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Abstract: Breast cancer is the second leading contributor to the age-standardized mortality rate, for
both sexes and all ages worldwide. In Europe and the United States, it is the second leading cause
of mortality, with an incidence rate of about 2.6 million cases per year. Noscapine, a well-known
alkaloid used as a cough suppressant, demonstrated anti-tumor effects by triggering apoptosis
in various cancer cell lines and has the potential to become another ally against breast, ovarian,
colon, and gastric cancer, among other types of malignancy. Apoptosis plays a crucial role in the
treatment of cancer. Noscapine affected BAX, CASP8, CASP9, NFKBIA, and RELA gene and protein
expression in the MCF-7 and MDA-MB-231 cell lines. Gene expression was higher in tumor than in
normal tissue, including the BAX expression levels in lung, ovary, endometrium, colon, stomach, and
glioblastoma patients; BCL2L1 expression in endometrium, colon, and stomach patients; CASP8 gene
expression levels in lung, endometrium, colon, stomach, and glioblastoma patients; RELA in colon,
stomach, and glioblastoma patients; and NFKBIA in glioblastoma patients. It can be concluded that
noscapine affected genes and proteins related to apoptosis in cancer cell lines and several types of
cancer patients.
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1. Introduction

Breast cancer is the second leading contributor to the age-standardized mortality rate,
for both sexes and all ages worldwide, and over 680 thousand deaths occurred due to
this disease in 2020 [1]. In Europe and the United States, it is the second leading cause of
mortality, with an incidence rate of about 2.6 million cases per year [2]. There are numerous
risk factors known to contribute to the development of cancer, such as age, geographic
area, and race [2,3]; other known or suspected risk factors for cancer are alcohol, chronic
inflammation, hormones, radiation, sunlight, cancer-causing substances, infectious agents,
obesity, tobacco, etc. Some of these risk factors can be avoided; however, aging cannot [4].

Apoptosis is a highly regulated cellular process that takes place in both normal and
abnormal conditions. It follows distinct biochemical and genetic pathways and is con-
sidered a programmed form of cell death [5]. One of the major pathways that induces
apoptosis is the mitochondria-dependent pathway. Studies have shown that the Bcl-2
family of proteins, located at the outer membranes of mitochondria, plays a crucial role in
regulating this intrinsic pathway. These proteins can either inhibit or promote changes in
mitochondrial membrane permeability, which are necessary for the release of cytochrome c
and other proteins involved in apoptosis. The released proteins then form apoptosomes,
which activate caspases, leading to cell death [6–9].

Apoptosis, the process of cell death, is initiated by caspases, a type of protease that
specifically target cysteine aspartyl residues. These caspases cleave various essential
cellular proteins, disrupting the nuclear scaffold and cytoskeleton necessary for normal cell
function [5,8]. Tumor cells can develop resistance to apoptosis through the expression of
anti-apoptotic proteins like Bcl-2 or by reducing or mutating pro-apoptotic proteins such as
Bax [8,10]. It seems that the regulation of both Bcl-2 and Bax expression is controlled by

Int. J. Mol. Sci. 2024, 25, 3536. https://doi.org/10.3390/ijms25063536 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25063536
https://doi.org/10.3390/ijms25063536
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms25063536
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25063536?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 3536 2 of 19

the p53 tumor suppressor gene, since this gene can either suppress or promote changes in
mitochondrial membrane permeability, which is required for the release of cytochrome c
and other apoptogenic proteins [7,8].

It has been demonstrated that the cysteine-aspartate-specific protease caspase-8 is
involved in several cellular processes, including necroptosis, autophagy and pyroptosis,
anoikis, cell apoptosis, and T cell differentiation [11]. Enzymes called proteases, which
control programmed cell death, are members of the caspase protein family. Caspase-
9 is an essential component of the mitochondrial apoptotic pathway and a member of
the intrinsic pathway. When cells are under stress, the release of cytochrome c from
mitochondria starts the intrinsic route. Cytochrome c forms a multiprotein complex known
as an apoptosome through interactions with pro-caspase-9, apoptotic protease activating
factor 1, and deoxyadenosine triphosphate. The apoptosome activates caspase-9, which
triggers a cascade of effector caspases [12].

Apoptosis is regulated by the Bcl-2 family, which includes the anti-apoptotic and
pro-apoptotic proteins (Bax, Bok, Bak, etc.). These proteins often interact in dimers and act
as apoptotic switches. Anti-apoptotic proteins, such as Bcl-2, block the functions of these
pro-apoptotic proteins. The pro-apoptotic and anti-apoptotic protein–protein interactions
must be inhibited to prevent tumor cells from escaping apoptosis [13]. Bcl-2 family proteins
are tightly involved in the regulation of intrinsic apoptosis [14].

NFκB, a transcription factor, plays a crucial role in gene expression related to cell
survival. It promotes the upregulation of anti-apoptotic and pro-survival genes, including
those from the Bcl-2 family and IAP proteins. In breast cancer cell lines, NFκB increased the
expression of anti-apoptotic genes and proteins while decreasing pro-apoptotic ones [15–17].
The translocation of NFκB to the nucleus is preceded by phosphorylation, ubiquitination,
and the proteolytic degradation of IκBα, an inhibitor of NFκB [15,18–20]. Previous studies
have demonstrated higher levels of NFκB polypeptides (both p100 and p52) in mammary
carcinoma cell lines and primary tumors compared to normal breast cells [21–23].

A single genetic change will rarely lead to the development of a malignant tumor [24].
If the cancer cells can evade apoptotic stimuli, they can survive and acquire drug resis-
tance [25]. The tumors may achieve similar ends by increasing the expression of anti-
apoptotic regulators (Bcl-2, Bcl-xL) or of survival signals (Igf1/2), by downregulating
pro-apoptotic factors (Bax, Bim, Puma), or by short-circuiting the extrinsic ligand-induced
death pathway [26].

