
Citation: Marrella, V.; Nicchiotti, F.;

Cassani, B. Microbiota and Immunity

during Respiratory Infections: Lung

and Gut Affair. Int. J. Mol. Sci. 2024,

25, 4051. https://doi.org/10.3390/

ijms25074051

Academic Editor: Efstratios Stratikos

Received: 2 February 2024

Revised: 29 March 2024

Accepted: 2 April 2024

Published: 5 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Microbiota and Immunity during Respiratory Infections:
Lung and Gut Affair
Veronica Marrella 1,2 , Federico Nicchiotti 3 and Barbara Cassani 2,3,*

1 UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy;
veronica.marrella@humanitasresearch.it

2 IRCCS Humanitas Research Hospital, 20089 Milan, Italy
3 Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano,

20089 Milan, Italy; federico.nicchiotti@gmail.com
* Correspondence: barbara.cassani@unimi.it

Abstract: Bacterial and viral respiratory tract infections are the most common infectious diseases,
leading to worldwide morbidity and mortality. In the past 10 years, the importance of lung microbiota
emerged in the context of pulmonary diseases, although the mechanisms by which it impacts the
intestinal environment have not yet been fully identified. On the contrary, gut microbial dysbiosis
is associated with disease etiology or/and development in the lung. In this review, we present an
overview of the lung microbiome modifications occurring during respiratory infections, namely,
reduced community diversity and increased microbial burden, and of the downstream consequences
on host–pathogen interaction, inflammatory signals, and cytokines production, in turn affecting the
disease progression and outcome. Particularly, we focus on the role of the gut–lung bidirectional
communication in shaping inflammation and immunity in this context, resuming both animal and
human studies. Moreover, we discuss the challenges and possibilities related to novel microbial-based
(probiotics and dietary supplementation) and microbial-targeted therapies (antibacterial monoclonal
antibodies and bacteriophages), aimed to remodel the composition of resident microbial communities
and restore health. Finally, we propose an outlook of some relevant questions in the field to be
answered with future research, which may have translational relevance for the prevention and
control of respiratory infections.

Keywords: microbiota; dysbiosis; mucosal immunity; host–microbe interactions; gut–lung axis;
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1. Introduction

Respiratory tract infections are the most common category of infectious diseases and
one of the leading causes of morbidity and mortality worldwide, inflicting social and
economic burden [1,2]. Thanks to the technological advancement of the last decade, the
healthy lung, previously regarded as a sterile organ, is now described to harbor its own
specific microbial population [3]. Lung microbiota is considered a transient settlement of
bacteria continuously inhaled and eliminated [4]. These commensal bacteria act on the
immune system, inducing protective response and preventing invasion and colonization
by pathogens. At the same time, they directly inhibit the growth of pathogens through the
production of anti-microbial products. Indeed, a continuous dialog between commensal
bacteria and resident epithelial and immune cells support the lung homeostasis [5]. Accord-
ingly, the lung microbiota is regarded as a “mirror of lung health status”: several studies
indicate that the lung bacterial composition as well as the lung environment drastically
change during the occurrence of pulmonary pathologies [6]. On the other hand, it has
become evident that the lung is engaged in a continuous bidirectional cross-talk with the
gut and that altered microbiota composition at either site can contribute to the development
and progression of distal diseases [7].
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Here, we will focus on the role of host–microbiota interaction in health and during
most common respiratory bacterial (Mycobacterium tubercolosis, Streptococcus pneumoniae,
Klebsiella pneumoniae, and Haemophilus influenza) and viral (Influenza virus, Respiratory syn-
cytial virus and Severe Acute Respiratory Syndrome Coronavirus 2) infections, describing
the lung physiological defenses, their involvement, and their changes in disease setting.
Specifically, we will highlight the importance of the gut–lung axis, involving the exchange
of microbes, metabolites, and inflammatory mediators as well as immune cell trafficking,
in lung disease progression and outcome.

Finally, we will review the most important knowledge regarding the use of microbiota-
based therapeutic approaches for the treatment of respiratory infections.

2. Lung Microbiota

Technical advances in next generation sequencing and independent validation from
worldwide laboratories set the stage to delineate the form and function of the lung micro-
biome [3]. A large number of studies have demonstrated that the healthy lungs harbor a
microbiota enriched in the phyla Bacteroidetes and Firmicutes, with Prevotella, Streptococcus,
Veilonella, Neisseria, Haemophilus, and Fusobacterium being the most abundant genera [8–11]
(Figure 1). The pulmonary environment is generally inhospitable for bacterial commu-
nity development, resulting in relatively low bacterial replication rate and low microbial
biomass compared to the intestinal one (103–105 versus 1011–1012 bacteria/gram tissue).
In healthy individuals, the upper respiratory tract (URT) includes a large and complex
microbiome in which oral commensal taxa are prevalent. In contrast, the microbiome of the
lower respiratory tract (LRT) has generally a rather low biomass, defined by concurrent dy-
namics of importation, via microaspiration from the URT, and elimination, via mucociliary
activity and innate immune function, with limited local microbial replication. Microbial im-
migration occurs through inhalation of airborne bacteria, direct dispersion along mucosal
surfaces, and microaspiration, with the latter considered the dominant and ubiquitous route
among healthy subjects. Indeed, the bacterial community of the LRT largely resembles the
oral microbiota composition [12,13]. The dynamic nature of the lung microbiome might be
an important distinctive property as compared to the microbial behavior of high biomass
mucosae (i.e., oral cavity, gut) where microbial communities are highly resistant [7,14,15].
The 16S rRNA profiling has identified spatial variation in respiratory microbiota between
healthy URT and LRT. A bacterial overlap with Streptococcus genera was found continually
from the oral cavity to the lower lung. However, Staphylococci usually inhabit the upper
airways, whereas Prevotella and Veillonella prevail in the lower airways [12,16].

Colonization of the airways starts immediately at birth within 24 h of life [17]. In
the healthy condition, species from the Streptococcus, Staphylococcus, Prevotella, Moraxella,
Haemophilus, Lactobacillus, Corynebacterium, and Dolosigranulum genera represent the initial
colonizers of the respiratory tract early in life and contribute to a balanced and dynamic
microbial community [18]. The bacterial load in the respiratory tract increases from neona-
tal age to maturity, by expanding diversity and functional capacity with many influencing
factors, including maternal delivery, breastfeeding, antibiotic usage, and smoke exposure.
Studies in animal models demonstrated bacterial load increasing over the first 2 weeks of
life with phyla shifting from Gammaproteobacteria and Firmicutes towards Bacteroidetes [19].
The term “dysbiosis” indicates changes in the balance of the three determinants of a healthy
lung microbiome (microbial immigration, elimination of microbes, and resident reproduc-
tion rate) and more generally accounts for a disturbance of the host microbial ecosystem.
Dysbiosis in the lung is associated with many adverse biological events and participates in
the development and progression of respiratory diseases [20,21]. Ph, temperature, oxygen
tension, and nutrient availability are among the ecological factors shaping the growth con-
ditions of the lung microbiome, together with local microbial competition, host epithelial
cell interactions, and inflammatory cell activation. Indeed, regional growing conditions
of the lung microbiome are dramatically altered during pathology, resulting in disease-
and patient-proper microbial communities suitable for the injured airways [3,20,22]. In the
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disease condition, the presence and abundance of pathogens in the lung are not consis-
tently mirrored in the oropharynx, underlining the importance of direct sampling of the
lower airway with bronchoalveolar lavage (BALF) in investigating lung microbiota [23].
Several studies comparing diseased versus healthy lungs found significant differences in
community composition, with the disease condition being associated with loss of bacteria
diversity or with a dominance of a single taxon or small group of taxa [24–26]. Microbial
dysbiosis characterizes various lung diseases, in which a reduced microbial diversity has
been also associated with disease progression [7,27–29].

