-well tissue culture plate. NAO dye (200 nM, Merck,
Darmstadt, Germany) was added to cells 24 h after seeding. Cells were stained for 30 min
at 37 ◦C in a 5% CO2 humidified incubator, washed, detached with trypsin, centrifuged
at 1000× g for 5 min, and suspended in the Hanks’ Balanced Salts (HBSS, Sigma-Aldrich)
buffer. Mitochondrial mass was assessed by the Muse cell analyzer (Millipore, Burlington,
MA, USA). Data acquisition and analysis were performed with MuseSoft Analysis (version
1.5) and Flowing software (version 2.5.1), respectively. A total of 5000 events were acquired
for each determination.

4.4. Lysates, Gel Electrophoresis, Western Blotting

Cells (10 × 106) were kept on ice for 20 min in 0.15 mL of a buffer containing 150 mM
NaCl, 20 mM Tris, 5 mM EDTA-Tris, pH 7.4 with the addition of 1% (v/v) Triton X-100,
10% (v/v) glycerol, phosphatase, and protease inhibitors. Sample buffer (Nu-PAGE™ LDS
sample buffer, Invitrogen supplemented with 12.5% v/v β-mercaptoethanol) was added
to supernatants, and samples were separated by polyacrylamide gel (NuPAGE™, 12%
Bis-Tris, Invitrogen, Waltham, MA, USA) electrophoresis and transferred to nitrocellulose
membranes. Blocking was performed with a PBS-solution containing 5% (w/v) non-fat dry
milk (AppliChem, Darmstadt, Germany). Antibodies for OXPHOS (OXPHOS Human WB
Antibody Cocktail, RRID: AB_2756818), adenine nucleotide translocator isoform 3 (ANT,
RRID: AB_2619664), citrate synthase (CS, RRID: AB_10678258), cyclophilin D (CyPD, RRID:
AB_10864110), ATPase inhibitor (IF1, RRID: AB_10861497), and for β (RRID: AB_301438),
b (RRID: AB_10901555), c (RRID: AB_2935765), and OSCP (RRID: AB_10887942) subunits
were from Abcam (Cambridge, UK), and the one against GAPDH (RRID: AB_561053) was
from Cell Signaling (Danvers, MA, USA). Band pixels of each replicate are normalized on
band pixels of their proper loading control. Mean pixel ratios ± SEM are shown. Western
blotting band intensities were analyzed using ChemiDoc MP system equipped with the
ImageLab software (version 6.1, Bio-Rad, Hercules, CA, USA) or ImageJ software (version
1.52p, RRID: SCR_003070).

4.5. Oxygen Consumption Rate

Oxygen consumption rate (OCR) in adherent cells was measured using the XF24
Extra-cellular Flux Analyzer (Agilent Technologies, Santa Clara, CA, USA). Briefly, patient
fibroblasts were seeded in XF24 cell culture microplates at 20,000 cells/well and left growing
at 37 ◦C in a 5% CO2 humidified incubator for 24 h. The day after, the growth medium
was replaced with the Seahorse medium (DMEM, Sigma D5030, supplemented with NaCl,
glutamine, and phenol red according to the manufacturer protocol and 25 mM glucose,
10 mM sodium pyruvate), and cells were incubated at 37 ◦C for 30 min to allow temperature
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and pH equilibration. After an OCR baseline measurement, 1 µM oligomycin, 0.2–0.6 µM
carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), 1 µM rotenone, and 1 µM
antimycin A were sequentially added to each well. Before each experiment, a titration
curve with FCCP was performed to assess the optimal FCCP concentration that maximally
stimulates respiration. Acidification rate (ECAR) was monitored simultaneously to OCR
when cells were in basal condition.

