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Abstract: Melatonin is a ubiquitous regulator in plants and performs a variety of physiological roles,
including resistance to abiotic stress, regulation of growth and development, and enhancement of
plant immunity. Melatonin exhibits the characteristics of a phytohormone with its pleiotropic effects,
biosynthesis, conjugation, catabolism, effective concentration, and the shape and location of its
dose-response curves. In addition, CAND2/PMTR1, a phytomelatonin receptor candidate belonging
to the G protein-coupled receptors (GPCRs), supports the concept of melatonin as a phytohormone.
However, the biochemistry of plant melatonin receptors needs to be further characterized. In
particular, some of the experimental findings to date cannot be explained by known GPCR signaling
mechanisms, so further studies are needed to explore the possibility of novel signaling mechanisms.

Keywords: phytomelatonin; hormone; pleiotropic effects; receptor

1. Introduction

Since melatonin (N-acetyl-5-methoxytrypamine) was found in plants in 1995 [1-3],
increasing efforts have been focused on phytomelatonin research. I found more than
860 papers in the most recent 5 years through a web search with the combined key words
“melatonin” and “plant” (https://pubmed.ncbi.nlm.nih.gov (accessed on 24 January 2024)).
Interestingly, about 200 papers among them are reviews. This high number of review
papers may indicate the great interest of the community but also not enough research
verifying the action mechanism.

Melatonin is originally known as a neurohormone found in the bovine pineal gland
that regulates circadian rhythm, sleep, and other physiological events in the animal system,
but it is now recognized as a multifunctional regulator in diverse life groups including
invertebrates, plants, and procaryotes [4]. In plants, melatonin is involved in diverse
physiological events (Table 1), including the mitigation of abiotic stress and the regulation
of growth and development [5]. Furthermore, melatonin strengthens plant immunity and
protects plants against pathogens, supplying new possibilities for agricultural applica-
tion [6-8].

Melatonin has strong antioxidant activity of its own [9], so it can protect plants simply
by being present at the right concentration. This intrinsic antioxidant activity is due
to the chemical properties of the melatonin molecule, so that plant protection by high
concentrations of melatonin is a response independent of cellular signaling. However,
during evolution, plants appear to have acquired additional ways of using this substance
that have been present since the earliest days of life on Earth [6]. By perceiving melatonin
as a signal and linking it to intracellular signal transduction processes, plants were able to
achieve a higher level of regulation through the amplification or diversification of responses
to signal detection and integration of signals from different signaling pathways.
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Table 1. Examples of the pleiotropic effects of melatonin in plants.
Plants Responses Effectlve- References
Concentration