Figure 1. Schematic overview of the lung microbiota and immunity in health and during respira-
tory infections. The lung microbiota plays a critical role in lung homeostasis. In eubiotic condition,
Proteobacteria, Firmicutes, Fusobacteria, Bacteroidetes, and Actinobacteria phyla mainly colonize the
human lungs. Lung microbiota can promote the polarization of naïve T cells and the differentiation
of alveolar macrophages to protect against pathogens. Moreover, mucociliary clearance and barrier
protection are fundamental mechanisms together with host defenses. On the other hand, dysbiosis of the
lung microbiome leads to immune cells activation. Immune cells then migrate into the tissue, produce
proinflammatory cytokines, and finally contribute to local inflammatory response. Moreover, alterations
in cytokines milieu promote pathologic fibrotic remodeling, NETosis, and apoptosis. Arrows indicate
changes in relative abundance of immune cell subsets and bacterial species. Credit: BioRender.com.

On the other hand, it is not still clear if microbial dysbiosis itself is the origin or the
result of the disease. For instance, pathophysiological changes in lung architecture and
impaired mucus clearance might result in microbial dysbiosis instead of being caused by it.
Another possibility is that dysbiosis may give rise to the disease inducing inflammatory
signals (such as NF-κB, Ras, IL-17, and PI3K) or shutting down of tumor necrosis factor
(TNF) and interferon (IFN) γ production, in response to lower airways’ pathogens [30–32].
Enrichment of microbial oral community within the lung, including anaerobes such as Pre-



Int. J. Mol. Sci. 2024, 25, 4051 4 of 30

votella and Veillonella, was associated with high inflammatory state and increased infection
susceptibility due to altered immune response. Additionally, the altered composition of the
lung microbiota poses a greater risk for some individuals of acquiring infections [29,33].
Lung microbiota modifications have been implicated in the worsening of several pul-
monary diseases, and different cellular immune responses are associated with exposure
to various lung microbes. Indeed, in animal models of chronic lung inflammation or of
pneumotype SPT, enrichment of Pseudomonas and Lactobacillus, derived from a pathological
human bronchoalveolar system, correlates to an enhanced Th17 type response [30,34].
Pathobionts such as members of Proteobacteria induce severe Toll-like receptor (TLR)2-
independent airway inflammation and lung immunopathology [35]. Respiratory tract
microbial composition influences baseline inflammation in humans and mice: microbiota
can affect IL-17 production by pulmonary γδ T cells [36] and differentiation of alveolar
macrophages (AM) [37]. Microbiota also influence the ability to fight against respiratory
infection. Haemophilus parainfluenzae enables TLR4 to activate pro-inflammatory response,
to hinder the corticosteroid-related pathway and to induce inflammatory Th2 pathways,
finally leading to bronchial high responsiveness [38]. Notably, the make-up of the lung
microbiota is influenced, as shown for the gut, by different factors among which are diet,
body mass index (BMI), and gender [39,40]. Nevertheless, the study of the lung micro-
biome, similar to the interplay between commensal microbial communities and pulmonary
immunity, is still at the beginning, with future studies needed to deeply uncover the specific
mechanisms involved.

2.1. Lung Microbiota Modifications during Respiratory Infections

The origin of lung infections includes the acquisition of a pathogen, its spread, and
invasion into the lower respiratory tract [41].

Pneumonia is an inflammation of the lung parenchyma. Etiologically, it is classified
as community-acquired pneumonia (CAP infection in a previously healthy individual) or
hospital-acquired pneumonia (HAP infection in a hospitalized individual within 48 h of
admission). The Gram-positive Streptococcus (S.) pneumoniae is responsible for the majority
of CAP cases and a leading cause of illness in children under 2 years, in aged people, and
in immunocompromised individuals. Pneumonias due to Gram-negative Haemophylus
(H.) influenzae and Klebsiella (K.) pneumoniae spread among patients over 50 years with
chronic obstructive lung disease or alcoholism, while pneumonias due to Gram-negative
Mycoplasma pneumoniae and Chlamydophila pneumoniae are more diffuse in children. Viral
pneumonias caused by respiratory syncytial virus (RSV) and adenoviruses are rare in the
healthy population, whereas pneumonia caused by influenza viruses is still a cause of
high mortality in old people and in patients with underlying diseases [42]. Ecologically,
infections are characterized by an increased microbial burden and a reduction in community
diversity, together with an increased host inflammation and tissue injury [43]. Alterations in
the microbiome of the URT are responsible for the occurrence of bacterial infections leading
to pneumonia. Pharingeal colonization by Gram-negative S. pneumoniae, H. influenzae,
or Moraxella cataralis in healthy neonates is associated with higher risk of developing
broncholitis [44]. In adults, the predominance of S. Pneumonia, Lactobacilli, and Rothia was
associated with pneumonia [15]. Viral infections have a bidirectional relationship with
the respiratory microbiome: abundance of Streptococcus. and Prevotella salvia associated
with reduced influenza A development in exposed individuals [45]. On the other hand,
Pseudomonas was found increased in influenza patients [46]. Human studies showed that
early colonization with different strains was associated with increased risk of developing
respiratory infections [47,48] (Figure 1). Accordingly, both pathogen co-viral infection and
microbial interactions may influence the course of disease.

A recent work describes a significant increased viral replication in severe pulmonary
infections, and a difference in microbial interactions between patients with bland and
severe disease, especially the association between the common pathogenic bacteria and
Rothia [26]. The high mortality risk due to influenza is mostly attributed to secondary
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bacterial infections. Viruses increase host vulnerability to bacterial colonization through
several mechanisms, but the role of the host micro-environment in LRT infected with
influenza virus (IV) is poorly described. The LRT microbiome, lung transcriptome, and
BALF metabolome in mice inoculated intra-nasally with H1N1 virus, to simulate human
influenza, showed important modifications, which were maintained in the recovery period.
This suggests that IV infection generated a long-term effect in LRT micro-environmental
homeostasis, beneficial for potential pathogens [49].

The Gram-variable Mycobacterium tuberculosis (Mtb) is responsible for pulmonary pneu-
monia in the tuberculosis (TB) disease. Studies performed both in mice and humans demon-
strate that the pulmonary microbiome plays a role in resistance to Mtb infections [50,51].
Indeed, it is associated with various states of TB, with abundance of Pseudomonas being
associated with increased risk of treatment failure [52]. Individuals infected with Mtb have
reduced microbiota diversity compared to healthy controls and often show enrichment of
Streptococcus and Pseudomonas [53–55]. Studies highlight that some bacterial strains may
be associated with TB onset, its recurrence, and therapy failure [56,57]. In TB, the lung
and the entire LRT present with peculiar microbial features: Mtb, Staphylococcus aureus,
and Kluyveromyces lactis were highly represented in a collection of BALF lavage fluid from
123 patients with TB, whereas H. Parainfluenzae was enriched in uninfected lungs [58]. A
study reported that TB patients showed reduced diversity of alveolar microbiota (reduc-
tion in Streptococcus and Fusobacterium and an increase in Mtb abundance) compared with
healthy controls. These changes might be determined by the inflammatory environment,
as Mtb could release virulence factors, which suppressed the macrophage response [59].
In another study, Streptococcus was significantly increased in TB, and the Th1-response
in TB group may be triggered by Neisseria and Haemophilus [60]. A survey using sputum
samples from India indicated Neisseria and Veillonella as two dominant genera in the TB
group, together with the opportunistic pathogen Rothia mucilaginosa, known to have a
widespread diffusion in TB patients [57]. A study using nasopharyngeal swab samples
revealed that Mtb infection significantly changed microbiota composition: Proteobacteria,
Gammaproteobacteria, Pseudomonadales, and Moraxellaceae increased, while phyla Bacillales
and Lachnospiraceae decreased in TB patients compared to healthy controls. Moreover, the
reduced presence of Corynebacterium in the TB group may be related to nutritional status,
immune-related molecules, and inflammation-related markers [61].