4.6. Mitochondrial Membrane Potential

Mitochondrial membrane potential was measured based on the mitochondrial accu-
mulation of tetramethylrhodamine methyl ester (TMRM) in intact cells as in [28]. Patient
fibroblasts (CTR, FXS, PM, UFM) were seeded at 200,000 cells/well in a 12-well tissue
culture plate. The day after seeding, cells were incubated for 30 min at 37 ◦C in an FBS-free
DMEM medium containing 20 nM TMRM and 1.6µM cyclosporin H to inhibit the mul-
tidrug resistance pump. Cells were then washed, detached with trypsin, centrifuged at
1000× g for 5 min, and suspended in HBSS buffer. Mitochondrial membrane potential was
immediately analyzed by flow cytometry using the Muse cell analyzer (Millipore, Burling-
ton, MA, USA). Data acquisition and analysis were performed with MuseSoft Analysis and
Flowing software, respectively. A total of 5000 events were acquired for each determination.

4.7. Calcium Retention Capacity

For the calcium retention capacity (CRC) assay, external mitochondrial Ca2+ was
measured by Ca2+ Green-5N fluorescence using a Tecan Infinite® 200 PRO (Tecan Trading
AG, Männedorf, Switzerland) plate reader. Fibroblasts were permeabilized as described
in [45] and were resuspended at the concentration of 107 × mL−1 in a KCl-based medium
(130 mM KCl, 10 mM MOPS-Tris, 10 µM EGTA) supplemented with 5 mM succinate-Tris,
1 mM Pi-Tris, and 0.5 µM Ca2+ Green-5N, pH 7.4 to a final volume of 0.2 mL. For all CRC
measurements, sequential 5 µM CaCl2 pulses were added to cells.

4.8. Cell Death

CTR, FXS, PM, and UFM fibroblasts were seeded at 200,000 cells/well in a 12 well-
tissue culture plate and then incubated with 200 µM arachidonic acid (ARA) or 100 µM
benzodiazepine (Bz) 423 in a FBS-free DMEM medium at 37 ◦C in a 5% CO2 humidified
incubator. After 2, 3 h (ARA) or 8 h (Bz 423) of treatment, cells were harvested with trypsin
and counted. Cells incubated only with DMEM medium were harvested and counted, as
control. Staurosporine (2 µM) treatment was used as positive control for cell death, and
was incubated for 24 h. Cell death was assessed by the Muse cell analyzer (Millipore) using
Muse Annexin V and Dead Cell kit (Luminex Flow Cytometry and Imaging, Austin, TX,
USA), following the manufacturer’s instructions.

4.9. Quantification and Statistical Analysis

Unless stated otherwise in the figure legends, each experiment derives from at least
three independent biological replicates. Data are expressed as mean ± SEM. p values
indicated in the figures are calculated with GraphPad; Student’s t test and two-way ANOVA
are applied (* is p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). The variance between the compared
groups is similar. GraphPad (version 8.0.1, RRID: SCR_002798) and Inkscape (version 1.3.0,
RRID: SCR_014479) software were used to create the artwork. Schemes were created with
BioRender.com (accessed on 23 February 2024).

5. Conclusions

In conclusion, our study shows that low levels of FMRP protein in FXD patients
causes the upregulation of critical mitochondrial proteins including OXPHOS complexes,
ATP synthase c, and OSCP subunits, and CyPD and the IF1 inhibitor of ATP synthase.
The excessive mitochondrial protein synthesis and formation of non-functional complex
aggregates may cause ROS production. In PM and UFM fibroblasts, some compensatory
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mechanisms occur, such as the increase in the levels of superoxide dismutase to counteract
ROS formation, or that of the ATPase inhibitor IF1, which may act to preserve membrane
potential and avoid mitochondrial ATP dissipation.

However, the increased sensitivity of PTP opening to Ca2+ and ROS in FXS, PM, and
UFM patients may cause altered mitochondrial morphology and promotes higher apoptotic
cell death than in controls. These results represent the basis for future investigations to
better clarify the role of the described mitochondrial abnormalities both during neurode-
velopment (as in FXS) and in neurodegeneration (as in PM and UFM carriers at risk of
developing FXTAS). Since pharmacological trials based on promising compounds failed to
show significant clinical benefits illustrating the need of novel targeted therapies [53–56],
our findings suggest that novel targeted therapies for FXD patients might be focused on
antioxidant defense and pharmacological inhibition of the PTP, for example the compound
TR001, which inhibits the PTP independently of CyPD and prevents thiol oxidation [57], or
other PTP-specific inhibitors [58–60].
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