This review analyzed the role of noscapine and its anti-tumor activity demonstrated
by triggering apoptosis on various cancer cell lines from different tissues.

2. Noscapine

Noscapine, a phthalide isoquinoline alkaloid derived from opium obtained from
Papaverum somniferum, has been extensively researched and used as an oral anti-tussive
agent [27–29]. It has demonstrated anti-tumor properties against various cancer types,
including lung, cervical, prostate, ovarian, and breast cancer, both in vitro and in vivo,
while exerting minimal adverse side effects [30–34].

For a long time, noscapine has been used as an effective oral medication to treat cough,
and it has been recognized as a highly beneficial drug with minimal side effects. Some of
its valuable advantages over other microtubule drugs are its low toxicity, water solubility,
and suitability for oral administration [28,30,35,36]. When taken orally, noscapine has
demonstrated a significant decrease in tumor size, while also showing minimal to no toxic
effects on the body [37,38].

Noscapine has demonstrated minimal or negligible toxicity towards various organs,
including the kidney, heart, liver, bone marrow, spleen, and small intestine. Furthermore, it
does not inhibit primary humoral immune responses in mice. In addition to these benefits,
noscapine exhibits good oral tolerance and has a low risk of addiction [35,39,40]. Other
advantages of noscapine are its water solubility and suitability for oral administration,
making it superior to many other anti-microtubule drugs [41]. The present review is
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focused on showing that noscapine has anti-tumor activity in different cell lines, as well as
its molecular mechanism of action and its comparison with other drugs.

A sub-therapeutic dose of noscapine (300 mg/kg/day) was administered orally to
nude mice with implanted tumors [31]. The results revealed that various organs, including
the liver, kidney, spleen, lung, heart, brain, gut, and sciatic nerve, showed no significant
differences or pathological abnormalities when compared to the control group [31].

One group of drugs that target microtubules, such as colchicine, nocodazole, and the
vinca alkaloids, inhibit the formation of microtubules. Another group, including toxoids
and epothilones, promotes the formation of microtubules and stabilizes them. However,
these drugs disrupt the normal dynamics of microtubules, leading to cell cycle arrest,
usually during prometaphase, blocking the progression of mitosis and ultimately causing
cell death [30,31,34,42]. Although microtubule-targeting drugs like vinca alkaloids and
taxanes have been proven to be effective in treating different types of cancer in humans,
their clinical success has been limited due to the development of drug resistance and the as-
sociated toxicities, such as leukocytopenia, diarrhea, alopecia, and peripheral neuropathies
caused by the blockage of axonal transport [41,43].

Furthermore, the discovery of new tubulin ligands with antimitotic properties and
the identification of their binding sites and modes of action hold promise regarding the
developing a new generation of structure-based drugs with improved potential to treat
cancer [44–46]. Microtubules, which consist of repeating α/β-tubulin heterodimers, are
crucial cytoskeletal polymers found in all eukaryotes; these highly dynamic polymers,
composed of tubulin subunits, play a vital role in various cellular processes, including cell
division, cell motility, and cytoplasmic organization, both in vivo and in vitro [44–46].

The dynamic instability of microtubules is driven by the binding and hydrolysis of
GTP by tubulin subunits [44–46]. Each tubulin monomer binds to one GTP molecule. The
binding to α-tubulin at the N-site is permanent, while the binding to β-tubulin at the E-site
is replaceable. Polymerization can only occur with dimers containing GTP in their E-site,
but, once polymerized, this nucleotide is hydrolyzed and becomes permanent [44–46]. The
GTP cap model is the most widely accepted hypothesis to explain dynamic instability.
According to this model, the microtubule structure is supported by a layer of tubulin
subunits at the ends that still contain GTP, while the body of the microtubule consists
of GDP–tubulin subunits. When this cap is randomly lost, the microtubule undergoes
rapid depolymerization. The assembly and stability of microtubules are regulated by the
nucleotide state of tubulin and can be influenced by cellular factors that either stabilize or
destabilize microtubules at different locations in the cell or stages in the cell cycle. Disrup-
tion of microtubule dynamics can result in the formation of abnormally stable or unstable
microtubules, which hinders the normal rearrangement needed for cell division [39,44,45].

Various anti-tubulin agents have been categorized into three main groups based on
their binding sites: the colchicine-binding site, those binding at the vinblastine site, and the
taxol-binding site. Functionally, these antimitotic ligands can be divided into two classes:
those that inhibit microtubule assembly and those that promote microtubule assembly
and stabilization. However, regardless of their differences, these agents primarily induce
mitotic arrest by inhibiting normal dynamic instability at low concentrations [44].

As described in [47], noscapine has been tested in phase I and II clinical trials for
various human cancers, although its exact mechanism of action as a stabilizer or desta-
bilizer of microtubules has not been determined yet. The drug demonstrated the ability
to change the dynamics of microtubule assembly, leading to cell cycle arrest during mi-
tosis and apoptosis in multiple mammalian tumor cell lines [45,48]. However, unlike
other microtubule-targeting anti-cancer drugs, noscapine did not have an impact on micro-
tubule polymerization or the overall polymer mass of tubulin, even at high concentrations.
Furthermore, when applied to tissue culture cells, noscapine did not cause significant defor-
mation in cellular microtubules. Instead, it specifically altered the steady-state dynamics of
microtubule assembly, which effectively halted the progression of mitosis. This unique char-
acteristic of noscapine suggests that it did not interfere with other microtubule-dependent
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cellular processes such as organelle distribution and axonal transport, which has been a
major concern with many other microtubule-targeting anti-cancer drugs [30,39,49].

