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Abstract: Angiopoietin-like 3 (ANGPTL3) is a hepatokine acting as a negative regulator of lipoprotein
lipase (LPL). Vupanorsen, an ANGPTL3 directed antisense oligonucleotide, showed an unexpected
increase in liver fat content in humans. Here, we investigated the molecular mechanism linking
ANGPTL3 silencing to hepatocyte fat accumulation. Human hepatocarcinoma Huh7 cells were
treated with small interfering RNA (siRNA) directed to ANGPTL3, human recombinant ANGPTL3
(recANGPTL3), or their combination. Using Western blot, Oil Red-O, biochemical assays, and
ELISA, we analyzed the expression of genes and proteins involved in lipid metabolism. Oil Red-O
staining demonstrated that lipid content increased after 48 h of ANGPTL3 silencing (5.89 ± 0.33 fold),
incubation with recANGPTL3 (4.08 ± 0.35 fold), or their combination (8.56 ± 0.18 fold), compared to
untreated cells. This effect was also confirmed in Huh7-LX2 spheroids. A total of 48 h of ANGPTL3
silencing induced the expression of genes involved in the de novo lipogenesis, such as fatty acid
synthase, stearoyl-CoA desaturase, ATP citrate lyase, and Acetyl-Coenzyme A Carboxylase 1 together
with the proprotein convertase subtilisin/kexin 9 (PCSK9). Time-course experiments revealed that 6 h
post transfection with ANGPTL3-siRNA, the cholesterol esterification by Acyl-coenzyme A cholesterol
acyltransferase (ACAT) was reduced, as well as total cholesterol content, while an opposite effect
was observed at 48 h. Under the same experimental conditions, no differences in secreted apoB and
PCSK9 were observed. Since PCSK9 was altered by the treatment, we tested a possible co-regulation
between the two genes. The effect of ANGPTL3-siRNA on the expression of genes involved in the de
novo lipogenesis was not counteracted by gene silencing of PCSK9. In conclusion, our in vitro study
suggests that ANGPTL3 silencing determines lipid accumulation in Huh7 cells by inducing the de
novo lipogenesis independently from PCSK9.

Keywords: ANGPTL3; vupanorsen; lipids; PCSK9; de novo lipogenesis

1. Introduction

Angiopoietin-like 3 (ANGPTL3) was first identified and cloned in 1999 [1], and its
role in lipid metabolism was described in a subgroup of inbred strain KK obese mice
(named KK/San) [2]. Liver-specific overexpression of ANGPTL3 or intravenous injection
of the purified protein in KK/San and C57BL/6 mice determined an increase in circulating
plasma lipid levels [2]. The link between ANGPTL3 and lipid metabolism is related to
an impairment of very low-density lipoprotein triglycerides (VLDL-TG) clearance, due to
the inhibition of lipoprotein lipase (LPL) activity [3] and by a direct activation of lipolysis
in adipocytes [4], a process resulting in free fatty acid (FFA) and glycerol release into the
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circulation [4]. Beyond LPL, ANGPTL3 also inhibits the phospholipase activity of endothe-
lial lipase (EL) [5], an expressed enzyme anchored on the luminal surface of endothelium
that preferentially regulates plasma HDL cholesterol levels [5]. EL is more active as a
phospholipase enzyme compared to hepatic lipase (HL) and LPL, which preferentially
catalyzed the hydrolysis of TG [6]. Loss-of-function (LOF) mutations in the ANGPTL3
gene determine familial combined hypolipidemia (FHBL2), a disorder characterized by
very low levels of apolipoprotein B (apoB), apolipoprotein A1 (apoA-1) and their asso-
ciated lipoproteins VLDL, low-density lipoprotein (LDL), and high-density lipoprotein
(HDL), compared to non-carriers [7]. Heterozygous LOF variants in ANGPTL3 were also
associated with decreased odds of atherosclerotic cardiovascular disease [8]. Given the
relationship between LOF mutations in ANGPTL3 gene and the lower risk of developing
ASCVD, a pharmacologic intervention aiming at reducing ANGPTL3 levels is promising.
This evidence led to the development of pharmacological agents acting as ANGPTL3
inhibitors, namely the monoclonal antibody (mAb) evinacumab [9,10], and the N-acetyl
galactosamine (GalNAc) modified oligonucleotide antisense (ASO) vupanorsen [11,12].
Evinacumab is currently approved for the treatment of patients with homozygous fa-
milial hypercholesterolemia, regardless of the degree of their LDL-receptor function [13].
Notably, the mechanism of action does not engage the LDL receptor; in fact, ANGPTL3
inactivation may lower LDL levels by reducing the liver’s secretion of VLDL particles,
leading to a decreased processing of VLDL remnants into LDL [14]. The inactivation of
ANGPTL3, either by genetic deletion or with a mAb, reduced the secretion of TG, but
not of apoB-100 or apoB-48 [14,15]. Instead, the reduction in LDL and apoB, in response
to ANGPTL3 inhibition, can be explained by the increased clearance of apoB-containing
lipoproteins as they progress through the lipolytic cascade, thereby decreasing the fraction
of VLDL that is converted to LDL and reducing LDL production [14]. This is consistent
with the observation that the inactivation of ANGPTL3 in mice, by gene targeting or by
anti-ANGPTL3 antibodies, reduced plasma cholesterol levels in mice lacking functional
ApoE [16] or LDL receptors [17]. Vupanorsen, the Gal-NAc-ASO, confirmed that the in-
hibition of ANGPTL3 production leads to a significant reduction in non-HDL-cholesterol
and TG, with a more modest effect on LDL-cholesterol and apoB, as seen from the phase
2b clinical trial TRANSLATE-TIMI 70 [18]. However, the administration of vupanorsen
has resulted in an increase in liver enzymes and a dose-dependent elevation of fat in the
liver. This increase is proportional to the effective silencing of ANGPTL3 [18]. This effect
has not been observed with the monoclonal antibody Evinacumab, which, on the contrary,
has been shown to be well-tolerated by patients. Real-world studies have demonstrated
that Evinacumab is a safe and effective treatment for these patients [19,20]. Genetically
determined complete or partial absence of ANGPTL3 in human subjects does not correlate
either with changes in liver fat content, hepatic steatosis risk, or variations in extrahepatic
fat distribution [12,21]. Finally, no such effects were observed in ANGPTL3 null mice [22].