Alleviation of cold stress 10, 30 uM [10]
Upregulation of stress and defense genes and others 1mM [11]
Mediation of innate immunity against bacterial pathogens 20 uM [12]
Expression of CBF/DREB1s genes involved in stress response 50 uM [13]
Induction of nitric oxide and enhancement of innate immunity 20 uM [14]
Cell wall strengthening and callose accumulation against bacteria 50 uM [15]
Suppression of root meristem, auxin biosynthesis, and transport 100 uM-1 mM [16]
Arabidopsis  Repression of the floral transition by stabilizing DELLA proteins 0.5,1.0 mM [17]
Improvement of iron deficiency tolerance 5 uM [18]
Inhibition of brassinosteroid synthesis and decrease in hypocotyl growth 0.1-1.0 mM [19]
Promotion of lateral root development (synergism with auxin) 50-300 pM [20]
Regulation of stomatal closure 0.1-80 uM [21]
Inhibition of seedling growth and regulation of abscisic acid homeostasis 100, 300 uM [22]
Induction of pathogenesis-related proteins and other defense genes 10 uM [23]
Activation of mitogen-activated protein kinases (MPK3, MPK6) 1uM [24]
Improvement of germination by priming seeds with melatonin 50, 100 uM [25]
Delay of leaf senescence and improvement of antioxidant defense 25-75 uM [26]
Maize Induction of resistance to a fungal pathogen, Fusarium graminearum 50400 uM [27]
Enhancement of thermotolerance through modulation of antioxidant defense 10-70 uM [28]
Increase in drought stress tolerance 0.25-1.0 mM [29]
Mitigation of cold-stress-induced reactive oxygen species (ROS) accumulation 20, 100 uM [30]
Regulation of root architecture and modulation of auxin response 10-50 uM [31]
. Suppression of a pathogenic bacterial growth in rice 200 pg/mL [32]
Rice Improvement of resistance to rice stripe virus 0.1-10 uM [33]
Reduction of fluoride uptake and toxicity 20 uM [34]
Broad-spectrum antifungal activity 0.1-10 mM [35]
Enhancement of growth and resistance to abiotic stress 50, 100 uM [36]
Soybean Activation of auxin biosynthesis and signal transduction 20 uM [37]
Alleviation of salt-alkali stress by reducing oxidative damage of DNA 300 uM [38]
Mitigation of arsenate stress 100 uM [39]
Promotion of adventitious root development 50 uM [40]
Improvement of tomato fruit quality and more ascorbic acid and lycopene 0.1 mM [41]
Mitigation of acid rain stress and modulation of leaf ultrastructure 50-250 uM [42]
Acclimation to a combination of abiotic stresses 100 uM [43]
Alleviation of photosynthetic apparatus under cold stress 5-250 uM [44]
Promotion of salicylic acid and nitric oxide accumulation and viral resistance 50-400 uM [45]
Tomato Improvement of cadmium tolerance 100 uM [46]
Delay of leaf senescence in darkness 250 uM [47]
Alleviation of heat-indued damage by balancing redox homeostasis 100 uM [48]
Improvement of cold tolerance 100 uM [49]
Alleviation of nickel toxicity 100 uM [50]
Ethylene-dependent enhancement of carotenoid biosynthesis 50 uM [51]
Increase in the resistance to the fungal pathogen Botrytis cinerea 1-100 uM [52]
Mitigation of salt stress through modulation of polyamine metabolism 1uM [53]
Increase in photosynthetic capacity and salt tolerance 100 uM [54]
Wheat Enhancement of seed germination under salt stress 50-250 uM [55]
Reduction of chromium uptake and toxicity 1,2mM [56]

Because melatonin has existed as a biomolecule since the dawn of evolution, its role
in plants is complex, ranging from simple chemical action to receptor-mediated signal-
ing. While this situation is advantageous for plants, it creates considerable confusion for
melatonin researchers. The discovery of the melatonin receptor in plants [21] has led to
great advances in understanding how melatonin works as a signal molecule and leads to
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the suggestion of melatonin as a new phytohormone [57,58], but the details of the action
mechanism still remain poorly understood.

This review examines the melatonin responses in plants and aims to identify which of
these are characteristic of phytohormone responses. It examines the effective concentration,
biosynthesis, catabolism, transport, and dose-response curves of melatonin in plants and
compares them with those of other phytohormones. Additionally, this paper reviews
the current state of knowledge regarding the molecular biology and biochemistry of the
plant melatonin receptor. This review examines the adequacy of available information in
explaining the function of the melatonin receptor and discusses future works.

2. Pleiotropy

A characteristic of phytohormones is their pleiotropic action. The pleiotropy of phyto-
hormone action is probably one of the reasons that it is possible to regulate a wide range of
physiological responses with a limited number of phytohormones. In plants, the effects of
melatonin are pleiotropic (Table 1).