In 2019, a novel coronavirus Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) has
caused the coronavirus disease (COVID-19) pandemic. The disease severity and mortality
rate differed based on age comorbidities, many of which were linked to gut and lung micro-
bial alterations. This suggests that dysbiosis can predict COVID-19 severity [62]. Generally,
the lungs of critically ill COVID-19 patients likely have reduced species diversity and in-
creased bacterial burden, compared to healthy or less sick COVID-19 individuals [63]. Poor
clinical outcome was associated with lower airway enrichment of commensal Mycoplasma
salivarium [64]. A study described BALF samples from severe COVID-19 patients with a
significant higher abundance of pseudomonas, while BALF from COVID-19 pneumonia-
negative patients were characterized by enrichment of H. Influenzae and Veillonella dispar
among others [65]. The meta-transcriptomic analysis of BALF showed an important expan-
sion of bacterial load and other pathogens, underlining the presence of lung dysbiosis in
COVID-19 [66]. In line with this, it has been reported that the microbiome of lung tissue in
20 deceased COVID-19 patients was dominated by Acinetobacter, commonly connected to
lung infections causing pneumonia [67]. On the other hand, an analysis of the nasopha-
ryngeal microbiomes from patients suffering from an acute respiratory illness revealed no
difference in the composition or diversity, when comparing patients confirmed to have
COVID-19 with the negative ones [68]. Similarly, Minich et al. reported that common
phyla in nasopharyngeal samples, regardless of COVID-19, (i.e., Firmicutes, Actinobacteria,
Bacteroidetes, and Proteobacteria) were predominant also in COVID-19 patients, suggest-
ing that SARS-CoV-2 infection does not importantly alter the microbiome from a healthy
condition [69]. Through a meta-transcriptomic analysis on COVID-19 and control swab
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specimens, the upper airway dysbiosis was characterized with a Streptococcus-dominant
microbiota specifically present in COVID-19 patients [70]. In conclusion, the diversity of
respiratory microbiota in COVID-19 patients remains a debated issue [71].

2.2. Lung Immune Responses and Host–Microbe Interactions during Respiratory Infections

In URT and LRT, the host immune system responds against potentially deleterious
agents and distinguishes them from self-components, foreign non-dangerous material, and
beneficial commensal microbiota. A complex network of local epithelial and immune cells
is responsible for maintaining lung homeostasis [72] (Figure 1). The airways epithelium is
a biophysical protective barrier and a site of interaction with the local microbiota [4,15,73].
Secretory cells of the airway epithelium that produce mucus are a key element of the lung’s
innate immune system [74]. Several data suggest that respiratory microbiota regulate the
epithelial barrier shaping mucus production. Specifically, in mouse models, a link between
mucins and response to pulmonary infections was demonstrated [75,76].

In addition to mucins, the airway epithelial cells provide an antigen-specific secretory
IgA barrier able to protect the airway surface [77]. Secretory IgA functions by preventing the
adsorption of pathogens, neutralizing their toxic products at the mucosal epithelium, mediat-
ing virus elimination in infected epithelial cells, and promoting the killing of pathogens [78].
Several studies have demonstrated a role for IgA in the defense strategies against respiratory
infections: IgA-deficient mice exhibit increased susceptibility to intranasal infection with
Mycobacterium bovis Bacillo di Calmette-Guérin (BCG) [79]. Intranasal administration of
neutralizing IgA, followed by RSV, influenza virus (IV) or reovirus challenge, resulted in a
meaningful decrease in pulmonary viral titer and reduced pneumonia severity in murine
models. Notably, intravenous administration of antigen-specific polymeric IgA protected
the mice from influenza infection due to the nasal secretion of IgA from serum [80].

Local airways also secrete protective mediators called Antimicrobial Peptides (AMPs),
including lysozyme, lactoferrin, lipocalins, peroxidase, aminopeptidases, collectins (sur-
factant protein A and surfactant protein D), mannan-binding lectin (MBL), cathelicidins,
and β-defensins [81]. Notably, β-defensins and cathelicidins show antimicrobial and im-
munomodulatory effects and are involved in shaping the microbiota composition. Indeed,
the direct antimicrobial activity and immunomodulation of inflammatory responses is
triggered by members of the microbiota [78].

Different types of innate immune cells are present in the lung: alveolar macrophages
(AMs) are the most representative ones and appear to be central in the pathogenesis of sev-
eral respiratory tract infections, including Mtb, S. pneumoniae, rhinovirus, IV, and RSV [82].
AMs start the leukocyte recruitment and directly eliminate the pathogen using several
pathogen-specific mechanisms, such as secretion of pro-inflammatory cytokines/chemokines
(IL-6, IL-8, or CXCL10), initiation of type I IFN signaling, enhanced expression of pattern
recognition receptors (PRR), together with inhibition of nuclear export of viral genome [83].
Increased morbidity and mortality were associated with AM depletion both experimentally
and during the natural course respiratory viral infection [84,85]. Accordingly, a consistent
feature of severe COVID-19 is dysregulation of pulmonary macrophages [86].

Dendritic cells (DCs) in the lungs have a role in protection against respiratory infections,
mounting a robust adaptive immune response towards pathogens. DCs can initiate the
antiviral CD8 cytotoxic T-cell responses that leads to viral clearance and also control the
level of inflammatory responses, contributing significantly to the severity of disease [87]. DC
alterations during and after inflammation can be employed as biomarkers of susceptibility
to secondary pneumonia, as well as promising therapeutic targets to enhance outcomes
in patients [88]. In Mtb infections, DCs play multifactorial roles in shifting innate immune
responses to adaptive immunity [89]. Notably, DCs have key roles in defense against
SARS-CoV-2 infection [90].

Innate lymphoid cells (ILCs) mediate protective immunity from pathogens and par-
asites and promote tissue repair and homeostasis following infections, but their altered
functions may also contribute to pathogenesis [91,92]. A recent paper determines the
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role of ILC3 in the early immune events necessary to achieve immune protection during
Mtb infection [93]. An observational study suggests that, by promoting disease tolerance,
homeostatic ILCs decrease morbidity and mortality associated with SARS-CoV-2 infec-
tion, and that reduced number of ILCs contribute to increased COVID-19 severity with
age [94]. Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T
cells that carry out immune-surveillance and immunity against microbial infection [95,96].
Different studies proposed a role for MAIT cells in the immune control of Mtb infection
by recognition and killing of cells infected by bacterium, including DCs and pulmonary
epithelial cells [95]. Moreover, cytokines are required for MAIT cells to respond to Mtb
antigens both in human and mice, which may be due to their recruitment at the infected
site [97,98]. A new study confirms that circulating MAITs are activated but reduced in
frequency in patients with acute SARS-CoV-2 infection, whereas they accumulate in the
lungs of individuals with lethal COVID-19 [99].

Invariant Natural Killer T (iNKT) cells have a role in the control of commensals, includ-
ing opportunistic pathogenic microbiota, and reciprocally, the microbiota regulates iNKT
cells. During primary RSV infection, activation of lung iNKT cells leads to antiviral CD8
T-lymphocyte response and virus clearance, in addition to causing pulmonary eosinophilia
and fibrosis. In murine infections, intranasal administration of α-GalCer can prophylactically
protect against lethal S. pneumoniae infection and defend susceptible mice from Mtb [100].
iNKT cell deficiency in humans could be fundamental for the development of active/acute
TB: patients with active TB have less peripheral iNKT cells compared with those with latent
TB, and normal iNKT cell frequencies can be re-established by treatment for active TB [101].
A reduction in iNKT cells in patients with severe COVID-19 pneumonia was described,
suggesting a potential role of this subset as a biomarker of the severity of the disease [102].

Lung resident memory T (TRM) cells, mostly differentiated from effector T cells,
create specific niches and stay lastingly in lung tissues. When infection re-occurs, locally
activated lung TRM cells can generate an immediate immune response against invading
pathogens [103]. However, recent evidence indicates that exuberant TRM-cell responses
contribute to the development of several chronic respiratory conditions, for instance,
pulmonary sequelae of post-acute viral infections [104]. Influenza-specific TRM cells
produce rapid and robust IFN-γ and TNF-α responses after restimulation in vitro [105]. In
human RSV challenge models, the higher frequency of RSV-specific CD8+ TRM in BALFs
correlate to decreased disease severity and viral load [106]. TRM positioned within the
respiratory tract are probably required to limit SARS-CoV-2 spread. During acute SARS-
CoV-2 infection, the presence of circulating virus-specific T cell responses, with functional,
migratory, and apoptotic patterns modulated by viral proteins and associated with clinical
outcome, suggests that a balanced anti-inflammatory antiviral response and long-lasting
TRM cells are crucial for protection against SARS-CoV-2 infection [107]. Lung resident
γδ T cells represent a major T cell component of mucosal epithelial barrier crucial for
maintaining pulmonary homeostasis and influencing the progression of several pulmonary
diseases. The γδ T cells are major sources of IL-17A in K. Pneumoniae infection and in
early host immune defense against acute Pseudomonas Aeruginosa pulmonary infection.
During S. pneumoniae lung infection, a significant increase in the number of activated γδ T
cells was observed [108]. The γδ T cell responses to coronavirus infections are still under
investigation, with a previous report on SARS-CoV-2 infection showing a strong cytolytic
activity against infected target monocytic cell lines [109].