Considering this apparent discrepancy, we decided to investigate the basic molecular
mechanism underlying the lipid accumulation in hepatocytes by using an in vitro cultured
cell line.

2. Results

In the first series of experiments, we explored the effect of ANGPTL3 gene silencing
on lipid accumulation in human hepatoma cell line Huh7. Commercially available small
interfering RNA (ANGPTL3-siRNA) determined a significant reduction in mRNA (−79%)
and protein levels (−67%) of ANGPTL3 compared to scramble-siRNA (Figure 1A–C). Lipid
accumulation was then evaluated by Oil Red-O staining detecting neutral lipids, such
as TG and cholesterol esters. Huh7 cells incubated with cultured media containing 10%
FCS showed a minimal content of lipids under basal condition or after transfection with
scramble-siRNA (Figure 1D). Differently, ANGPTL3-siRNA determined a significant in-
crease in intracellular lipids (5.9 ± 0.3 fold). To resemble the physiological condition, we
incubated the cells with 100 ng/mL of human recombinant ANGPTL3 in the absence or



Int. J. Mol. Sci. 2024, 25, 3708 3 of 16

presence of ANGPTL3-siRNA [23]. Interestingly, ANGPTL3 also significantly induced intra-
cellular lipid accumulation (4.1 ± 0.4 fold), an effect that was almost additive to ANGPTL3-
siRNA. Indeed, the combination of human recombinant ANGPTL3 and ANGPTL3-siRNA
determined a maximum effect on intracellular lipid content (8.6 ± 0.2 fold, Figure 1D,E).
Thus, our experimental condition very closely resembled the effect of vupanorsen on lipid
liver accumulation [11,12].
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were calculated using Student’s t-test *** p < 0.001 vs. siRNA-scramble. (D) Neutral lipid content 
was visualized by Oil Red-O staining. Representative images are shown in panel (D), blue is DAPI 
(nuclei), red is Oil Red-O (neutral lipids). (E) Quantification of Oil Red-O area relative to nuclei was 
performed with ImageJ v.1.54d. p values were calculated using Student’s t-test. ** p < 0.01, *** p < 
0.001 vs. basal. All data are presented as mean ± SD of three independent experiments. 

To further corroborate our findings, we utilized a similar approach in Huh7-LX2 
(24:1) spheroids. ANGPTL3-siRNA was reduced by 46.9% compared with ANGPTL3 
mRNA expression (Figure 2A). This effect was sufficient to strongly induce lipid accumu-
lation, determined by Oil Red-O staining (Figure 2B,C). Similarly to what was observed 
in the Huh7 cell line, human recombinant ANGPTL3 also induced intracellular lipid ac-
cumulation, although with higher variability. The effect of lipid accumulation of 
ANGPTL3-siRNA was also confirmed in the combination with 100 ng/mL of human re-
combinant ANGPTL3 (Figure 2B,C). 

Figure 1. ANGPTL3-siRNA induced lipid accumulation in human hepatoma cell line Huh7. (A) RT-
qPCR was performed on total RNA. Data expressed as ∆∆Ct referred to cells transfected with
siRNA-scramble. (B,C) ANGPTL3 expression was determined by Western blot analysis and GAPDH
was used as the loading control. (C) Bar graphs of quantification of Western blot analysis. p values
were calculated using Student’s t-test *** p < 0.001 vs. siRNA-scramble. (D) Neutral lipid content
was visualized by Oil Red-O staining. Representative images are shown in panel (D), blue is DAPI
(nuclei), red is Oil Red-O (neutral lipids). (E) Quantification of Oil Red-O area relative to nuclei
was performed with ImageJ v.1.54d. p values were calculated using Student’s t-test. ** p < 0.01,
*** p < 0.001 vs. basal. All data are presented as mean ± SD of three independent experiments.