The most widely accepted effect of melatonin in plants is its activity against oxidative
stress. While melatonin itself is a potent antioxidant, it has the interesting property of
inducing the expression of genes that alleviate oxidative stress. Melatonin is also known
to interact with reactive oxygen species (ROS) and reactive nitrogen species (RNS) [6].
Not only against oxidative stress but also against diverse environmental stresses, e.g.,
salt, heat, drought, heavy metal, and strong light, melatonin protects plants [59]. Initially,
melatonin attracted attention for its alleviating effects on abiotic stress, but now its protec-
tive roles against biotic stress are being illustrated. Melatonin reduces damage caused by
viral, bacterial, and fungal infections in plants [7], giving the possibility to protect plants
using melatonin as a defense stimulator [60-62]. Melatonin also affects plant growth and
development, including root development, hypocotyl growth, germination, flowering, and
parthenocarpy [57]. In many cases, these pleiotropic effects of melatonin do not occur
directly but through a network of interactions with other phytohormones, including auxin,
gibberellin (GA), cytokinin, abscisic acid (ABA), ethylene, brassinosteroids, salicylic acid,
and jasmonic acid [6,63,64]. Melatonin and other phytohormones seem to share their
signaling pathways very often. Melatonin can also change the concentration of other phyto-
hormones, and the inverse has been known, too [64]. Interestingly, melatonin increases the
concentration of itself [65]. All of melatonin’s effects concerning abiotic stress [5,6,66-70],
biotic stress [6-8,71,72], and growth and development [5,66,69,70] have been extensively
reviewed in recent years.

3. Biosynthesis, Conjugation, and Catabolism

Melatonin is biosynthesized and catabolized like other phytohormones, and its metabolic
pathways consist of a regulatory network together with other phytohormones [64]. Mela-
tonin is synthesized in plants from tryptophan (Trp) mainly via trypamine, serotonin, and
N-acetylserotonin [66,73]. However, under some environmental stresses, melatonin is
produced via alternative pathways using 5-hydroxytryptophan or 5-methoxytryptophan or
both as intermediates. Indole-3-acetic acid (IAA), the representative auxin with an indole
ring like melatonin, is essentially produced from Trp via indole pyruvic acid in Arabidop-
sis [74]. In parallel, several biosynthetic pathways to produce IAA have been suggested in
diverse plants, including even a Trp-independent pathway based on the increase in IAA
in the Trp-deficient maize mutant orange pericarp [75]. Melatonin and auxin share some
intermediates, and this is one reason for the close relationship between melatonin and
auxin [37].

The biosynthesis of melatonin is a part of the regulatory network. For example,
ABA stimulates melatonin biosynthesis in watermelon by inducing gene expression of
CIASMT encoding N-acetylserotonin methyltransferase, CICOMT encoding caffeic acid
O-methyltransferase, and CISNAT encoding serotonin N-acetyltransferase [76].
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To meet the physiological demands by optimizing hormone levels, plants have evolved
sophisticated regulatory mechanisms of biosynthesis, catabolism, and conjugation. Mela-
tonin participates in the regulation of homeostasis of other hormones in various modes.
When plants experience water stress, ABA levels sharply rise to cope with the drought
by closing stomata [77]. The increased ABA is reduced through degradation and con-
jugation [77]. In contrast to the cooperative effect of melatonin and ABA on plant re-
sponses to environmental stress, melatonin contributes to the maintenance of hormonal
balance in Malus plants by decreasing the expression of the NECD gene encoding 9-cis-
epoxycarotenoid dioxygenase, which is involved in ABA biosynthesis, or by promoting the
expression of enzymes that catabolize ABA [68,78]. Melatonin also affects GA biosynthesis.
Active GA homologues are produced by GA-3 oxidase, and the increased hormone is inac-
tivated by GA-2 oxidase [79]. Melatonin regulates this fine-tuning of GA biosynthesis [80],
suggesting a complex network in the regulation of hormone levels.

Melatonin promotes ethylene biosynthesis during tomato fruit ripening by inducing
the expression of both 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC
oxidase, which are involved in ethylene biosynthesis [51]. In this case, the apparent pheno-
typic change is fruit ripening, but the direct effect of melatonin is on ethylene biosynthesis;
therefore, the observed effect of melatonin is indirect. These results suggest that mechanistic
studies are needed to understand the action of melatonin. In the ethylene biosynthesis
described above, there is a lack of information on how melatonin is perceived and linked to
gene expression, although it is known that a MYB transcription factor binds directly to the
promoter of the ACC synthase gene in another plant, grapevine [81]. Melatonin also affects
the biosynthesis of melatonin itself. Exogenous melatonin increased endogenous melatonin
levels in cassava [82] and maize [83], suggesting that self-stimulatory mechanisms may
operate under certain circumstances.