A study found that noscapine did not bind to the same site on tubulin as paclitaxel [30].
Additionally, fluorescence experiments showed that noscapine did not compete with
colchicine [30,38,50]. Nonetheless, an in silico investigation revealed a potential binding
site for noscapine at the α/β-tubulin interface near the colchicine-binding site. This finding
was supported by a study that employed molecular docking and molecular dynamic
simulations to identify the predicted binding site of noscapine at the intradomain region
of α- and β-tubulin [38]. Upon the binding of noscapine, there was an observed increase
in the stability of the tubulin elements at the E-site components and a decrease in the
dynamical motions of certain parts of tubulin located alongside the protofilament. These
effects interfered with the longitudinal interactions in microtubules, suggesting a positive
impact on microtubule polymerization [38,51].

Analogs of Noscapine

Analogs of noscapine have been extensively studied. A recent study [31] reported
compounds derived from noscapine, known as noscapine analogs (Figure 1A–E), which
show great potential in cancer treatment.
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Figure 1. Structures of (A) noscapine, (B) cyclic ether fluorinated noscapine analog (CEFNA),
(C) 9-Cl-noscapine (EM015), (D) 9-Br-noscapine, and (E) 9-I-noscapine.

Among these analogs, the cyclic ether fluorinated noscapine analog (CEFNA) has
demonstrated anti-cancer properties [52]. It has been observed that CEFNA inhibits the
growth of, specifically, the MCF-7 and MDA-MB-231 breast cancer cell lines. When these
cells were treated with CEFNA at various doses (5, 10, and 25 µM), it caused the formation
of multipolar spindles and condensed chromosomes, indicating a halt in the cell cycle at
the G2/M phase. Moreover, CEFNA-treated MCF-7 cells exhibited apoptosis, as evidenced
by the presence of fragmented micronuclei and apoptotic bodies after 72 h of treatment
with 25 µM CEFNA [52].

Another analog, 9-Cl-noscapine (EM015), stood out as it contained a chlorine atom
in position 9 of the isoquinoline ring system (9-Cl-noscapine). Compared to noscapine,
9-Cl-noscapine exhibited higher affinity for binding to tubulin, resulting in the inhibition of
cellular proliferation in various breast cancer cell lines, including MCF-7, MDA-MB-231, ER-
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MDA-MB-231, BT474, SK-Br3, and T47D. The IC50 value of 9-Cl-noscapine ranged from 2
to 10 µM, which was 15- to 20-fold lower than that of noscapine. Moreover, 9-Cl-noscapine,
similar to noscapine, disrupted the cell cycle of breast cancer cells by inducing spindle
abnormalities, leading to apoptosis specifically in the G2/M cell cycle phase. Notably, 9-Cl-
noscapine required fewer doses than noscapine to achieve these effects [31]. Furthermore,
this study demonstrated that 9-Cl-noscapine effectively inhibited the growth of human
breast xenografts compared to the noscapine and control groups. It not only prevented
tumor growth but also significantly prolonged the survival of mice almost three-fold.
Additionally, the use of 9-Cl-noscapine did not lead to any metastatic lesions or disruption
of the hydro-electrolytic acid–base balance. The immune system, specifically the B and T
cell lineages, remained unaffected, with minimal or no side effects [31].

In a study [34], the compound 9-Br-noscapine was found to inhibit cell growth in the
MDA-MB-231 (estrogen, progesterone, and ERB2 receptor negative) cell line. Through
Western blot analysis, it was observed that treating MDA-MB-231 cells with 9-Br-noscapine
at various concentrations (ranging from 0.01 µM to 1000 µM) led to an increase in Bax
protein levels and a decrease in Bcl-2 levels. This resulted in an increase in the Bax/Bcl-2
ratio in a time-dependent manner. Additionally, the activation of caspase-3 and PARP
cleavage, along with mitochondrial damage and cytochrome c release, induced apoptosis in
MDA-MB-231 cells [34]. The oral administration of 9-Br-noscapine to mice with implanted
tumors derived from MDA-MB-231 cells resulted in a reduction in tumor volume on days
16, 22, and 30. The tumor volume reduction was 45%, 59%, and 74%, respectively, compared
to mice that received only the vehicle solution. Immunohistochemical analysis revealed the
widespread expression of cleaved caspase-3, cleaved PARP, and TUNEL-positive cells in
the remaining small regressed tumor sections of the 9-Br-noscapine treatment groups. In
conclusion, the study demonstrated that the regression of tumor xenografts was a result of
apoptosis induced by 9-Br-noscapine [34].

Furthermore, 9-Br-noscapine was administered to nude mice with implanted tumors
derived from MDA-MB-231 cells. Tissue sections of the liver, kidney, spleen, brain, heart,
lung, gut, and sciatic nerve were examined using H&E staining. The results indicated that
9-Br-noscapine did not cause any detectable pathological abnormalities or metastatic lesions
in these organs. Furthermore, a complete blood count analysis revealed that 9-Br-noscapine
treatment did not alter the counts of red blood cells or white blood cells, hemoglobin
concentrations, or hematocrit in mice with hormone-refractory xenograft tumors [34].

Halogenated noscapine analogs (9-F-noscapine, 9-Cl-noscapine, 9-Br-noscapine, and
9-I-noscapine) have greater tubulin-binding activity compared to noscapine. These medica-
tions have a more pronounced impact on the cell cycle profile, causing heightened arrest
at the G2/M phase when compared to noscapine. At concentrations of 5 and 10 µM, the
effects of these halogenated compounds on the cell cycle differ in terms of the extent of their
detrimental effects, increasing the percentage of sub-G1 cells with hypodiploid DNA con-
tent, which is indicative of apoptosis [34,43]. The authors discovered that when the MCF-7
(estrogen and progesterone receptor positive, ErbB2 receptor negative) cell line was treated
with halogenated noscapine, there was a noticeable presence of spindles and condensed
chromosomes that were not properly organized at the metaphase plate, indicating the onset
of mitotic arrest as early as 12 h and maximizing at 24 h of drug treatment. These findings
demonstrated that the insertion of halogens into noscapine enhanced its tubulin-binding
activity and influenced its potential as a therapeutic agent for various types of cancer cells,
particularly the MCF-7 cell line [43].