To further corroborate our findings, we utilized a similar approach in Huh7-LX2 (24:1)
spheroids. ANGPTL3-siRNA was reduced by 46.9% compared with ANGPTL3 mRNA
expression (Figure 2A). This effect was sufficient to strongly induce lipid accumulation,
determined by Oil Red-O staining (Figure 2B,C). Similarly to what was observed in the
Huh7 cell line, human recombinant ANGPTL3 also induced intracellular lipid accumula-
tion, although with higher variability. The effect of lipid accumulation of ANGPTL3-siRNA
was also confirmed in the combination with 100 ng/mL of human recombinant ANGPTL3
(Figure 2B,C).
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Figure 2. ANGPTL3-siRNA induced lipid accumulation in Huh7-LX2 spheroids. (A) RT-qPCR
was performed on spheroids, and data expressed as ∆∆Ct referred to cells transfected with siRNA-
scramble. (B) Representative images of intracellular neutral lipid content visualized by Oil Red-O
staining. Blue is DAPI (nuclei), red is Oil Red-O (neutral lipids). (C) Histograms of quantification
of Oil Red-O stained area relative to nuclei was performed with ImageJ. All data are presented as
mean ± SD of three independent experiments. Representative images for each experiment were
chosen. p value was calculated using Student’s t-test. *** p < 0.001 vs. siRNA-scramble.

Considering the physiological role of ANGPTL3, we determined the LPL activity
from the total cell lysates of the Huh7 cell line (Figure 3A). We detected a very low basal
activity of LPL which significantly increased by 4.4-fold after silencing of ANGPTL3 and
was inhibited by the addition of recombinant ANGPTL3. A lower inhibitory effect on LPL
activity was observed in Huh7 cells incubated with the combination of ANGPTL3-siRNA
and recANGPTL3. No significant changes were detected in apoB concentrations in the
conditioned media, indicating that genetic manipulation of ANGPTL3 did not modulate
the production of apoB-containing lipoprotein (Figure 3B). On the contrary, a significant
increase in FAS was detected by total protein lysates of Huh7 cells in response to ANGPTL3-
siRNA (1.45-fold). A similar effect was observed in the presence of human recombinant
ANGPTL3 (1.47-fold). These results indicated that the lipid accumulation observed after
gene silencing of ANGPTL3 is stimulated by the activation of the de novo lipogenesis that
was not associated with increased secretion of apoB-containing lipoproteins.

A more complete analysis of proteins involved in lipid metabolism revealed that,
together with the induction of FAS (1.33-fold), SCD1 was also induced by 1.21-fold in
response to gene silencing of ANGPTL3 (Figure 4A,C,D). More intriguingly, we observed
a significant induction of PCSK9 expression, suggesting the activation of the sterol regu-
latory element binding protein 1 (SREBP1) transcription factor that modulates all these
genes [24,25]. Indeed, mRNA levels of FAS, SCD1, ATP citrate lyase (ACLY), and Acetyl-
Coenzyme A Carboxylase 1 (ACC1) genes that are transcriptionally regulated by SREBP1
were induced after silencing of ANGPTL3 (3.8-fold, 2.9-fold, 1.2-fold, and 1.5-fold for FAS,
SCD1, ACLY, and ACC1, respectively; Figure 4F–I).
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Figure 3. ANGPTL3-siRNA induced FAS in Huh7 cell line. (A) Cells were transfected with scramble-
siRNA and ANGPTL3-siRNA, and incubated for 24 h, then recANGPTL3 was added. Then, 24 h later,
LPL assay was performed, and obtained data are expressed as milliunits per liter vs. basal condition.
(B) ELISA on secreted apoB was performed on cell supernatant after 48 h of incubation. Data are
expressed as fold change vs. basal after normalization on total protein content. (C) ANGPTL3 and FAS
expression were determined by Western blot analysis and GAPDH was used as the loading control.
(D,E) Histograms of quantification of Western blot analysis. All data are presented as mean ± SD of
three independent experiments. p value was calculated using Student’s t-test. * p < 0.05, *** p < 0.001
vs. basal.

Since we observed that PCSK9 is induced in response to ANGPTL3 silencing, we
decided to study the effect of PCSK9-siRNA on the expression of lipid-related genes.
As shown in Figure 4, PCSK9 silencing showed an even stronger induction of de novo
lipogenesis genes compared to ANGPTL3-siRNA with a 7.5-fold, 3.7-fold, 1.3-fold, and
1.5-fold increase in mRNA levels of FAS, SCD1, ACLY, and ACC1, respectively (Figure 4F–I).
This evidence opens the possibility that PCSK9 and ANGPTL3 may be mutually regulated
and that both could contribute to the final regulation of intracellular lipid homeostasis.
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of ANGPT3 gene silencing, Huh7 cells were incubated with [1-14C]oleic acid for 4 h and 
its incorporation into cholesterol esters was determined. Interestingly, we observed a par-
tial reduction in ACAT activity 6 h post silencing and a significant induction at 48 h (Figure 
5A). These data indicated that the silencing of intracellular ANGPTL3 determined, at early 
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Figure 4. ANGPTL3-siRNA induced genes regulated by SREBP1 transcription factor. (A) Cells were
transfected with scramble-siRNA or ANGPTL3-siRNA and incubated for 48 h. ANGPTL3, FAS,
SCD1, and PCSK9 expression were determined by Western blot analysis and GAPDH was used
as the loading control. (B–E) Histogram graphs show the relative protein amount calculated as
protein/GAPDH vs. siRNA-scramble. (F–I) Cells were transfected with scramble-siRNA, PCSK9-
siRNA, or ANGPTL3-siRNA and incubated for 48 h. mRNA levels of FAS, SCD1, ACLY, and ACC1
were determined by quantitative real-time PCR. All data are presented as mean ± SD of three
independent experiments. p value was calculated using Student’s t-test. * p < 0.05, ** p < 0.01,
*** p < 0.001, vs. siRNA-scramble.