Th-17 cells may be important components of TRM cells. Th-17 cells can elicit serotype-
independent immunity to S. pneumoniae and K. pneumoniae [110,111]. Additionally, the
importance of IL-17 has been demonstrated in early host defense against intracellular
pathogens such as Mtb [112]. Growing evidence suggests that Th17 cells have a crucial
role in COVID-19 pathogenesis by boosting cytokine cascade as well as by inducing Th2
responses, inhibiting Th1 differentiation and suppressing Treg cells [113].

Regulatory T (Treg) cells are critical for lung immunological tolerance to airborne al-
lergens and for reducing dangerous immune responses to self- and non-self-antigens [114].
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Treg depletion have a role in the pathogenesis of Chlamydia pneumonia infection via anti-
gen sensitization [115]. In addition, Tregs are protective against Pneumococcal pneumonia,
through mechanisms related to TGF-β pathways [116]. Other studies using RSV and in-
fluenza A virus mouse models reveal that depletion of Treg cells may result in delayed
migration of CD8+ T-cell subpopulations [117,118]. Some recent papers describe signifi-
cantly reduced Tregs numbers in COVID-19 patients and a consequent imbalance in the
Treg/Th17 ratio, correlating with a risk of respiratory failure [119].

Lung epithelial cells, AM, and DCs have various pattern recognition receptors (PRRs)
in charge of discriminating commensal from pathogenic microbial molecules, both inter-
acting with other receptors and eliciting cytokines and chemokines release [120]. TLRs
and NOD like receptors (NLR) belong to the PRR family and are central to balance the
activation of downstream signaling and the maintenance of immune tolerance [121]. NLR
can regulate inflammatory response and have been involved in lung antibacterial immunity
and homeostasis [122]. Furthermore, iterated exposure to pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns (DAMPs) from members of
the respiratory microbiota induces PRR tolerance in DCs and AM, via the TLRs [123,124].
In conclusion, the respiratory microbiota are interconnected with the airway epithelium
and phagocytes in a positive feedback loop to achieve immunological tolerance and avoid
uncontrolled inflammatory responses.

The host–microbe interactions in the respiratory tract occur mostly at mucosal sites.
Resident microorganisms prime immune cells (epithelial, DCs, and neutrophils) locally or
systemically. In fact, these interactions rely on sensing of PRR ligands or metabolites that
can enter the circulation and reach other organs. In the gut specifically, this complex link has
been extensively studied, but it is still poorly defined in the context of the lung [125–128]. It
is becoming obvious that the respiratory microbiome offers indications to the host immune
system that appear to be essential for immune training, organogenesis, and the maintenance
of immune tolerance. Numerous observations support the existence of an appropriate time
early in life during which correct microbiota perception is essential for immune maturation
and consequent respiratory health [8].

For example, members of the Bacteroidetes phylum decreased inflammation, neutrophil
recruitment, and TLR2-mediated cytokine production compared with H. influenzae, in
a mouse model [35]. Intranasal inoculation of Stafiloccoccus aureus led to monocyte re-
cruitment to the lung that differentiated into AM-dampening IV-induced inflammatory
responses [129]. S. pneumoniae, although known as a pathogen, is a typical commensal of
the upper airways. Simultaneous nasal colonization with S. pneumoniae and H. influenzae
in mice created an inflammatory milieu with high resident abundance of C-X-C motif
chemokine ligand 2 (CXCL2) and neutrophils recruitment. The synergistic response de-
pended on production of the pore-forming cytolytic toxin by S. pneumoniae, indicating
that its presence modulates the immune response to H. influenzae [130]. Severe pulmonary
disease is present in mice challenged with H. influenzae. They display a pronounced access
of neutrophils and a high pulmonary abundance of pro-inflammatory cytokines. However,
if mice were pre-treated via inhalation with the commensal Prevotella Nanceiensis, inflamma-
tion was substantially reduced, and tissue pathology absent [35]. Acute intranasal infection
of BALB/c mice with adenovirus induced memory AM, characterized by elevated major
histocompatibility complex class II (MHCII) expression and transcription of genes related
to host defense, chemotaxis, antigen presentation, and glycolytic metabolism. Disease out-
come is improved in mice with prior acute adenovirus infection, suggesting that priming
of AM by viral infections can generate a persistent trained immunity and improve immune
defense against secondary bacterial infection [131].

The role of the microbiome in influencing and managing the host’s immune system
and that of the immune system in shaping the microbiome have been studied by means
of animal models [9]. Germ-free mice were shown to be more sensitive to infection by
Pseudomonas, S. pneumoniae, and K. pneumonia [122,132,133]. Moreover, inoculation of
microorganisms in germ-free mice was shown to be essential for DCs recruitment in the
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lung [134] and the priming of CD8 cells [135]. Antibiotics combinations were also used to
assess the role of bacterial microbiota in respiratory infections: generally, these studies have
not specifically addressed if oral antibiotics also eliminate lung microbial communities, but
such treatments are known to affect upper airways [136]. Mice treated with antibiotics are
more vulnerable to viral and bacterial pulmonary infections [137], and antibiotic-treated
mice infected with S. pneumoniae present with a defect in lung cytokine production [138].

3. The Gut–Lung Axis

During dysbiosis caused by a respiratory pathogen, the commensal bacteria is per-
turbed, and pathobionts can emerge both in the lung and in the gut. Therefore, a disturbance
at the level of immune cells potentially leads to tissue damage at both sites. The close
physiological and pathological connections between the gut and lung rely mainly on the
host–microbe cross-talk [139,140]. Indeed, members of lung and intestine bacteria can di-
rectly exchange through blood stream components and metabolites, contributing to health
and disease at both sites [137,141] (Figure 2). In the following paragraphs, we will review
the most indicative evidence regarding the bidirectional gut–lung axis in the context of
bacterial and viral respiratory infections.

Figure 2. Schematic representation of the main interactions underlying the gut–lung axis. The
interactions between the gut and the lung are mediated by the microbiota and its products as
well as by the immune cells. A bidirectional communication is recognized: SFB, a commensal gut
microbiota, and microbial metabolites, such as SCFAs, stimulate and promote the differentiation
of Th-17 cells, which have immunomodulatory functions in the lungs. Moreover, the gut microbes
enter the intestinal mucosa and may be phagocytosed by antigen presenting cells (APCs), DCs,
and macrophages. Travelling to the lung, APCs stimulate T cells and lung immune responses. On
the other hand, the lung microbiota exhibits similar effects influencing the immune system and
homeostasis of the gut. Several factors are well known to influence the composition of the intestinal
and/or lung microbiota, such as diet, drugs, etc. Credit: BioRender.com.



Int. J. Mol. Sci. 2024, 25, 4051 10 of 30

3.1. Impact of Respiratory Infections on Gut Microbiota

It has been described that alterations of pulmonary microbiota modulate microbial
communities of the gut, influencing intestinal signaling [142,143]. Thus, the impact of the
lung microbiota on intestinal diseases should be considered. Mtb infection is known to
cause dysregulation of the immune system, resulting in alteration of the gut microbiome.
In one study, comparing the gut microbiome of adult TB patients versus healthy controls,
phyla of Firmicutes, Proteobacteria, and Verrucomicrobia were found to be reduced whereas
Actinobacteria, Bacteroidetes, and Fusobacteria increased [144]. Another study, analyzing pa-
tients with both new and recurrent TB, reported a decrease in Bacteroidetes, genus Prevotella,
and Lachnospira and enrichment in Actinobacteria and Proteobacteria [145]. Finally, in a cohort
of affected children, it was observed that there was a depletion of phyla Actinobacteria
and Firmicutes, of genera including Bacteroides, Bifidobacterium, Dorea, Faecalibacterium, Ru-
minococcus, and F. prausnitzii and an enrichment in Bacteroidetes, Proteobacteria, Enterococcus,
and Prevotella [146].