3. Noscapine’s Effect in Several Types of Cancer
3.1. Breast Cancer

Several studies have demonstrated that noscapine decreased the levels of the NFκB,
P-IκBα, Bcl-2, and survivin proteins, all known as anti-apoptotic proteins. On the other
hand, the expression of the cleaved IκBα, PARP, Bax, caspase-8, caspase-9, and caspase-3
proteins, which are pro-apoptotic proteins, were increased compared to the control group.
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The ratio of Bax/Bcl2 observed in the control group was lower than that observed when
treated with noscapine [34,37,53].

A previous study [54] demonstrated that noscapine, a natural opium alkaloid with
purity of 97%, induced apoptosis in breast cancer cell lines, specifically MDA-MB-231 and
MCF-7. This study compared the effects of noscapine on MCF-10F, a normal breast cell
line, used as a control. Such results showed that noscapine exhibited lower toxicity in
normal cells while effectively functioning as an anti-cancer agent by triggering apoptosis in
breast cancer cells. This was supported by the findings of increased Bax gene and protein
expression in all three cell lines, as well as a decrease in the Bcl-xL gene and Bcl-2 protein
expression. Noscapine increased Bax protein expression in the MCF-10F cell line, but there
was no significant effect on Bcl-2 expression. However, noscapine increased Bax protein
expression and decreased Bcl-2 expression in the MCF-7 cell line. Similarly, noscapine
increased Bax protein expression and decreased Bcl-2 expression in the MDA-MB-231 breast
cancer cell line; there was also an increase in the Bax/Bcl-2 ratio in all three types of cells.
The amount of 53 µM noscapine induced an increase in the Bax/Bcl-2 protein expression
ratio from 0.03 to 0.70 in the MCF-10F cell line This ratio represents the balance between the
pro-apoptotic protein Bax and the anti-apoptotic protein Bcl-2, suggesting a shift towards
apoptosis. Similarly, in the MCF-7 cell line treated with 30 µM noscapine, the Bax/Bcl-2
ratio increased from 0.71 to 1.08. Furthermore, treatment with 20 µM noscapine resulted in
an increase in the Bax/Bcl-2 ratio from 0.99 to 3.64 in the MDA-MB-231 cell line. Noscapine
not only upregulated the expression levels of the caspase-8 and caspase-9 genes but also
facilitated the cleavage of caspase-8. Additionally, noscapine downregulated the expression
of anti-apoptotic genes and proteins while increasing the expression of pro-apoptotic genes
and proteins. These effects may be attributed to the downregulation of the NFκB gene and
protein expression. NFκB is a transcription factor associated with breast cancer initiation
and progression. Furthermore, noscapine was found to enhance the expression of the IκBα
gene, NFKBIA [54]. Our previous work [54] also indicated that noscapine-treated MCF-10F
cells increased Bax, caspase-8, and IκBα gene expression. However, there was no change in
Bcl-xL, caspase-9, or NFκB under the effect of this drug. Noscapine increased Bax, caspase-
9, and IκBα gene expression while decreasing the levels of Bcl-xL, and NFκB in MCF-7.
Caspase-8 showed no significant effect of noscapine. Noscapine-treated MDA-MB-231 cells
showed increased Bax, caspase-9, and Caspase-8 gene expression and decreased levels of
Bcl-xL, and NFκB. IκBα showed no significant effect of noscapine.

Additionally, some authors [54] indicated that noscapine upregulated the caspase-8
and caspase-9 gene expression levels in the MCF-10F and MDA-MB-231 breast cancer
cell lines. It also promoted the cleavage of caspase-8, suggesting the involvement of both
extrinsic and intrinsic apoptosis pathways in noscapine-induced apoptosis.

On the other hand, noscapine can be used in combination with certain drugs to treat
various types of cancer. For example, doxorubicin is commonly used as a chemotherapy
agent for patients with metastatic breast cancer [37]. When noscapine and doxorubicin were
used together (30 µM and 0.4 µg/mL, respectively), it was observed that the expression of
certain proteins involved in apoptosis, such as Bax, caspase-8, caspase-9, caspase-3, and
cleaved caspase-3, increased. Additionally, the expression of NFκB, IκBα, P-IκBα, and
Bcl-2 decreased when compared to the control group. When noscapine and doxorubicin
were used in combination, the expression of the VEGF protein decreased compared to each
substance alone, and there was a decrease in survivin protein expression compared to the
single-drug treatment and the control group [37]. Furthermore, the combined treatment
induced apoptosis in 65% of the tumor cells, whereas noscapine and doxorubicin alone
induced apoptosis in 20% and 32% of the tumor cells, respectively [37].

Noscapine, either alone or in combination with doxorubicin, demonstrated efficacy
against triple-negative breast cancer cell lines and enhanced the anti-cancer effects of
doxorubicin synergistically [37]. This effect was achieved by deactivating the NFκB and
anti-angiogenic pathways and promoting apoptosis. As a result, these findings suggest
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that a combination of orally administered noscapine and doxorubicin could be a potential
therapy for aggressive triple-negative breast cancer.