The SREBP pathway is induced in response to free intracellular sterol deprivation [26].
We thus determined the Acyl-coenzyme A cholesterol acyltransferase (ACAT) activity at
different time points post transfection with ANGPTL3-siRNA. After 6, 24, and 48 h of
ANGPT3 gene silencing, Huh7 cells were incubated with [1-14C]oleic acid for 4 h and its
incorporation into cholesterol esters was determined. Interestingly, we observed a partial
reduction in ACAT activity 6 h post silencing and a significant induction at 48 h (Figure 5A).
These data indicated that the silencing of intracellular ANGPTL3 determined, at early time
points, a partial deprivation of free cholesterol as a substrate of ACAT enzyme, a condition
that is restored at 24 h and with the increase in cholesterol-ester observed at 48 h. Indeed,
the determination of total cholesterol levels indicated a trend of intracellular reduction in
response to ANGPTL3-siRNA at early time points (6 h and 24 h) (Figure 4D). ACAT mRNA
was also induced at 48 h, consistently with the higher cholesterol esterification in response
to ANGPTL3 silencing (Figure 4B). Western blot analysis confirmed that ANGPTL3-siRNA
efficiently affected its expression at as early as 6 h, with a stronger effect at longer time
points (Figure 4C).
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esterification was measured by incubating cells with [1-14C]oleic acid for 4 h. (B) mRNA levels of
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mination by LC-APCI-MS. p value was calculated using one-way ANOVA. * p < 0.05; ** p < 0.01 vs.
scramble-siRNA.

PCSK9 has been directly associated with plasma TG levels [27] and liver fat accumu-
lation [28]; therefore, we investigated its possible involvement in lipid accumulation in
response to ANGPTL3-siRNA. To test this hypothesis, we performed a double gene silenc-
ing by co-transfecting Huh7 with siRNA targeting either ANGPTL3 or PCSK9. Both genes
were significantly downregulated after single or double siRNA transfection (Figure 6A,B).
More interestingly, we observed a mutual regulation of PCSK9 and ANGPTL3; indeed, after
transfection with ANGPTL3-siRNA, PCSK9 mRNA was upregulated (Figure 6B) and vice
versa, gene silencing of PCSK9 induced ANGPTL3 mRNA levels (Figure 6A).

As previously observed, the absence of ANGPTL3 significantly induced FAS and
SCD1, and this effect was also superimposable after gene silencing of PCSK9 (Figure 6C–E).
PCSK9 silencing showed a minor inducing effect on SCD1 without changing the expression
of the LDL receptor (Figure 6F), and ANGPTL3-siRNA did not change either the LDL
receptor expression or LDL DyLightTM 550 uptake (Figure 6F,G). Thus, ANGPTL3-siRNA
induced genes involved in the de novo lipogenesis independently from PCSK9, most likely
by activating the SREBP1 transcription factor, as observed by quantitative real-time PCR
analysis (Figure 6G).

Finally, Oil Red-O staining confirmed that lipid accumulation in response to ANGPTL3-
siRNA also occurred when co-transfected with PCSK9-siRNA (Figure 7A,B).

Taken together, the absence of ANGPTL3 determined lipid accumulation in human
hepatoma cell line Huh7, by promoting the de novo lipogenesis independently from PCSK9,
and without determining an increase in the secretion of apoB-containing lipoproteins.
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Figure 6. ANGPTL3-siRNA induced genes involved in the de novo lipogenesis independently from
PCSK9. (C–F) Cells were transfected with scramble-siRNA, ANGPTL3-siRNA, or PCSK9-siRNA and
incubated for 48 h. FAS, SCD1, and LDL-R expression were determined by Western blot analysis
and GAPDH was used as the loading control (C). Histogram shows the relative protein amount
calculated as protein/GAPDH vs. scramble-siRNA (D–F). (A,B,G) mRNA levels of ANGPTL3,
PCSK9, and SREBP1 were determined by quantitative real-time PCR 48 h after treatment. (H) Under
the same experimental conditions described for panel (C–F) the LDL-DyLightTM 550 uptake was
determined by flow cytometry and indicated as mean fluorescence index (MFI%). All data are
presented as mean ± SD of three independent experiments. p value was calculated using Student’s
t-test. ** p < 0.01, *** p < 0.001 vs. siRNA-scramble.
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Figure 7. ANGPTL3-siRNA induced lipid accumulation in human hepatoma cell line Huh7 inde-
pendently from PCSK9. (A,B) Cells were transfected with siRNA-scramble, ANGPTL3-siRNA, or
PCSK9-siRNA, and incubated for 48 h. Intracellular neutral lipid content was visualized by Oil
Red-O staining. (A) Quantification of Oil Red-O area relative to nuclei was performed with ImageJ v.
1.54d. (B) Representative images, blue is DAPI (nuclei), red is Oil Red-O (neutral lipids). All data are
presented as mean ± SD of three independent experiments. p value was calculated using Student’s
t-test. * p < 0.05, vs. siRNA-scramble. ## p < 0.01, ### p < 0.001 vs. basal.