Not only biosynthesis, but also conjugation and catabolism, are important tools to
regulate hormone levels. All phytohormones are active in free form and lose their activity
when conjugated to sugars or amino acids, except jasmonic acid, which is only active when
conjugated to isoleucine [84]. Conjugation of melatonin was expected [85], but it has not
yet been demonstrated in plants. When melatonin encounters hydroxyl radicals, melatonin
can be chemically oxidized. In addition, melatonin is also enzymatically oxidized by
melatonin 2-hydroylase [86] and melatonin 3-hydroxylase [87] to 2-hydroxy- melatonin
and 3-hydroxymelatonin, respectively. Catabolism generally inactivates phytohormones.
2-oxoglutarate-dependent Fe(Il) dioxygenase (DIOXYGENASE FOR AUXIN OXIDATION;
DAO) oxidizes IAA to 2-oxindole-3-acetic acid (oxIAA) [88]. C26 hydroxylase (encoded by
BAST) and some other enzymes inactivate brassinosteroids [89]. GA2-oxidase inactivates
GA [79]. Interestingly, unlike the oxidation products of other hormones, oxidized melatonin
still exhibits antioxidant activity, although the activity is reduced to about 50%.

Multiple crosstalk among the regulatory mechanisms of phytohormone levels is an
important tool to harmonize the diverse responses to cope with complicated situations
for efficient survival. Melatonin, like other phytohormones, plays a role in this regulatory
network, although the detailed mechanism remains to be elucidated.

4. Transport

Transport is an important means of regulating the local distribution of plant hormones.
In particular, the polar transport of auxin by influx and efflux carriers is of great importance
for the establishment of polarity during plant development. Fine-tuning the direction of
auxin transport by redistributing efflux carriers (PINs) during development is an efficient
way to establish a new axis [90]. Strigolactone moves from root to shoot and regulates
apical dominance by suppressing axillary bud growth [91]. Melatonin transport is still
poorly understood. Melatonin supplied to maize roots accumulates in the leaves, and the
amount of accumulated melatonin decreases as the stomata closes [92], so it appears that
melatonin moves along the transpiration stream in the xylem, but the details are unknown.



Int. J. Mol. Sci. 2024, 25, 3550

50f 15

5. Dose Relationships
5.1. Effective Concentrations

Hormones are regulators that work at low concentrations, but the question is what
range of concentrations is meant by low in this case. To see if the concentrations at which
melatonin works are within the range of phytohormones, the working concentrations of
other phytohormones are checked as well as that of melatonin. Auxin shows activity in
the range of 0.1-10 uM to promote cell elongation in maize coleoptiles [93]. Cytokinin
suppresses Arabidopsis root growth in the range of 0.01-10 uM [94]. Melatonin shows
activity on stomatal closure in the range of 0.1-40 uM [21]. However, some effects of
melatonin appear at much higher concentrations, sometimes even higher than 1 mM [95,96].
These differences in effective concentrations of melatonin for different effects could be due
to whether the effects are via receptor signaling or not. Melatonin is a powerful antioxidant
and can directly counteract oxidants generated during plant stress without the need for
receptors at high concentrations.

5.2. Patterns of Dose—Response Curves

In phytohormone science, “dose-response” generally means “concentration gradient
response”. Numerically, the “hormone dose” can be assumed to be “the concentration of a
given hormone” times “the duration of the treatment”, as the light fluence is calculated as
the multiplication of “photons per unit area” and “the duration time”. However, such an as-
sumption is physiologically inappropriate for phytohormones, because the treatment with
1 uM TAA for 10 h and that with 10 uM IAA for 1 h gave qualitatively and quantitatively
different results in stem growth [93]. Therefore, concentration gradient response curves
obtained under the same experimental conditions are generally accepted as dose-response
curves for phytohormones.