A previous study indicated that the oral administration of noscapine at doses ranging
from 150 to 550 mg/kg/day resulted in a significant reduction in tumor volume in MDA-
MB-231 xenografts. However, the combined treatment proved to be the most effective in
inhibiting tumor growth compared to individual treatments with either doxorubicin or
noscapine [37].

Cell proliferation was evaluated by observing the effects of docetaxel, tamoxifen,
and noscapine in the MCF-7 and MDA-MB-231 cell lines; although noscapine showed
cytotoxic effects in a time- and dose-dependent manner, MDA-MB-231 cells were more
susceptible to its effects; however, noscapine inhibited MCF-7 and MDA-MB-231 cells’
proliferation in vitro, which was comparable to the effects of tamoxifen and docetaxel [55].
The combination of N-3-Br-benzyl-noscapine (Br-Bn-Nos), a derivative of noscapine, and
docetaxel was demonstrated to have improved anti-cancer potential compared to the single
regimen [56]. In drug-resistant xenografts, noscapine at low concentrations with docetaxel
decreased the tumor volume in comparison with each substance alone and downregulated
the expression of anti-apoptotic factors and multidrug resistance proteins [57].

3.2. Clinical Relevance Analyzed by Bioinformatics in Breast Cancer Patients

Identifying genes linked to specific tissues has proven valuable in elucidating their
biological roles and understanding diseases such as breast cancer (BRCA) and its various
subtypes, including BRCA-Basal, BRCA-Her2, BRCA-Lum-A, and BRCA-Lum-B [58].

Hence, genes such as BAX, the BCL2-associated X gene; BCL2L1, the BCL2-like 1 gene (Bcl-
xL); CASP8, the caspase-8 gene; CASP9, the caspase-9 gene; RELA, the RELA proto-oncogene
(NF-kB subunit); and NFKBIA, the NFKB inhibitor alpha gene (IkBα) were extracted from the
Tumor Immune Estimation Resource database v 2.0 (TIMER2.0, http://timer.cistrome.org,
accessed on 14 September 2023) [59]. The results showed whether such genes could have
therapeutic target potential, to discover the co-expression patterns of genes across TCGA
cancer types such as BRCA. The ER status raw data were extracted from the University of
California, Santa Cruz (https://xena.ucsc.edu, accessed on 14 September 2023) UCSC Xena
functional genomics explorer [60].

3.2.1. Gene Correlation in Breast Cancer Patients

Correlations were found between TP53 gene expression and BAX, BCL2L1, CASP8,
CASP9, NFKBIA, and RELA (Figure 2).

The results in Figure 2A show that there was no correlation between TP53 and BAX,
BCL2L1, and NFKBIA gene expression levels; however, there was a significant (p < 0.05)
difference between TP53 gene expression and CASP8 and CASP9 for BRCA-LumA and
BRCA-LumB patients. The correlation between TP53 and RELA was significant (p < 0.05)
for BRCA-LumA patients, corroborated by box plots (Figure 2B) showing significant
(p < 0.05) correlations between TP53 expression with purity adjustment (left) and CASP8,
CASP9, and RELA gene expression levels (right).

3.2.2. Differential Gene Expression Levels between Tumor and Normal Tissues across
Various Breast Cancer Subtypes

Studies analyzed the differential gene expression levels between tumor and normal
tissue across various breast cancer subtypes, as shown in Figure 3.

http://timer.cistrome.org
https://xena.ucsc.edu
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Figure 2. (A) The heatmap table shows the correlations between TP53, the tumor protein p53
gene, and BAX, the BCL2-associated X gene; BCL2L1, the BCL2-like 1 gene; CASP8, the caspase-8
gene; CASP9, the caspase-9 gene; NFKBIA, the NFKB inhibitor alpha gene; and RELA, the RELA
proto-oncogene (NFkB, Rel A) in breast invasive carcinoma (BRCA) subtypes. The red color indicates
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a statistically significant positive correlation (Spearman’s, p < 0.05) and gray denotes a non-significant
result. (B) Box plots show significant correlations between TP53 expression with purity adjustment
(left) and CASP8, CASP9, and RELA gene expression levels (right) in BRCA subtypes. Correlation
values for each analysis are stated in red on the right (Spearman’s, p < 0.05). Raw data were extracted
from TIMER2.0 (http://timer.cistrome.org), accessed on 14 September 2023 [59].
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Figure 3. Differential gene expression levels between tumor and normal tissue in breast invasive
carcinoma (BRCA). The box plots show the distribution of gene expression levels of (A) BAX, the
BCL2-associated X gene; (B) BCL2L1, the BCL2-like 1 gene; (C) CASP8, the caspase-8 gene; (D) CASP9,
the caspase-9 gene; (E) RELA, the RELA proto-oncogene; and (F) NFKBIA, the NFKB inhibitor alpha
gene in tumor versus normal tissue (Wilcoxon rank-sum test, ***: p < 0.001). Raw data were extracted
from the Tumor Immune Estimation Resource database v 2.0 (TIMER2.0, http://timer.cistrome.org),
accessed on 14 September 2023 [59]. (1) BRCA. Tumor (n = 1093). (2) BRCA. Normal (n = 112).
(3) BRCA-Basal. Tumor (n = 190). (4) BRCA-Her2. Tumor (n = 82). (5) BRCA-LumA. Tumor (n = 564).
(6) BRCA-LumB. Tumor (n = 217).

The results show that BAX and BCL2L1 were significantly (p < 0.001) higher in the
tumor tissue than in the normal tissue when comparisons were made, whereas NFKBIA
was significantly (p < 0.001) higher in the normal than in the cancer tissue. There was no
significant relationship between tumor and normal tissue in terms of CASP8, CASP9, and
RELA gene expression.

3.2.3. Estrogen Receptor Status

Bioinformatic studies analyzed BAX, BCL2L1, CASP8, CASP 9, RELA, and NFKBIA,
gene expression, and estrogen receptor status, as seen in Figure 4.