The modulation reported in TB patients may lead to a disequilibrium in the produc-
tion of microbial metabolites, such as short-chain fatty acids (SCFAs), which may reset
the lung microbiome and the immune response via the “gut–lung axis”. These findings
may also account for the colonization of Mtb in the gastrointestinal tract and the develop-
ment of intestinal TB in pulmonary TB patients [147,148]. In this regard, F. prausnitzii is
described to have an anti-inflammatory effect, defending against a range of gastrointestinal
diseases [149].

Few studies have analyzed the nature of gut microbiota alteration occurring during
respiratory viral infections in humans. Although, during influenza, some patients present
gastroenteritis-like symptoms despite apparent absence of the virus in the gut.

A study in patients infected with H7N9 virus showed a reduction in phyla Bacteroidetes
and genus including Bacteroides, Blautia, Roseburia, and Ruminococcus but enrichment of
Firmicutes and Proteobacteria and genera, including Escherichia, Clostridium, and Enterococcus
faecium [150]. Another study, performed in influenza subtype H1N1 patients, reported a de-
pletion of phyla Actinobacteria and Firmicutes, and genera including Dorea, Faecalibacterium,
Ruminococcus, Streptococcus together with an enrichment for both Actinomycetaceae and
Micrococcaceae [151]. In a recent review, 11 different studies reported gut microbiome modi-
fications in patients with a proven or suspected respiratory tract infection (RTI), compared
to healthy controls. In summary, gut microbiome alterations in patients were consistently
in diversity with a depletion of Firmicutes, Lachnospiraceae, Ruminococcaceae and enrichment
of Enterococcus [152].

In contrast to the situation with IAV and RSV, viral RNA could be detected in the gut
during SARS-CoV-2 infection, even when it was no longer present in the respiratory tract,
thus pointing to the digestive tract as potential site of viral replication and activity [153,154].
Gut dysbiosis in SARS-CoV-2 infected patients was associated with COVID-19 disease
progress and severity and post-COVID-19 syndrome. It was characterized by decreased
anti-inflammatory bacteria like Bifidobacterium and Faecalibacterium and lowered abundance
of butyrate producers such as several genera from the Ruminococcaceae and Lachnospiraceae
families. On the contrary, enrichment of inflammation-associated microbiota, including
Streptococcus and Actinomyces, and overgrowth of opportunistic bacterial pathogens, such as
Streptococcus, Rothia, and Actinomyces, were reported [155–157]. A recent paper showed that
SARS-CoV-2 infection causes gut microbiome dysbiosis in mice, together with alterations
of Paneth cells and Goblet cells and markers of barrier permeability. Likewise, microbiome
samples collected from 96 COVID-19 patients revealed blooms of opportunistic pathogenic
bacterial genera known to include antimicrobial-resistant species, and this gut dysbiosis is
associated with secondary bloodstream infections by gut bacteria [158].

Different studies have addressed the effect of respiratory viruses on the gut microbiota
using animal models, outlining possible mechanisms by which gut microbiota change
during acute viral respiratory infections. In pneumonia induced by Pneumocystis Murina
(P. Murina), the diversity of the intestinal microbial community is severely disturbed:
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infected mice had altered microbial populations in terms of diversity metrics and relative
taxa abundances. Authors also found that mice with CD4+ T cell depletion infected
with P. murina exhibited significantly altered intestinal microbiota that were distinct from
infected immunocompetent mice, indicating that the loss of CD4+ T cells may also affect
the intestinal microbiota in this setting. Interestingly, P. pneumonia significantly altered
the intestinal microbiota’s potential for carbohydrate, energy, and xenobiotic metabolism
as well as signal transduction pathways, thus ultimately affecting the host response to
infection [159].

In a mouse model of RSV, an alteration of microbiota diversity was described with
increase in Bacteroidetes and decrease in Firmicutes. This increase in the Bacteroidetes phylum
was mainly due to a rise in the Bacteroidaceae, whereas the reduced abundance of Firmicutes
was related to attenuation of both Lachnospiraceae and Lactobacillaceae families [160]. In
influenza A virus (IAV)-infected mice, the signs of intestinal damage and inflammation,
altered gene expression, and compromised intestinal barrier functions peaked on day
7 post-infection. As a result of bacterial component translocation, expression of inflamma-
tory markers was upregulated in the liver, and at the same time, an altered gut microbiota
composition was observed [161]. A drop was reported in the proportion of segmented
filamentous bacteria (SFB), important in the host resistance against enteric pathogens, paral-
leled by the emergence of potentially dangerous species, such as Gammaproteobacteria and
mucus-degrading bacteria. Conversely, infection halted the growth of health-promoting
bacteria such as Lactobacilli, Bifidobacteria, and SFB [161].

Respiratory IV can induce intestinal injury that was not caused directly by influenza
infection. In fact, no virus was found in the small intestine following intranasal infection,
and intra-gastric administration of the virus did not generate intestinal immune alteration.
The damage was shown to be mediated by IFN-γ-producing lymphocytes moving, during
infection, from the respiratory tract into the intestinal mucosa via the CCL25-CCR9 axis.
Consequently, Th17 cells markedly augmented in the small intestine and neutralizing
IL-17A was able to decrease intestinal injury. Moreover, antibiotic depletion of intesti-
nal microbiota reduced IL-17A production and attenuated influenza-caused gut damage.
Additionally, alteration of intestinal microbiota significantly induced IL-15 production
from intestinal epithelial cells, which then promoted Th17 cell polarization directly in the
small intestine. In conclusion, these findings provide new mechanistic insights into how
respiratory IV infection causes intestinal disease [162].

Adult C57/BL6 mice were exposed to one dose of LPS instillation directly into lungs,
and the total bacterial count was significantly increased after 4 and 24 h in the blood and
cecum, respectively. Antibiotic treatment reduced the total bacteria in blood but not in the
cecum. These data support that lung, blood, and intestinal microbiotas are very dynamic
and can be modulated by acute lung injury [163].

Decreased bacteria richness and altered gut microbial composition were observed
in mice with hvKp (strain 43816)-induced pneumosepsis, in which Bifidobacterium and
Clostridium were reduced [164]. Wolff et al. employed a mouse model of pneumonia-
derived sepsis caused by K. Pneumoniae to follow the pathogen burden as well as the
composition of the lung, tongue, and fecal microbiota, in the timeframe between local
infection and systemic spread. Already at 6 h post-inoculation with K. pneumoniae, marked
changes in the lung microbiota and differences in the gut microbiota were observed. The
gut microbiota was affected by the severity of pneumonia and contributed to the lung
microbiota at 12 h post infection [165].

A recent paper shows that cellular immune response to RSV or IV lung infection
induces inappetence, which in turn alters the gut microbiome and metabolome. Authors
observed that the elimination of CD8+ cells prevented the reduction in food intake and
inverted the changes in the gut microbiota; this most likely occurred via a secreted TNF-α.
Indeed, neutralization of this cytokine during RSV infection reduced the weight loss and
attenuated the perturbation of the gut microbiota [166].



Int. J. Mol. Sci. 2024, 25, 4051 12 of 30

Collectively, these studies in animal models pointed to the release of inflammatory
cytokines and reduced food intake as possible mechanisms by which acute viral respiratory
infections affect the gut microbiota. Interestingly, another mechanism implicated infiltrated
CD4+ T cells or systemic IFN release, which alters the metabolism of epithelial cells resulting
in the accumulation of nutrients, for which the microbes of the intestinal lumen compete.
Together with increased oxygen availability, this phenomenon can explain the change from
obligate anaerobes to facultative anaerobes such as Proteobacteria Enterobacteriaceae. This
suggests that hypoxia, a main clinical symptom during the acute phase of respiratory
viral infection, could play a role in gut dysbiosis and gastrointestinal disorders during
respiratory viral infections [167].