Because the binding of a phytohormone to its receptor is an equilibrium between
bound and unbound states of the molecules, most of the dose-response curves show
changes over several orders of magnitude of the hormone concentrations [97]. Because
dose-response curves of phytohormones reflect the status of receptor and changes in signal
transduction, observation of dose-response curves is very useful to obtain information
about the hormone action.

As shown by the dose-response curves for phytohormones, responses vary depending
on the level of hormone, providing an efficient way to regulate hormone action (Table 1).
They typically show a saturating sigmoid or inverse sigmoid curve when the hormone
response is plotted against hormone concentration [98-100] or a bell-shaped character-
istic [93,101] where the response peaks at a certain concentration and then declines. If
the hormone response is suppressive, the bell-shaped dose-response curve can also be
expressed as a U-shaped curve [21] (Table 2). The shape of dose-response curves for the
same hormone can vary depending on the type of response, tissue, organ, plant species,
and many other conditions.

The dose-response curve of melatonin for stomatal closure is U-shaped [21], but the
curve for Arabidopsis root growth is inverse sigmoidal [16]. Because the dose-response curve
of melatonin over 1078 M to 10~% M for coleoptile and root growth in some monocot plants
was not simply bell-shaped and was even somewhat inhibitory at high concentrations [102],
the character was interpreted as hormetic [103].
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Table 2. Types of dose-response curves for some phytohormones.
Dose-Response Hormone Response References
Sigmoidal
Auxin Elongation of maize coleoptiles and pea stems [98]
Petiole elongation in Ranunculus sceleratus [104]
Gibberellin Leaf elongation in the dwarf mutants of barley [99]
Cytokinin Amaranthin accumulation [105]
Strigolactone Germination in some parasite plants [106]
Inverse sigmoidal
Auxin Root growth in Arabidopsis [107]
Cytokinin Root growth in Arabidopsis [94]
Abscisic acid Germination in Arabidopsis [108]
Brassinosteroid Growth of etiolated pea seedling [109]
Melatonin Root growth in Arabidopsis [16]
Bell-shaped

Auxin Maize coleoptile elongation by IAA and 4-CI-IAA [101]
Pea epicotyl protoplast swelling [110]

Maize coleoptile elongation [93,111]
Strigolactone Seed germination in some Striga plants [112]
Salicylic acid PR1 accumulation in tobacco cell culture [113]
Melatonin The maximum quantum yield of photosystem II (Fv/Fm) [114]

U-shaped
Melatonin Stomatal closure in Arabidopsis [21,114]

<

Malondialdehyde (MDA) content

5.3. Changes in Dose—Response Curves and Regulatory Implications

As described above, the shape of the dose-response curve is important, but another
equally important characteristic is the location of the dose-response curve [97]. A dose—
response curve on the left indicates a more sensitive response than a dose-response curve
on the right (Figure 1).

Response

more sensitive

less sensitive

Hormone concentration in log scale

Figure 1. Dose-response curves of a phytohormone reveal the sensitivity change reflecting the

ligand affinity of the receptor. Arrows indicate the direction of shift of the original dose-response

curve (black).
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A leftward shift of a dose-response curve has been suggested to indicate an increased
affinity of the receptor for its ligand [115]. However, the rightward shift of the dose—
response curve of root growth to auxin in the aux1 mutant [107], which has a defective
auxin influx carrier, suggests that some cause other than a change in receptor affinity may
induce the leftward or rightward shift of the dose-response curve.