The results indicated that those BRCA patients characterized by BAX and RELA
gene expression had a significant (p = 1.097 × 10−8 and p = 0.0001753, respectively) neg-
ative ER status, whereas those with BCL2L1 and CASP9 had a significant (p = 0.000 and
p = 6.778 × 10−7, respectively) positive ER status. There was no significant difference in
those patients having CASP8 and NFKBIA gene expression.

3.2.4. Disease Stage Factor in Several Breast Cancer Subtypes

Gene expression concerning disease stage factors across various breast cancer subtypes
is analyzed in Table 1. The clinical relevance of the gene expression associated with the
disease stage is important.

http://timer.cistrome.org
http://timer.cistrome.org
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Figure 4. Xena Chart View showing box plot transcript expression of (A) BAX, the BCL2-associated X
gene; (B) BCL2L1, the BCL2-like 1 gene; (C) CASP8, the caspase-8 gene; (D) CASP9, the caspase-9
gene; (E) RELA, the RELA proto-oncogene; and (F) NFKBIA, the NFKB inhibitor alpha gene in
breast invasive carcinoma (BRCA). Cohort: TCGA Breast Cancer (BRCA), n = 782, stratified by
nature2012 for estrogen receptor status (ER) (one-way ANOVA, p < 0.05). Raw data were extracted
from the University of California, Santa Cruz (ena.ucsc.edu) UCSC Xena functional genomics explorer,
accessed on 14 September 2023 [60].

Table 1. Clinical relevance of genes across various cancer types analyzed by the disease stage factor.

Cancer BAX BCL2L1 CASP8 CASP9 RELA NFKBIA

BRCA (n = 1100) 3, 4 *** 3, 4 *** 3, 4 *** 3, 4 *** 3, 4 *** 3, 4 ***
BRCA-Basal (n = 191) N. S. N. S. N. S. N. S. N. S. N. S.
BRCA-Her2 (n = 82) 4 * 4 * 4 * 4 ** 4 * 4 *
BRCA-LumA (n = 568) 4 *** 4 *** 4 *** 4 *** 4 *** 4 ***
BRCA-LumB (n = 219) 4 ** 4 ** 4 ** 4 ** 4 ** 4 **

Statistical significance is annotated by the number of stars (Cox proportional hazard model, *: p < 0.05;
**: p < 0.01; ***: p < 0.001); 3, 4: clinical stage factor; N. S.: not significant. Data estimated by TIMER2.0 in
breast invasive carcinoma, accessed on 14 September 2023 [59].

The analysis of the clinical stages of patients with breast invasive carcinoma indicated
that the BAX, BCL2L1, CASP8, CASP9, RELA, and NFKBIA gene expression levels were
significantly (p < 0.001) higher in stages 3 and 4 for all BRCA patients, and in stage 4
for BRCA-LumA patients, than in other clinical stages. Additionally, stage 4 showed a
significant (either p < 0.05 or p < 0.01) difference in BRCA-Her2 and BRCA-LumB patients.
These genes showed no significance at any stage in BRCA-Basal patients.

3.3. Lung Cancer

Gemcitabine, a pyrimidine nucleoside–antimetabolite agent, has shown effectiveness
against various types of cancer in humans. When combined with noscapine, the anti-
cancer activity of gemcitabine against non-small-cell lung cancer increased in an additive
to synergistic manner. This synergism resulted in higher levels of apoptosis compared
to treatment with either drug alone. Additionally, in mice with implanted tumors, the
combination of noscapine and gemcitabine led to a reduction in tumor volume. This

ena.ucsc.edu
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reduction decreased the expression of anti-apoptotic and angiogenic proteins, as well as
increasing the expression of pro-apoptotic proteins, within the tumor tissue [37,61].

3.4. Ovarian Cancer

Apoptosis was observed in human ovarian carcinoma cells when exposed to noscapine
(97% purity) at a concentration of 20 µM, with the extent of apoptosis increasing as the
duration of exposure to the drug increased. These findings were evaluated using techniques
such as TUNEL and Annexin V [30]. Additionally, noscapine at a concentration of 40 µM
exhibited cytotoxic effects on paclitaxel-resistant human ovarian carcinoma cell lines [62].

A recent study showed that noscapine-induced apoptosis in ovarian cancer cell lines
was associated with the JNK pathway. The study found that treating the cell lines with
noscapine led to increased levels of c-Jun protein and the phosphorylation of c-Jun by
JNK; this phosphorylation influenced the expression of apoptotic genes and proteins.
Like other microtubule drugs, noscapine also inhibited the microtubule dynamics, caused
mitotic arrest, induced apoptosis, and exhibited strong anti-tumor activity [30,63,64]. How-
ever, the exact molecular mechanisms that underlie the apoptosis and mitotic arrest in-
duced by anti-microtubule agents, as well as the relationship between these two events,
remain unclear.

Cisplatin, a primary chemotherapy drug for ovarian cancer, is known for its high
toxicity and the development of resistance in cancer cells. In contrast, the use of noscapine
enhanced the sensitivity to cisplatin in ovarian cancer cells resistant to drugs [62]. By
combining 2.5 µM noscapine with cisplatin at different concentrations (0, 2, 4, and 8 µg/mL),
the proliferation of ovarian cisplatin-resistant cancer cells was reduced, the expression
levels of genes and anti-apoptotic proteins were decreased, and the expression of genes
and pro-apoptotic proteins was increased compared to using either drug alone. Moreover,
the combination of cisplatin and noscapine was found to effectively reduce tumor growth
in nude mice [62].