3.2. Impact of Gut Microbiota on Respiratory Infection Outcome

The existence of a vital communication between the gut and lung is primarily sup-
ported by the evidence of a wide spectrum and severity of pulmonary involvement in
patients with IBD [168,169], ranging from subclinical alteration to low-grade and overt
chronic inflammatory lung disease [170,171]. Symptoms of airway involvement most
often appear in patients with a long-lasting history of IBD [170], thus implicating the
dysbiotic gut or the systemically disseminated inappropriate immune response in the
pathogenesis. Besides chronic disease, intestinal dysbiosis has been linked to increased
susceptibility to respiratory tract infections. In a study involving patients who under-
went allogeneic hematopoietic stem cell transplantation (HSCT) and had viral RTIs post
transplantation, the number of antibiotic days was associated with progression to LRT
disease [172]. Furthermore, clinical observational studies highlighted the importance of
healthy gut microbiota in protecting against viral RTIs. Reduced butyrate-producing gut
bacteria correlated with increased risk and incidence of viral RTIs in kidney transplant
recipients [173], and patients post-allogeneic HSCT [174]. Gut dysbiosis and gut metabo-
lites have been identified in COVID-19 patients correlating with inflammatory response
and disease complications [155,175–177]. Importantly, fecal transplantation from patients
with COVID-19 into germ-free mice caused lung inflammation and worse outcome during
pulmonary infection by multidrug-resistant K. Pneumoniae, demonstrating that microbiota
can directly contribute to disease sequalae [178]. Furthermore, the gut microbiota can also
regulate the colonic expression of Angiotensin-converting enzyme 2 (ACE2) receptor [179].
This evidence may contribute to explain the enhanced disease susceptibility and gastroin-
testinal symptoms in subjects with gut dysbiosis, such as elderly, immune-compromised
patients and patients with other co-morbidities [180]. Nonetheless, it must be recognized
that the ACE2 receptor is highly expressed by the intestinal epithelia, and it may therefore
be involved in the gastrointestinal symptoms [181–183].

Absence or depletion of the intestinal commensal bacteria through antibiotics resulted
in increased microbial dissemination, inflammation, organ damage, and mortality in several
experimental models of bacterial and viral respiratory infections [138,184–186]. Most of
these effects are related to the ability of gut microbiota to shape systemic immunity. The
immune cells and cytokines triggered by gut microbes and their metabolites, such as SCFAs,
can reach systemic circulation and regulate the immune and inflammatory responses in
the lung, in health and disease [187,188]. This was elegantly demonstrated in the study by
Huang et al. in which, after connecting the circulation of two mice, labelled ILC2s from
a mouse were found in the lungs of both mice [189]. Remarkably, this did not occur in
antibiotic-treated mice [190]. Furthermore, it has been reported that intestinal lymphocytes
from IBD patients lack tissue specificity [191]; this may explain the presence of inflammation
in extra-intestinal organs in IBD. Dysbiosis-mediated inflammation can also result in
increases in circulating levels of fecal calprotectin, plasma C-reactive protein, IL-6, and IL-8,
which could contribute to morbidity during lung infection [192,193]. Gut dysbiosis might
also impinge on the outcomes of lung infection by reducing nutrient uptake and energy
availability, which can in turn disturb the patient’s ability to mount an effective immune
response [194]. More mechanistic insights into how gut microbiota influence lung control of
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respiratory infections come from animal studies. In antibiotic-treated mice, the expression
of IFN-γRI, MHC-I, CD86, and CD40 molecules in peritoneal macrophages is blunted
during early response to viral infection, suggesting that gut microbiota signal the innate
immune response prior to viral replication in the host [195]. Similarly, the establishment
of Th1, CTL, IgA, and macrophage response to respiratory viral infections depends on
gut microbes. Consistently, rectal TLR stimulation, providing signals for IL-1β and IL-18
secretion, restored lung CD4+ and CD8+ T cell responses to IV infection in antibiotic-
treated mice [186]. An increased mortality due to respiratory viral infection following
antibiotic treatment was also related to a decreased abundance of lung Tregs [196]. Overall,
these findings confirm that intestinal microbial stimulation is crucial in calibrating the
activation threshold for an innate antiviral immune response. Depletion of gut microbiota
with antibiotics increased the burden and dissemination of Mtb in an experimental model
of infection [197]. Particularly, dysbiosis reduced the expression of the innate receptor,
macrophage inducible C-type lectin in lung DCs, resulting in impaired stimulatory function
towards naïve T cells and reduced effector and memory T cell population in infected
mice [198]. Moreover, increased pulmonary colonization by Mtb was associated with a
significantly reduced accumulation of MAIT cells in the lungs [199]. Remarkably, Ngo
et al. recently reported that colonization of the intestine by a single common bacterial
species, namely, SFB, reprogrammed AM conferring them with enhanced proliferation,
complement production, and phagocytosis and resulting in increased protection against IV,
RSV, and SARS-CoV-2 [200].

Pulmonary superinfection may represent a further consequence of altered gut micro-
bial composition induced by primary infections in the lung. Increased susceptibility to
secondary bacterial infection, particularly those induced by S. pneumoniae and Staphylococ-
cus aureus, frequently occurs in children and elderly people experiencing respiratory viral
infections, leading to morbidity and mortality [201,202]. Sencio et al. demonstrated that
gut dysbiosis during influenza contributes to pulmonary pneumococcal superinfection via
altered SCFA production. Diminished production of acetate, in mice receiving influenza
A virus-conditioned microbiota, altered the bactericidal activity of alveolar macrophages,
reduced lung defenses toward secondary pneumococcal infection, and promoted death of
superinfected mice [203]. Gut disorders might also contribute to concomitant or secondary
bacterial infections in patients with severe COVID-19 [204–206]. Besides this evidence, it is
conceivable that local lung dysbiosis, altering the dynamics of inter-microbial interactions
as well as microbial metabolism, might enhance the proliferation of potentially pathogenic
bacterial species.

4. Targeting Microbiota to Counteract Respiratory Infections

Unveiling the complex interaction between the lung and gut has been instrumen-
tal for a better understanding of the commensal microbiota as a therapeutic target for
various kinds of respiratory infectious diseases. Administration of microbes (using pro-
biotics), products favoring their growth (e.g., prebiotics), or microbial metabolites (e.g.,
postbiotics) can confer host protection during respiratory diseases via direct competition
with the pathogenic microbes, improvement of epithelial barrier functions, or immune
modulation [207–209]. In this section, we report the most relevant examples of microbe-
based therapy in the context of human clinical trials and experimental models of respira-
tory infections.

4.1. Microbiota Modulation in the Context of Viral Infections

In a systematic review, Shi et al. reported a series of randomized controlled trials
assessing the efficacy of probiotics in preventing viral RTIs in a large cohort of healthy
subjects. Lactobacillus (L.) was the most used probiotic, followed by Bifidobacterium and
Lactococcus. A majority of these studies showed a reduced risk and incidence of viral RTIs
associated with probiotics administration. On the contrary, no consensus was achieved
in terms of improvements of clinical manifestations, viral load, and immunological out-
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comes [210]. The probiotics L. rhamnosus and L. brevis were also associated with a reduction
in the occurrence of influenza infections [211]. The impact of probiotics has been explored
in the context of COVID-19. In a retrospective study of ICU patients with SARS-CoV-2-
induced pneumonia, treatment with a probiotics cocktail of Lactobacillus, Bifidobacterium,
and Streptococcus species showed a positive association with reduced mortality compared
to standard care alone [212].