Generally, this type of change is described by the term “sensitivity change”, which
has a broad meaning and includes changes in affinity, receptivity (changes in the num-
ber of receptors), endogenous hormone levels, or any other physiological changes that
affect hormone responses [115]. The dose-response curves of maize coleoptiles to auxin
were different when treated with auxin 0.5 h or 2.5 h after tissue excision, indicating a
time-dependent change in auxin sensitivity [116]. Furthermore, in a semiaquatic plant,
Ranunculus sceleratus, petiole elongated auxin dependently, and the dose-response curve
of the growth was shifted to the left by ethylene [104]. Interestingly, ethylene desensiti-
zation is mediated by a gene family, ARGOS, whose expression is induced by auxin in
Arabidopsis [117]. Trewavas (1983) recognized such a great potential to regulate hormonal
action by modulating sensitivity without changing phytohormone levels [75]. However, the
regulation mechanism of phytohormone sensitivity remains largely unexplored. Despite its
importance, the sensitivity regulation of melatonin action also remains to be investigated.

6. Receptors
6.1. Finding of Receptors and Disputes

Probably one of the most important proofs that a bioactive substance is a hormone
is the presence of its receptor. Even after it was widely recognized that melatonin ex-
ists in plants and has a wide range of bioactivities, how plants perceive it remained a
mystery. Therefore, the first paper suggesting that PMTR1 in Arabidopsis is the mela-
tonin receptor [21] has received a lot of attention. PMTR1 was a CAND2 (candidate
GPCR?2) identified in Arabidopsis from previous studies, but its function was unknown [118].
The CAND?2 protein (Q94AH1.1) consists of 300 amino acid residues, has a molecular
weight of 34.1 kDa and an isoelectric point (pI) of 6.38, and contains seven transmem-
brane domains. Sequence analysis indicated that this protein belongs to a branch of
GPCRs. Because the animal melatonin receptors, M1 and M2, are high-affinity GPCRs,
the idea that the plant melatonin receptor is also a GPCR was intriguing. Since the first
report, proteins with similarity to CAND2/PMTR1 have been identified in Panax notogin-
seng [119], Nicotiana benthamiana [120], Medicago sativa [121], Zea mays [122], and Gossypium
hirsutum [123]. In CAND2/PMTR1 knock-out mutants or overexpressed plants, stomatal
closure [21,124], immunity [119,120], osmotic stress tolerance [125], salt and osmotic stress
tolerance [121,122] and mitochondrial gene expression [126] were affected, supporting the
idea that the CAND2/PMTR1 is the actual phytomelatonin receptor. However, some re-
searchers questioned the conclusion that CAND2/PMTRI is a receptor for phytomelatonin
because they obtained different results in Arabidopsis [127], whereas CAND2/PMTR1 was
first reported to be the receptor for phytomelatonin [21].

The workers double-checking the first report observed slight differences in the lo-
calization of CAND2/PMTR1-mCherry and FLS-2-GFP (as a plasma membrane marker),
melatonin-induced MAPK (MPK3/6) activation and several gene expressions in cand2
mutants, and MPK3/6 activation in the gpal mutant [127]. The first report showed the
localization of CAND2/PMTR1-YFP and YFP (as a cytoplasmic marker) in separate cells
without the use of a plasma membrane maker [21]. Unfortunately, the location of YFP
was confusingly similar to that of CAND2/PMTR1-YFP [21], although the authors inter-
preted the result as confirming the plasma membrane localization of CAND2/PMTR1.
Later, it was shown that the localization of GFP-PMTR1 and PIP2-mCherry (a plasma
membrane marker) coincided with another group [119]. The plasma membrane localization
of CAND2/PMTR1 was also confirmed in alfalfa [121].

The next argument was the activation of MPK3/6 by melatonin in the cand2-1 and cand
2-2 mutants [127]. The cand2-1 was used in the first report to show the aberrations in the
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stomatal closure and ion fluxes regulated by melatonin [21]. To investigate this point, the
researchers who double-checked the first report measured the transcript level of CAND2
in cand2-1 and cand2-2 and found that the CAND2 mRNA accumulation was abolished in
the cand2-2 but not in the cand2-1 [127], which was used to obtain evidence for the receptor
function of CAND2/PMTR1 [21]. However, they did not check the CAND2/PMTR1 protein
level. Because the transcript level does not necessarily correspond to the protein level, this
question remains open.