3.5. Endometrium

The effect of noscapine was examined on the expression of apoptotic genes, growth
scores, angiogenesis, and nitric oxide secretion in the eutopic endometrium in endometrio-
sis patients and normal endometrium patients. Results indicated that the expression of
apoptotic genes increased, while the levels of Bcl-2 and Sirt1 decreased [64,65].

3.6. Colon Cancer

In a recent study, it was observed that the use of noscapine (97% purity) resulted in a
reduction in cell proliferation in human colon cancer cells. The effectiveness of noscapine
varied based on the dosage (001, 01, 1, 10, 100, or 1000 µM) and duration of treatment
(0, 12, 24, 36, 48, or 72 h). After 72 h, the IC50 value for noscapine was found to be
75 µM. Additionally, the study revealed that the cells treated with noscapine experienced
cell cycle arrest at the G2/M stage, leading to an increase in apoptosis, as confirmed
by flow cytometry analysis. Furthermore, it was observed that at 75 µM, noscapine-
induced apoptosis resulted in the upregulation of Bax expression and downregulation
of Bcl-2 expression. This apoptotic response was accompanied by an increase in the
protein expression of caspase-3 and caspase-9, as well as a decrease in survivin expression.
These findings suggest that the induction of apoptosis by noscapine occurs through the
mitochondrial pathway [66].

Another study showed that the inhibition of p38 mitogen-activated protein kinase
(MAPK) increased the sensitivity of the 5-fluorouracil-resistant SW480 human colon cancer
cells to noscapine (at a dose of 25 µM). This was achieved by suppressing proliferation, the
induction of cell cycle arrest and apoptosis, and the reversal of multidrug resistance in the
SW480 cells treated with 20 µg/mL 5-fluorouracil [67].
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3.7. Stomach Cancer

In a research study, it was found that noscapine exhibited cytotoxic effects on gastric
cancer cell lines (BGC823, SGC7901, MGC803, and HGC27). The cytotoxicity was observed
in a dose-dependent and time-dependent manner, with varying concentrations of 0, 50, 100,
or 150 µM and time intervals of 0, 12, 24, or 36 h. The cytotoxic activity was attributed to
apoptosis, as evidenced by chromatin condensation observed through the DAPI method
and quantified using flow cytometry. The apoptotic effect was also found to be dependent
on the dosage of noscapine. Furthermore, the expression of the Bax and Bcl-2 proteins was
examined, revealing an increase in Bax and a decrease in Bcl-2 levels after treatment with
noscapine. Additionally, the activity of caspase-9 and caspase-3 was enhanced following
noscapine treatment [68].

3.8. Neuroblastoma

The drug noscapine was found to effectively inhibit cellular proliferation in vari-
ous neuroblastoma cell lines (SK-SY5Y, SH-EP1, SK-N-MC, SK-N-AS, LA1-55N, LA1-5S,
NB1643, NB1691, SK-N-SH, and IMR32). This inhibition was dose-dependent, with IC50
values ranging from 21 to 101 µM for most of these cell lines. Noscapine induced mitotic
arrest at the G2/M phase of the cell cycle. Additionally, treatment with noscapine led to
the activation of caspase-3 and the cleavage of PARP in the treated cells. When SK-SY5Y
and LA1-5S cells were exposed to noscapine, there was a significant reduction in the levels
of survivin mRNA and protein as early as 12 h after treatment. Importantly, the ectopic ex-
pression of survivin provided significant protection against noscapine-induced cytoplasmic
histone-associated apoptotic DNA fragmentation [69].

3.9. Clinical Relevance Analyzed by Bioinformatics in Several Types of Cancer
3.9.1. Gene Correlation in Different Cancer Patients

Correlations were found between TP53 gene expression and BAX, BCL2L1, CASP8,
CASP9, RELA, and NFKBIA in lung adenocarcinoma (LUAD), lung squamous cell carci-
noma (LUSC), ovarian serous (OV), uterine corpus endometrial carcinoma (UCEC), colon
adenocarcinoma (COAD), stomach adenocarcinoma (STAD), and glioblastoma multiforme
(GBM), as seen in Figure 5.

The results in Figure 5A indicate that TP53 had a significantly (p < 0.05) positive
correlation with BAX expression in LUAD, UCEC, COAD, STAD, and GBM patients, being
also positively and significantly correlated (p < 0.05) with BCL2L1 expression levels in
STAD patients. Meanwhile, it was negatively correlated with BCL2L1 expression in COAD
patients. There was a significant (p < 0.05) positive correlation with CASP8 expression
levels in LUSC, OV, STAD, and GBM. The TP53 and CASP9 expression levels showed a
significant (p < 0.05) positive correlation in LUSC and OV patients. NFKBIA showed a
significant (p < 0.05) positive correlation with TP53 expression in GBM. Additionally, TP53
presented a significant correlation with the RELA expression levels in COAD, STAD, and
GBM patients. Representative box plots (Figure 5B) corroborated these significant (p < 0.05)
correlations between TP53 expression with purity adjustment (left) and the BAX, BCL2L1,
CASP8, CASP9, RELA, and NFKBIA gene expression levels (right).