3. Discussion

In the present study, we investigated the basic molecular mechanisms by which the
treatment with oligonucleotide antisense (ASO) vupanorsen could have determined the
dose-dependent increase in hepatic fat seen in human trials [18]. We first confirmed this
side effect in vitro by using two different approaches, both human hepatoma cell line
Huh7 in 2D, and a 3D system that resembles the liver more closely, made of Huh7-LX2
spheroids. The lipid accumulation was observed after silencing ANGPTL3 and in the
presence of exogenous human recombinant ANGPTL3 at concentrations similar to those
observed in human plasma (100 ng/mL) [23]. Regarding the interaction of ANGPTL3 with
hepatocytes, a specific mechanism is currently unknown. The most plausible hypotheses
explaining the observed effect are provided by Ruhanen et al. and suggest the potential
interaction of ANGPTL3 with liver cells through its fibrinogen-like domain, stimulating the
PI3K/Akt/mTOR pathway, or by endocytosis to execute intracellular functions within en-
dosomes [29]. Under our experimental conditions, targeting gene expression of ANGPTL3
caused a significant induction of key enzymes involved in the de novo lipogenesis, such
as FAS, SCD1, ACLY, and ACC1, without any changes in the extracellular levels of apoB.
These data indicated that gene silencing of ANGPTL3 induced lipid accumulation by in-
creasing their synthesis. The lack of effect on apoB secretion is in line with a previous study
conducted in mice [14]. However, more recent in vitro study conducted with CRISPR-
associated protein 9 (CRISPR/Cas9) to target ANGPTL3 in HepG2 cells (ANGPTL3-/-)
showed a 50% reduction in apoB100 secretion, associated with its early presecretory degra-
dation [30]. Using this approach, the knock-down of ANGPTL3 did not result in neutral
lipid accumulation, most likely due to increased fatty acid oxidation. The discrepancy
between these and our findings can be attributed to the experimental approach utilized,
such as partial gene silencing with siRNA vs. total knock-out with CRISPR/Cas9. In
addition, our experiments were performed in absence of oleic acid, while the decreased
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secretion of ApoB100 in ANGPTL3-/- was observed in oleic acid-containing cell culture
media [30]. Similarly to our study, Xu et al. also observed neutral lipid accumulation in
Huh7 cells [31]. The differences between these studies can potentially be explained by
considering that HepG2 cells, utilized by Burks et al., seem to lipidate ApoB100 more
efficiently in the presence of oleate, compared to Huh7 [30]. Thus, the absence of oleic acid
limits the secretion of ApoB-containing lipoproteins, determining lipid accumulation in
response to ANGPTL3 gene silencing. Finally, the different results could be explained by
distinct metabolic activity between the two cell lines.

FAS and SCD1 are transcriptionally regulated by SREBP1, thus suggesting that the
absence of ANGPTL3 may interfere with the SREBP cleavage-activating protein (SCAP),
a protein that contains a sterol-sensing domain. In cholesterol-depleted cells, this protein
binds to SREBP1 and mediates its transport from the endoplasmic reticulum (ER) to the
Golgi apparatus, where it undergoes proteolytical cleavage and stimulates sterol biosyn-
thesis [32,33]. Gene silencing of ANGPTL3 was associated with a higher activity of LPL
measured from total protein extracts, thus suggesting a possible change in the ratio of
free and esterified cholesterol. Thus, it is conceivable to hypothesize that the absence of
ANGPTL3 may reduce the intracellular concentration of free cholesterol, determining the
activation of the SREBP pathway. Indeed, by measuring the ACAT activity, we observed
that after 6 h of transfection with ANGPTL3-siRNA, the amount of cholesterol esterification
was reduced, which could be a direct consequence of lower free cholesterol as a substrate.
In agreement with these data, we also observed a downward trend of total intracellular
cholesterol levels at 6 and 24 h with a complete recovery at 48 h. In a previous study
by Ruhanen et al., cholesterol esters were markedly reduced in ANGPTL3 knock-down
by CRISPR/Cas9 cells, and ACAT mRNA was reduced, as we observed at 6 h post treat-
ment [34]. This could lead to a new consideration, which is the timing of the experiments.
As observed in our kinetic experiment (Figure 4), we observe an opposite result between 6
and 48 h after silencing. This could be partially explained as an initial effect of metabolic
shift due to the silencing itself, followed then, at 48 h, by a shift towards other pathways
that results in a cumulative pro-lipid accumulation effect.