Another argument was that melatonin-induced gene expression and MPK3/6 ac-
tivation were normal in the gpal mutant [127]. GPA1l encodes G«, which is part of a
heterotrimeric GTP-binding protein that interacts with GPCRs and is known to play a
key role in signal transduction. Because CAND2/PMTR1 was identified as a GPCR, the
normal function of melatonin in the gpal mutant seemed to make no sense, casting doubt
on CAND2/PMTRI1 as the melatonin receptor. However, melatonin-induced activation of
MPK3/6 was impaired in pmtrl mutant but was normal in the gpal-4 mutant [119], strongly
suggesting the involvement of another signaling pathway that is GPAl-independent. In
contrast, melatonin-induced stomatal closure was aberrant in the gpal-4 mutant [119].

The evidence collected to date suggests that CAND2/PMTR1 acts as a receptor for
phytomelatonin. However, if one were to add another question, it would be about the
biological benefits of localizing the melatonin receptor to the plasma membrane. What
would be the advantages of signal perception at the cell surface for melatonin, which easily
passes through membranes?

6.2. Biochemistry of the Receptors

The main feature of a hormone receptor is binding to its ligand. The binding can
be biochemically described following a saturating competitive binding assay. Several
papers on CAND2/PMTR1 included the binding assay results and reported that the K4
of CAND2/TMPR1 was about 0.73 nM in Arabidopsis [37] and about 1.026 nM (with Bpax
0.93 pmol/6 nmol protein) in alfalfa [128]. Another paper reported the ECsy value of
47.8 nM in maize [122]. Unfortunately, the procedures for the binding assay and the results
were described only briefly. Thus, it remains unclear how the melatonin was labeled,
whether the equilibrium was properly achieved, whether there was adequate competition
with unlabeled melatonin, how the specific binding was estimated, and how Ky and
Bmax were determined. Because the molecular weight of the CAND2/PMTR1 protein is
known, it should be possible to calculate the number of ligand binding sites on the receptor
from Bmax, but the experimental results were presented too simplistically to make the
necessary calculations.

One paper presented a nice saturation curve of melatonin binding to CAND2/PMTR1
as evidence for ligand binding to the candidate receptor in cassava [128]. The shape of the
saturation curve looked similar to that observed for other hormone binding but was in fact
unique when the fold change of melatonin from basal to saturation level was considered. In
their hands, the binding was saturated when melatonin was increased from 0.5 to 1.5 nmol
in the presence of 20 mmol of purified MePMTR1 [128]. In general, saturation of ligand
binding to a hormone receptor occurs over at least two or more orders of magnitude of
increase in ligand concentration. Therefore, it is very difficult to observe the saturation
of ligand binding with only the labeled ligand due to the difficulty of preparing high
concentrations of labeled ligand. Instead, the binding characteristics of a ligand to its
receptor are measured by preparing a certain concentration of labeled ligand and allowing
it to compete with various concentrations of unlabeled ligand for binding to the receptor.
The competitor ligand decreases the measured indicator of the labeled ligand, such as
radioactivity, in a concentration-dependent manner. However, the specific activity of the
ligand mixture provides the actual amount of increasing ligand binding to the receptor,
including both the labeled and unlabeled ligand. The binding saturation occurs over several
orders of magnitude of the ligand. Unfortunately, the description of the unique aspect of
melatonin binding to MePMTR1 in a narrow range was omitted in the paper [128].
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The long debate over auxin-binding protein 1 (ABP1) [129-134] shows that hormone-
binding proteins must be thoroughly validated before they can be accepted as receptors.
After the first discovery of auxin binding to membranes [135], efforts were made to find
proteins that specifically bind to auxin. A protein isolated from maize shoots, which
have been extensively used to monitor auxin activities, showed specific auxin binding
with a Kd value of 6 x 1078 M [136]. Finally, the gene for the auxin-binding protein
was cloned, and the molecular characteristics of ABP1 were revealed [137]. ABP1 had a
molecular mass of 22 kDa and contained the endoplasmic reticulum retention signal KDEL,
which could explain the fact that auxin binds to the endoplasmic reticulum, as reported
in previous papers [138]. However, based on discrepancies between the dose-response
curve of 1-naphthalene acetic acid (1-NAA; an artificial auxin) and the Ky value of ABP1,
along with several other uncertainties, skeptical questions have been raised about the
receptor function of ABP1, even calling it a red herring [129] or an outsider [131]. Further
molecular biological and biochemical evidence supporting the physiological function of
ABP1 has been presented and repeatedly rejected [134], leaving the role of ABP1 as an auxin
receptor uncertain. As seen in the ABP1 debates, further efforts are needed to confirm the
physiological function of CAND2/PMTR1 as a phytomelatonin receptor.