3.9.2. Differential Gene Expression Levels between Tumor and Normal Tissue across
Different Types of Cancer

Studies analyzed the differential gene expression levels between tumor and normal
tissue across different types of cancer, as shown in Figure 6.
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Figure 5. (A) Correlations between TP53, the tumor protein p53 gene, and BAX, the BCL2-associated X
gene; BCL2L1, the BCL2-like 1 gene; CASP8, the caspase-8 gene; CASP9, the caspase-9 gene; NFKBIA,
the NFKB inhibitor alpha gene; and RELA, the RELA proto-oncogene (NFkB, Rel A) in different types
of cancer. The red color indicates a statistically significant positive correlation (Spearman’s, p < 0.05),
blue indicates a statistically significant negative correlation (Spearman’s, p < 0.05), and gray denotes
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a non-significant result. (B). Box plots show significant correlations between TP53 expression with
purity adjustment (left) and BAX, BCL2L1, CASP8, CASP9, RELA, and NFKBIA gene expression levels
(right) in different types of cancer. Correlation values for each analysis are stated in red on the right
(Spearman’s, p < 0.05). Raw data were extracted from TIMER2.0 (http://timer.cistrome.org), accessed
on 10 January 2024 [59]. TCGA abbreviations—LUAD: lung adenocarcinoma; LUSC: lung squamous
cell carcinoma; OV: ovarian serous; UCEC: uterine corpus endometrial carcinoma; COAD: colon
adenocarcinoma; STAD: stomach adenocarcinoma; GBM: glioblastoma multiforme.
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Figure 6. Differential gene expression levels between tumor and normal tissue in different types
of cancer. The box plots show the distribution of the gene expression levels of (A) BAX, the BCL2-
associated X gene; (B) BCL2L1, the BCL2-like 1 gene; (C) CASP8, the caspase-8 gene; (D) CASP9, the
caspase-9 gene; (E) RELA, the RELA proto-oncogene; and (F) NFKBIA, the NFKB inhibitor alpha
gene in tumor versus normal tissue (Wilcoxon rank-sum test, *: p < 0.05, **: p < 0.01, ***: p < 0.001).
Raw data were extracted from the Tumor Immune Estimation Resource database v 2.0 (TIMER2.0,
http://timer.cistrome.org), accessed on 14 September 2023 [59]. (a) LUAD. Tumor (n = 515).
(b) LUAD. Normal (n = 59). (c) LUSC. Tumor (n = 501). (d) LUSC. Normal (n = 51). (e) OV.
Tumor (n = 303). (f) UCEC. Tumor (n = 545). (g) UCEC. Normal (n = 35). (h) COAD. Tumor (n = 457).
(i) COAD. Normal (n = 41). (j) STAD. Tumor (n = 415). (k) STAD. Normal (n = 35). (l) GBM. Tumor
(n = 153). (m) GBM. Normal (n = 5).

Figure 6 shows that the BAX expression levels were significantly (p < 0.001) higher
in the tumor tissue than in the normal tissue when comparisons were made in LUAD,
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LUSC, OV, UCEC, COAD, STAD, and GBM patients. Similarly, BCL2L1 expression was
significantly (p < 0.001) higher in the tumor than in the normal tissue in UCEC, COAD, and
STAD patients, whereas CASP8 was significantly (p < 0.001) higher in the normal tissue
than in the tumor tissue (either p < 0.05 or p < 0.001) in LUSC. CASP8 was higher in the
tumor tissue than in the normal tissue in LUAD, UCEC, COAD, STAD, and GBM; however,
it was significantly (p < 0.05) higher in the normal than in the tumor tissue in LUSC patients.
The CASP9 expression level was higher in the normal tissue than the tumor tissue in UCEC
and COAD patients. The RELA expression level was significantly (p < 0.01) higher in the
normal tissue than in the tumor tissue in UCEC patients, whereas it was significantly (either
p < 0.01 or p < 0.001) higher in the tumor than the normal tissue in COAD, STAD, and GBM
patients. The NFKBIA expression level was significantly (p < 0.001) higher in the normal
than in the cancer tissue in LUAD, LUSC, UCEC, and COAD patients; however, it was
significantly (p < 0.01) higher in the tumor than the normal tissue in GBM patients.

Scheme 1 shows a comparison between normal and malignant tissue, indicating that
the BAX expression levels were higher in the tumor tissue than in the normal tissue in
LUAD, LUSC, OV, UCEC, COAD, STAD, and GBM patients. BCL2L1 expression was higher
in the tumor than in the normal tissue in UCEC, COAD, and STAD patients, whereas it was
higher in the normal tissue than in the tumor tissue in LUSC. The CASP8 gene expression
levels were higher in the tumor tissue than in the normal tissue in LUAD, UCEC, COAD,
STAD, and GBM; however, it was higher in the normal than in the tumor tissue in LUSC
patients. The CASP9 gene expression level was higher in the normal tissue than the tumor
tissue in UCEC and COAD patients. The RELA gene expression level was higher in the
normal tissue than in the tumor tissue in UCEC patients, whereas it was higher in the
tumor than the normal tissue in COAD, STAD, and GBM patients. The NFKBIA gene
expression level was higher in the normal than in the cancer tissue in LUAD, LUSC, UCEC,
and COAD patients; however, it was higher in the tumor than in the normal tissue in GBM
patients. The expression level of NFKBIA was considerably higher in normal tissue than in
tumors, suggesting that it may act as a tumor suppressor.

The studies analyzed the effect of noscapine on apoptosis in various cancer cell lines.
For example, noscapine increased the gene expression levels of BAX in the MCF-10F cell
line; it increased BAX, CASP9, and NFKBIA in MCF-7; and it increased BAX, CASP9,
and CASP8 in the MDA-MB-231 cell line. The results indicated that those BRCA patients
characterized by BAX and RELA gene expression had a negative ER status, whereas those
with BCL2L1 and CASP9 had a positive ER status. There was no significant difference in
those patients having CASP8 and NFKBIA gene expression. The analysis of the clinical
stages of patients with breast invasive carcinoma indicated that the BAX, BCL2L1, CASP8,
CASP9, RELA, and NFKBIA gene expression levels were higher in stages 3 and 4 for all
BRCA patients, and in stage 4 for BRCA-LumA patients, than in other clinical stages.
Additionally, stage 4 showed a difference in BRCA-Her2 and BRCA-LumB patients but not
at any stage in BRCA-Basal patients.
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