Several reports described the effects of oral administration of probiotics on viral RTIs’
outcomes in animal models, also providing mechanistic insights. Probiotics, such as Lacto-
bacillus, Bifidobacterium, Enterococcus, or Lactococcus, administered prior to infection with
IV or RSV resulted in mitigation of symptoms and improved survival. Viral load in lungs
BALF and nasal washings was also diminished to some extent [210]. Mechanistically,
probiotics could elicit protective responses against viral RTIs by engaging immune cells
and inducing a specific cytokine/chemokine production profile, though the effects seem to
be highly strain-specific [213]. Studies showed increased natural killer (NK) cell activities,
decreased infiltrating macrophages and neutrophils, and increased viral specific IgA/G
titers in the BALF upon probiotic administration [214]. L. mucosae inhibited RSV replica-
tion and reduced the proportion of blood inflammatory cells such as granulocytes and
monocytes [215]. Jounai et al. reported that, after oral administration in mice infected with
murine parainfluenza virus, the probiotic Lactococcus lactis was loaded into CD11c+ cells in
Peyer’s patches and induced type I IFN production by plasmacytoid DCs at mucosal sites.
Moreover, increased expression of IFN-related genes in the lungs, suggested that the type I
IFN produced by intestinal plasmacytoid DCs could induce a pulmonary anti-viral activity.
Consistently, ex vivo stimulation with murine parainfluenza virus of lung lymphocytes
from mice treated with the probiotic resulted in high expression of IFN-α and IFN-β [216].
The upregulation of IL-10 and the concomitant reduction in IL-6 during viral infections
were also triggered by probiotic administration [217]. In addition to these protective effects,
L. rhamnosus GG administered intranasally [218] and L. acidophilus L-92 [219] also increased
the levels of IL-1β and monocyte chemotactic protein 1 (MCP-1) cytokines and of the
chemokines eotaxin and M-CSF. The mechanisms of probiotics in human RTIs deserve
further investigations. Indeed, although probiotics have a satisfactory safety profile, their
use could be linked to a higher risk of infection and/or morbidity in frail people [220]. For
this reason, there is an increasing interest in the use of non-viable microorganisms [221].
Animal studies proved the beneficial effects of heat-inactivated probiotics in RTIs, although
their global effects seemed to be secondary to the live ones.

Gut microbiota can regulate immune responses through production of short-chain
fatty acids. Intake of microbially accessible dietary fibers (prebiotics), promoting an increase
in the diversity and activity of specific symbiotic microorganisms, leads to variable effects
on microbial metabolites production and, in turn, on the host response to infections. A
high-fiber (fermentable inulin) diet conveyed protection against influenza through two
complementary mechanisms. Fed mice exhibited enhanced bone marrow generation of
alternatively activated macrophages with a limited capacity to promote CXCL1-mediated
recruitment of neutrophil to the airways, thus leading to limited tissue immunopathol-
ogy during infection. In parallel, diet-derived SCFAs stimulated CD8+ T cell antiviral
activity. Such an effect was mediated by butyrate through the free fatty acid receptor
(FFAR)3 [208]. Likewise, a high-fiber (fermentable pectin) diet protected against RSV in-
fection by stimulating type I IFN response in lung epithelial cells. The protection was
mediated by acetate via GPR43 [222]. Furthermore, Sencio V et al. reported that oral acetate
supplementation during influenza infection reinforced, in a FFAR2-dependent manner, the
lung defenses against secondary pneumococcal infection and reduced the lethal outcome
of superinfected mice [203]. Similarly, intranasal acetate increased interferon-dependent
responses and reduced lung viral load during rhinovirus infection [223]. Desaminotyrosine,
produced by an obligate clostridial anaerobe (Clostridium orbiscindens) from digestion of
a flavonoid-enriched diet, can reach the lungs and prime the immune system to protect
from influenza infection. In this setting, desaminotyrosine amplified type I IFN signaling
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in phagocytes via IFN-α/β receptor and STAT1 [185]. Interestingly, a trial evaluating the
efficacy of prebiotics (galacto-oligosaccharide and polydextrose) in preventing viral RTIs in
newborns demonstrated that prebiotics displayed a superior beneficial effect compared to
probiotics, likely related to the direct stimulatory effect on the growth of pre-existing good
bacteria [224].

4.2. Microbiota Modulation in the Context of Bacterial Infections

The use of probiotics has also been attempted in different clinical trials [225]. A
majority of these studies analyzed the efficacy of probiotics for prevention and treatment
of nosocomial pulmonary infections in ICU patients. In this setting, the probiotics L.
casei rhamnosus and L. rhamnosus, administered orally or oropharyngeally, resulted in
decreased colonization and infection of the LRT by Pseudomonas aeruginosa or related
pathogens [226,227]. One study observed a decreased incidence of ventilator-associated
pneumonia (VAP) in ICU patients with sepsis, upon administration of a cocktail of B.
breve Yakult, L. casei Shirota, and galactooligosaccharides [228]. Studies in mice infected
with S. pneumoniae suggested that oral administration of different probiotics, such as
strains from Lactobacillus and Streptococcus genera, caused increased resistance to infection,
decreased pulmonary bacteria load, and increased survival [229–231]. Protection was
associated with increased lung infiltrations of neutrophils, macrophages, and lymphocytes,
as well as a higher titer of anti-S. pneumoniae IgG and IgA. Comparable results were
observed in mice infected with P. aeruginosa [232,233]. In addition, the use of L. rhamnosus
potentiated the anti-inflammatory response by increasing Foxp3+ Tregs and decreasing
proinflammatory IL-6. Such an anti-inflammatory profile was also observed in infected
mice following intratracheal administration of other L. strains [234]. The administration
of viable or inactivated probiotic Bifidobacterium longum 51A stimulated lung clearance
of K. pneumoniae by enhancing ROS production in alveolar macrophages and reducing
pro-inflammatory TNF-α and IL-6. However, only viable probiotics induced a concomitant
increase in IL-10 levels, primarily mediated by acetate [235]. Similarly, acetate (SCFAs)
supplementation reduced inflammatory infiltrates in lung parenchyma and TNF-α and
IL-1β levels induced by K. pneumoniae infection as well as restored bactericidal activity
of alveolar macrophages in respiratory pneumococcal infection, secondary to IFV [236].
Intranasal or oral inoculation of bacterial strains potently activating Nod2 receptors (L.
crispatus, Staphylococcus aureus and Staphylococcus epidermidis, or L. reuteri, Enterococcus
fecalis, L. crispatus, and Clostridium orbiscindens, respectively) protected mice against S.
pneumoniae or K. pneumoniae infections, based on the ability of these strains to stimulate
the production of GM-CSF [122]. Supplementation with Lactobacillus could also restore
dendritic-cell-mediated anti-Mtb immunity in the lungs [198]. Oral treatment with A.
muciniphila or A. muciniphila-mediated palmitoleic acid strongly inhibited tuberculosis
infection through epigenetic inhibition of TNF in mice infected with Mtb [237].

While most commensal bacteria used as probiotics originate from the intestine, at-
tempts have been made to use respiratory commensal bacteria. Particularly, intranasal
administration in infant mice of Corynebacterium pseudodiphteriticum was able to ameliorate
features of both RSV primary infection and of secondary S. pneumoniae superinfection,
lowering both pathogen burden and lung damage [238]. To our knowledge, no human
studies to date have assessed the potential for respiratory probiotics (i.e., viable microbiota
instilled or aerosolized into the lower respiratory tract). To achieve this, practical issues
need to be addressed and overcome [239].