To establish the physiologically relevant melatonin receptor function of CAND2/PMTR1,
the first step would be an elaborated biochemical description of the binding properties,
followed by a good match between the biochemical properties of the hormone-binding
protein and the molecular physiological responses induced by melatonin. With regard to
this point, I still have questions about the reason for the difference between the melatonin
dose-response and the melatonin binding characteristics of CAND2/PMTR1; for example,
stomatal closure showed maximum activity at 1 to 10 tM melatonin, but melatonin bind-
ing was already saturated at 100 nM [21]. The next step would be to determine whether
the binding of melatonin alters the conformation of CAND2/PMTR1 and whether these
changes are associated with subsequent signaling. In particular, the interaction between
CAND2/PMTR1 and GPA1 is important because there are some conflicting results. Scru-
tinizing the action of GPA1 may provide new clues that lead us to a different signaling
pathway or even an unexpected new receptor.

7. Perspectives

Phytomelatonin is biosynthesized and degraded in plants and induces a variety of
responses. Some of the responses induced by low concentrations of melatonin show
characteristics of hormone responses, while other responses to high concentrations of
melatonin may be due to the chemical nature of melatonin. One of the most critical
criteria for recognizing melatonin as a phytohormone is the existence of the receptor.
CAND2/PMTR1 is currently considered the primary candidate for the phytomelatonin
receptor. Mutations in CAND2/PMTR1 have been found to either abolish or reduce several
melatonin-induced responses in plants, indicating its critical involvement in melatonin
actions. However, there are melatonin responses that cannot be explained by the general
action mode of the G protein-coupled receptors to which CAND2/PMTR1 belongs. There
may be signaling pathways of phytomelatonin that are dependent on GPA1, and others
that are independent of it (Figure 2). Furthermore, the signaling mechanisms for many
other physiological responses regulated by CAND2/PMTR1 remain unclear. To establish
CAND?2/PMTR1 as a receptor for phytomelatonin, it is necessary to thoroughly characterize
its biochemical properties. Then, the mechanisms of signal transduction that induce
the molecular physiological responses to melatonin must be elucidated. The melatonin
responses in plants that are not accounted for by CAND2/PMTR1 may be attributed
to the chemical properties of melatonin itself. However, it is also possible that plants
have a distinct signaling process that differs from the classical GPCR signaling. It is also
possible that plants even have another type of phytomelatonin receptor in addition to
CAND2/PMTR1.
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Figure 2. Melatonin responses regulated by CAND2/PMTR1. MAPK activation occurs independently
of GPA1 [119], while stomatal closure is dependent on GPA1 [119]. The mechanisms that regulate
ABA biosynthesis [22], salicylic acid accumulation [120], expression of PR genes [120], mitochondrial
gene expression [126], ROS scavenging activity [125], and tolerance to salt [123], drought [122],
and osmotic [125] stress under the regulation of CAND2/PMTRI are not yet fully understood.
Dephosphorylation of CAND2/PMTR1 abolishes the binding of melatonin to CAND2/PMTR1 [128].
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