A second relevant finding of our study is that in response to gene silencing of
ANGPTL3, a significant increase in PCSK9 expression was observed, most likely related
to the activation of the SREBP pathway [35]. PCSK9 is a well-known regulator of the LDL
receptor, and clinical data firmly determined a positive association between its plasma
levels and TG concentration [27], and liver fat accumulation [28]. PCSK9 has been shown
to directly interact with apoB in hepatocytes and to drive their mutual secretion into the
circulation [36]. However, under our experimental conditions, we did not find a signif-
icant increase in apoB from cultured hepatocytes, or in PCSK9 with their intracellular
accumulation. In this regard, a direct interaction between ANGPTL3 and PCSK9 has been
documented [37]. Whether this interaction may alter the PCSK9-dependent apoB secretory
pathway is still unknown. Being aware of this potential interaction between ANGPTL3
and PCSK9, and having observed that the expression of these two proteins was inversely
regulated, we conducted double silencing experiments to determine whether the effect
could be mutual or driven by one of them. Not observing a rescue of activity with double
silencing, but witnessing a behavior comparable to the sole silencing of ANGPTL3, we
demonstrated that intracellular lipid accumulation in response to ANGPTL3 gene silencing
is independent of the presence of PCSK9. However, the two proteins might contribute
differently to the ultimate accumulation. Furthermore, we observed that the accumulation
mechanism may not be attributed to an increased uptake of LDL cholesterol particles, as
evidenced by the absence of alterations not only in LDLR protein expression but also in the
uptake of fluorescent LDL. Therefore, we excluded involvement of the LDL receptor in the
lipid accumulation mechanism, but certainly, other uptake pathways could be considered
in future investigations. Certainly, with the growing body of evidence, it is clear that the de
novo lipogenesis pathway may not be the only pathway involved in lipid accumulation
resulting from ANGPTL3 silencing; nevertheless, it constitutes a significant portion of it.
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Previous experiments have already noted altered expression of lipid metabolism-related
pathways in ANGPTL3 knock-down (KD) cells [34]. Conversely, the absence of ANGPTL3
from birth does not appear to have any detrimental cardiometabolic effects; in fact, it seems
to be protective [34]. Regarding this, the study of potential compensatory mechanisms in
individuals lacking ANGPTL3 from birth, without experiencing hepato-related side effects,
would certainly be intriguing.

4. Materials and Methods
4.1. Cell Cultures

Cell culture reagents and plastic supply were purchased from EuroClone (Milan, Italy)
if not otherwise specified. Huh-7 cell line was maintained in Modified Eagle’s Medium
(MEM) supplemented with 10% Fetal Bovine Serum (FBS), 1% penicillin/streptomycin
solution (10,000 U/mL and 10 mg/mL, respectively), 1% L-glutamine 200 mM, and 1%
non-essential amino acids 100× solution. LX-2 cell line was maintained in Dulbecco
Modified Eagle’s Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS),
1% penicillin/streptomycin solution (10,000 U/mL and 10 mg/mL, respectively), and
1% L-glutamine 200 mM. Spheroids were made mixing Huh7-LX2 cells in 24:1 ratio at
2000 cells/well density using BIOFLOAT cell culture plates by Sarstedt (cod. 83.3925.400)
and maintained for 96 h.

4.2. ANGPTL3 Silencing and Recombinant Protein Administration

Cells were seeded and then grown to 70% confluence in MEM/10% FBS. Cells were
washed with PBS (SIGMA-Aldrich, St. Louis, MO, USA) and fresh culture medium
was added to each plate and then transfected with a validated ANGPTL3-siRNA (Cat#
AM16708) or negative control scramble-siRNA purchased from Thermo-Scientific and
mixed to obtain a 50 mM stock solution in nuclease free water provided by the supplier. Si-
lencing was performed with Lipofectamine™ 3000 Transfection Reagent (Thermo-Scientific,
Waltham, MA, USA, Catalog number: L3000001) according to manufacturer’s instructions.
Cells were incubated for 48 h and then treated accordingly for further experiments. To
detect silencing efficiency, RT-qPCR was performed according to the method described in
the RT-qPCR section. Human Recombinant Angiopoietin-like 3 with C-terminal flag tag
was purchased by BPS Bioscience® (San Diego, CA, USA) and reconstituted as stated in the
datasheet. The recombinant protein was always added to the cells 24 h after silencing.

4.3. Western Blotting

A total of 200,000 cells/well were seeded and treated 24 h later according to the exper-
iment. After 48 h, cells were washed twice with PBS (SIGMA-Aldrich) and homogenized in
lysis buffer containing 1% NP-40, 150 mM NaCl, and 50 mM Tris-HCl at pH 7.5. Protein
concentration was assessed by BCA assays (Euroclone), according to manufacturer’s in-
structions. The 25 µg total protein extract/samples were separated on 4–20% SDS-Page gel
(Bio-Rad, San Francisco, CA, USA) under denaturing and reducing conditions. Proteins
were then transferred onto a nitrocellulose membrane by using the Trans-Blot® Turbo™
Transfer System (Bio-Rad); 5% non-fat dried milk in tris-buffered saline containing 0.2% of
tween 20 (TBST20) was used as blocking buffer. All the primary antibodies were diluted in
5% non-fat dried milk in TBST20 and incubated overnight at 4 ◦C in agitation. Horseradish
peroxidase (HPR) conjugated secondary antibodies were diluted in blocking solution and
membranes were left to incubate 90 min at room temperature (RT) in agitation. Lumines-
cence signals were acquired with Uvitec Alliance Q9 (Uvitec, Cambridge, UK). Quantitative
densitometric analysis was performed with FIJI ImageJ free software v1.54d. When used,
stripping buffer was prepared according to Abcam’s recipe. PCSK9 antibody was from
GeneTex (Irvine, CA, USA) (cod. GTX129859; dilution 1:1000), ANGPTL3 antibody was
from GeneTex (cod GTX104569; dilution 1:1000), FAS antibody was from Abclonal (cod.
A21182; dilution 1:1000), SREBP2 antibody was from Abcam (Waltham, MA, USA) (cod
ab30682; dilution 1:1000), LDLR antibody was from GeneTex (cod. GTX37639; dilution
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1:1000) GAPDH antibody was from GeneTex (cod. GTX100118; dilution 1:5000), SCD1
antibody was from AbClonal (Woburn, MA, USA) (cod. A16429, dilution 1:1000), and
anti-rabbit secondary antibody was from Jackson ImmunoResearch (Cambridge, UK) (cod.
113-036-045, dilution 1:5000).