Another potential approach to neutralize respiratory pathogens is the use of so-called
“predatory bacteria” from the genera Bdellovibrio spp. or Micavibrio spp., directly killing
other Gram-negative bacteria [240]. Intranasal administration of both B. bacteriovorus and
M. aeruginosavorus considerably reduced, in animal models, respiratory K. pneumoniae
burden. Their subsequent elimination by the host-innate immune mechanisms, with no
adverse effect, envisions their possible application for the treatment of bacterial pneumonia
in humans [241,242].
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Selective depletion of opportunistic bacterial pathogens achieved with monoclonal
human antibodies (mAbs), targeting and inactivating bacteria and their virulence factors
and/or toxins, is one of the most promising antibiotic-independent approaches to fight
infectious illnesses [243]. Indeed, owing to their target specificity, they do not exhibit
adverse effects on the indigenous microbiota and are unlikely to induce widespread re-
sistance. Furthermore, polyvalent mAbs are engineered to exert multiple anti-bacterial
actions, including virulence factors inactivation as well as complement deposition and
activation of innate immunity [244,245]. Gremubamab (MEDI3902; AstraZeneca) is a bis-
pecific human IgG1 mAb that selectively binds to the P. aeruginosa virulence factors and
was developed to prevent nosocomial pneumonia in high-risk patients [246]. The mAb
promotes bacterial clearance by neutrophils and prevents its attachment to airway epithelial
cells [247]. Prophylactic as well as therapeutic administration of Gremubamab was highly
protective in animal models of acute P. aeruginosa pneumonia and of VAP [248]. A clinical
trial in P. aeruginosa-colonized ICU patients showed a risk reduction in patients with lower
baseline inflammation. The monoclonal human IgM antibody Panobacumab (AR-101,
Aerumab; Aridis Pharmaceuticals) is in clinical development for counteracting P. aerugi-
nosa in hospital-acquired pneumonia [1,249]. Panobacumab targets LPS from the highly
prevalent P. aeruginosa serotype O11, contributing to most nosocomial pneumonia cases.
Administration of Panobacumab reduced bacterial burden and mitigated lung inflamma-
tion in a mouse model of acute P. aeruginosa infection [250]. Two other antibodies have been
tested for the prevention and treatment of S. aureus pneumonia. Suvratoxumab (MEDI4893;
AstraZeneca, outlicensed to Aridis Pharmaceuticals) specifically binds to and inactivates
the pore-forming alpha-toxin of S. aureus, a highly conserved key virulence factor [251].
In preclinical studies, Suvratoxumab was shown to confer protection [252]. In clinical
trials on mechanically ventilated ICU patients colonized with S. aureus, the mAb showed a
significant reduction in pneumonia and in the duration of hospitalization and ICU stay in a
subset of patients [253]. Several other antibacterial human mAbs are currently in preclinical
and early clinical development, including AR-401 (Aridis Pharmaceuticals) and ASN-5
(Arsanis, outlicensed to BB200) targeting A. baumannii and K. pneumoniae, respectively [245].

Phage therapy has received clinical interest to treat respiratory infections with MDR
bacterial pathogens, because of its ability to selectively eliminate target bacteria without
impacting the host microbiota, compatibility with antibiotics, and low immunogenic-
ity [254]. Phage formulations show strong preclinical efficacy in the treatment of P. aerug-
inosa, K. pneumoniae, A. baumannii, or E. coli and are nowadays being evaluated in the
clinic for the treatment of human respiratory infections [255,256]. A mix of four obligate
lytic bacteriophages targeting P. aeruginosa respiratory infections was used to success-
fully treat a patient with VAP pneumonia and emphysema [257]. A second-generation
phage cocktail, AP-PA02 (Armata Pharmaceuticals), has been recently evaluated in in-
dividuals with chronic P. aeruginosa lung infections, and final trial results are awaited
(https://clinicaltrials.gov/study/NCT04596319 (accessed on 15 January 2024). Phage-
derived endolysins or engineered lysins may display advantages over the use of whole
bacteriophage preparations to combat bacterial infections, as resistance is hard to develop
due to the conserved nature of their cell wall targets. Administration of phage endolysins
diminished S. pneumoniae titers in a mouse model of nasopharyngeal colonization and
protected mice from fatal pneumococcal pneumonia or P. aeruginosa infection, respectively,
suggesting their potential to prevent and treat respiratory bacterial infections [258,259].

5. Concluding Remarks

RTI is one of the most common infectious diseases of viral or bacterial origin, causing
both social and economic burden. The importance and complex cross-talk between the lung
and the gut and the strong link of the gut–lung axis with respiratory health are increasingly
recognized. The cross-talk along this gut–lung axis is mediated by transfer of microbes or
microbial and host metabolites in the blood from one tissue to the other and by the immune
system (Figure 3).

https://clinicaltrials.gov/study/NCT04596319
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Figure 3. Summary of the main topics and mechanisms addressed in the present review. Respiratory
infections directly affect lung epithelial barrier integrity (bold arrow), while their effects on gut
permeability are indirect, except for SARS-CoV-2 which has been demonstrated to infect intestinal
epithelial cells (thin arrow). This results in a cascade of events ending with pathological manifesta-
tions. The different therapy attempts are designed to inhibit gut dysbiosis (bold inhibitory arrow)
with the consequent immune modulation and host protection. Only a minority of these therapies
target directly the lung microbiota (thin inhibitory arrow). Credit: BioRender.com.

However, the understanding of the mechanisms involving the gut–lung axis, partic-
ularly in the context of respiratory infections has just begun. The interactions between
the microbiome, the respiratory mucosa, and the underlying pathways need to be better
understood. One question to be addressed is whether respiratory and gut microbiota
influence distinct aspects of lung immunity. Furthermore, better defining how microbiota’s
composition and function is affected during infections will further clarify their pathogenesis
and development. Unfortunately, the substantial understanding of microbe modifications
in patients with a specific RTI remains incomplete, due to technical shortcomings and the
small number of studies available for each respiratory pathogen. On the other hand, they
may also suffer from important limitations, linked to the use of medication (antibiotics
and anti-virals) to treat the disease. Similarly, it may be difficult to differentiate respiratory
manifestations of intestinal disorders from respiratory symptoms or complications related
to their treatment [260].

For this reason, a majority of human studies are still observational and do not directly
prove whether disease progression is led by a changed microbiome. In this regard, robust
animal models will be crucial to address key questions, such as the causal relationship and,
eventually, the specific mechanisms by which the microbiome affects the host.
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If extensive research is available on the effect of gut microbial metabolites on disease
and immunity, the impact of lung microbiome metabolites on physiology and disease is still
largely unexplored. Understanding if they differ from those produced in the gut and their
effects on respiratory mucosa and immune cells would be instrumental for the identification
of possible biomarkers of disease progression, disease stratification, or treatment.

Finally, even if the great majority of the lung and gut microbiota are composed of
bacteria, fungi and viruses are also part of it [143] and might have an impact on host
immunity and pulmonary inflammation during infections [261].

Since the gut microbiota plays a key role in influencing the immune system, it affects
both local and systemic (in the lung) responses to pathogens. Accordingly, microbiota-
targeted therapies that modify the gut microbiome have been shown to benefit both acute
and chronic respiratory conditions in animal models. Nevertheless, evidence that intake
of probiotics or postbiotics results in improvement of respiratory conditions in clinical
setting is still limited [262]. The most used probiotics in studies of pulmonary infections,
both caused by viruses and bacteria, are those from the Lactobacillus genus. Despite this
evidence, the mechanistic basis for the observed beneficial effects is often not well defined,
due to differences in study design and experimental protocols. Therefore, more in-depth
investigations should be carried out, with well-defined experimental protocols, to better
understand the function of probiotics in the immunity against pulmonary infections.

To date, most commensal bacteria used as probiotics are of gastrointestinal origin.
In many aspects, exploitation of gut microbiome for therapeutic purposes is compelling:
it is more accessibly sampled and studied, and it is greater in biomass and metabolic
activity and easier to be modulated. However, recent studies have revealed that lung
microbiota are consistently more closely correlated with variation in lung immunity than
are gut communities [263,264]. Moreover, experimental modulation of lung commensals
directly and persistently alters the lung immune response [14,64], suggesting that they
may have potential as locally applied probiotics for the prevention and management of
respiratory infections.

Finally, it is worth mentioning the problem of disease-causing bacteria resistant to
antibiotics [265]. LRT infections are the leading cause of mortality among all multidrug-
resistant infections and are often associated with the priority pathogens S. aureus, K. pneu-
moniae, S. pneumoniae, Acinetobacter baumannii, and P. aeruginosa. Likewise, respiratory viral
infections are becoming increasingly difficult to manage due to the emergence of novel
variants. For this reason, development of novel preventive and therapeutic strategies is
desirable. Owing to the critical role of lung and gut dysbiosis in lower airway disease,
manipulation of the microbiome might be one possible intervention avenue.
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