4.4. Reverse Transcription and Quantitative PCR (RT-qPCR)

Total RNA was extracted using the iScript™ RT-qPCR Sample Prep reagent (Bio-
Rad), according to the manufacturer’s instructions. QuantiNova SYBR Green RT-PCR Kit
(QIAGEN, Hilden, Germany) was used for qPCR, along with specific primers for 18S (FWD
5′-CGGCTACCACATCCACGGAA-3′, REV 5′-CCTGAATTGTTATTTTTCGTCACTACC-3′)
PCSK9 (FWD 5′-CCTGCGCGTGCTCAACT-3′, REV 5′-GCTGGCTTTTCCGAATAAACTC-
3′), ANGPTL3 (FWD 5′-GCCTGTTGGAGACTCAGATGG-3′, REV 5′-TAGCACCTTCTGTG
CCTGGG-3′), FAS (FWD 5′-GCAAATTCGACCTTTCTCA-3′, REV 5′-GGACCCCGTGGAA
TGTCA-3′), ACLY (FWD 5′-TGCAAAGTGAAGTGGGGTGA-3′, REV 5′-TTTGGGGTTCAG
CAAGGTCA-3′), ACC1 (FWD 5′-ATGTCTGGCTTGCACCTAGTA-3′, REV 5′-CCCCAAAG
CGAGTAACAAATTCT-3′), PCSK9 (FWD 5′-CCTGCGCGTGCTCAACT-3′, REV 5′-GCTGG
CTTTTCCGAATAAACTC-3′), SCD1 (FWD 5′-AAAGCGAGGTGGCCATGTTA-3′, REV
5′-TCATGCCTCAAAACTGCCCT-3′).

The analyses were performed with the CFX96 Touch Real-Time PCR Detection System
(Bio-Rad) with cycling conditions of 45 ◦C for 10 min, 95 ◦C for 5 min, and a repetition of
40 cycles at 95 ◦C for 5 s followed by 30 s at 60 ◦C. The data were expressed as Ct values
and used for relative quantification of targets with ∆∆Ct calculations. The ∆∆Ct values
were determined by multiplying the ratio value between the efficiency of specific primers
and housekeeping 18S. The efficiency was calculated as ((10(−1/slope)) − 1) × 100.

4.5. ELISA Assay for ApoB and PCSK9

To detect the secreted amount of ApoB and PCSK9, the Human ApoB ELISA kit (Fine
Test, Wuhan, China, cod. EH0620) and human PCSK9 ELISA kit (R&D Systems, Inc.,
Minneapolis, MN, USA, 614 McKinley Place NE, cod. DY3888) were used according to
the manufacturer’s instructions. Cells were seeded in 6 well plates (200,000 cells/well) in
MEM/10% FBS, and 24 h later the treatments were performed. After 48 h the supernatant
was collected, centrifuged at 15,000 rpm for 10 min and diluted according to the manufac-
turer’s instructions. Absorbance at 450 nm was obtained with VICTOR Nivo Multimode
Microplate Reader (PerkinElmer, Waltham, MA, USA).

4.6. Neutral Lipid Staining with Oil Red-O

To perform Oil Red-O staining, Huh7 cells were seeded 40,000 cells/well in 24-well
plates with sterile microscope cover glasses 10 mm Ø (VWR international, Atlanta, GA,
USA). After 24 h the medium was replaced by fresh MEM/10% FBS containing the de-
scribed treatments. Then, 48 h later, cells were rinsed with PBS and fixed in paraformalde-
hyde (PFA, Sigma-Aldrich). Neutral lipid content was measured using Oil Red-O staining
technique as previously stated [38]. Oil Red-O powder was purchased from Sigma-Aldrich
(Cod. O0625). Nuclei were stained with DAPI solution in PBS (Sigma-Aldrich, cod. D9542).
The same staining protocol was followed for spheroids. Three-dimensional spheroids were
fixed with 10% paraformaldehyde (PFA, Sigma-Aldrich) for 2 h, after washing with PBS,
they were incubated with 20% w/v sucrose (Sigma-Aldrich, cod. D9542) in PBS overnight.
After washing 3 times with PBS, the spheroids were embedded in OCT and stored at
−80 ◦C. Spheroids were sectioned into 8 µm-thick slices using cryostat and the sections
were stored at −80 ◦C until staining. The staining procedure is the same as with the 2D
cell cultures. The slides or the coverslips were mounted with Fluoromount™ Aqueous
Mounting Medium (Sigma-Aldrich, Cod. F4680). Images were obtained with Leica DMRE
mounting Leica camera with Leica 541 517 HC zoom and Leica Application Suite X Soft-
ware (Las X v.3.7.6). Oil Red-O stained areas were quantified using ImageJ (v.1.52h, NIH,
Bethesda, MD, USA) and normalized with nuclei count.
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4.7. Lipoprotein Lipase Activity Assay

Lipoprotein Lipase activity assay kit (Abcam, cod. ab204721) was used to assess the
performance of the enzyme after the treatments. The protocol was followed according to
the manufacturer’s instructions.

4.8. Cholesterol Esterification Assay (ACAT Activity)

ACAT activity was performed as previously described [39]. In brief, Huh7 cells were
seeded in 24-well plates in MEM supplemented with 10% FCS (both from Euroclone, Milan,
Italy) at a density of 30,000 cells/well and allowed to adhere for 24 h. After gene silencing
previously described, cholesterol esterification was measured by incubating cells with [1-
14C]oleic acid (0.85 µCi/sample; Perkin Elmer, Waltham, MA, USA) complexed with fatty
acid-free bovine serum albumin (BSA; Merck, Darmstadt, Germany) for 4 h. At the end
of the incubation period, cells were washed twice with ice-cold phosphate-buffered saline
(PBS) and a fixed amount of [3H]oleic acid (0.005 µCi/sample; Perkin Elmer, Waltham, MA,
USA) was added to each sample as an internal standard. Cellular lipids were extracted by
incubating monolayers with a mixture of hexane/isopropanol (3:2) for 30 min with gentle
shaking. The extracted lipids were separated by thin layer chromatography (TLC) using a
mixture of isooctane/diethyl ether/acetic acid (75:25:2, v/v/v) as mobile phase. Esterified
cholesterol radioactivity in each spot was quantified by liquid scintillation counting (Perkin
Elmer, Waltham, MA, USA). Data were expressed as cpm of [1-14C]oleic acid corrected
per microgram of protein of each cell lysate measured by the BCA assay according to the
manufacturer’s instructions.

4.9. Cholesterol Determination

Cell monolayers were washed with PBS (phosphate buffer saline) and incubated for
2 h at RT with 0.1 M NaOH. The total cholesterol content of cells was measured using liquid
chromatography coupled with mass spectrometry with atmospheric pressure chemical
ionization ion source (LC-APCI-MS). The system used for analysis was an Agilent 1260
Liquid chromatograph, coupled with a Varian mass spectrometer MS 500 with ion trap
analyzer. For the chromatographic separation, an Agilent XDB C-18 3.0 × 150 mm was used.
Elution was performed using a mixture of acetonitrile 87%, Methanol 10%, water 0.1%,
and formic acid 3%, in isocratic mode for 15 min. Spectra were acquired in the range m/z
350–550. Cholesterol was detected as [M-H2O+H]+ at m/z 369.5. A cholesterol calibration
curve was created in the range 50.0–0.5 µg/mL. Samples were prepared as follows: a
liquid/liquid partition was performed adding chloroform to lysates. Samples were dried
and then diluted with equal volume of chloroform and finally used for chromatography.

4.10. Fluorescent LDL Uptake Cell-Based Assay

Huh7 cells were seeded in 6-well tray (3 × 105 cells/well in a complete medium)
and after 24 h, treated in MEM/0.4% FBS media. A total of 24 h after treatment, cells
were washed with PBS and incubated with 10 µg/mL of LDL-DyLightTM 550 (Cayman
Chemicals cod. 10011229) in 0.4% FCS media. After 3 h of incubation at 37 ◦C, cells
were washed with PBS, detached with trypsin, and resuspended in MEM/10% FBS. After
centrifugation (4 min at 3500 rpm), the pellet is resuspended in PBS and each sample was
transferred to a cytofluorometer tube. The fluorescence was measured by using a flow
cytometer (BD FACSAria™ III, DB Life Sciences, San Jose, CA, 95131, USA) at excitation
and emission wavelength of 484 nm.

4.11. Statistical Analysis

Data are expressed as mean ± standard deviation. To compare differences between
two conditions, p values were determined by Student’s t-test using GraphPad® Software
v8.2.1 for Windows. Otherwise, differences between treatment groups were evaluated by
one-way ANOVA. A probability value of p < 0.05 was considered statistically significant. If
not stated, p value was above 0.05.
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5. Conclusions

From our in vitro data, it is possible to conclude that the activation of the de novo
lipogenesis represents one possible mechanism by which the vupanorsen determined the
hepatic fat accumulation. This effect was observed either in the absence or in the pres-
ence of exogenous human recombinantANGPTL3, indicating a direct role of intracellular
ANGPTL3 on lipid homeostasis. Indeed, the treatment of mAb evinacumab, which blocks
the exogenous ANGPTL3, seems to determine a lipid lowering effect without significant
changes in hepatic fat content [9,10]. Given that monoclonal antibodies (mAb) target the
circulating protein while antisense oligonucleotides (ASO) target the hepatic pool, the
clinical results lead us to believe that there are still intrahepatic roles of ANGPTL3 that
need to be elucidated. This work contributes to affirming that the regulation of intrahepatic
lipid metabolism may be one of these roles. The de novo lipogenesis is most likely induced
by reducing the intracellular free-cholesterol content. The alteration in the ratio between
free and esterified cholesterol can be a result of the activation of lipolysis, which may
increase the availability of intracellular free fatty acids, which in turn, may be available
for cholesterol esterification by ACAT enzyme. In line with our observation, reduced lipid
content, associated with the activation of SREBP pathway, has been recently documented in
regulatory T cells isolated from patients affected by familial combined hypolipidemia type
2 (ANGPTL3 deficiency) [40]. Nevertheless, additional analyses are required to address
this hypothesis as well as the possible clinical significance of the co-regulation between
ANGPTL3 and PCSK9.
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