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Abstract: Recently, studies have reported a correlation that individuals with diabetes show an
increased risk of developing Alzheimer’s disease (AD). Mulberry leaves, serving as both a traditional
medicinal herb and a food source, exhibit significant hypoglycemic and antioxidative properties. The
flavonoid compounds in mulberry leaf offer therapeutic effects for relieving diabetic symptoms and
providing neuroprotection. However, the mechanisms of this effect have not been fully elucidated.
This investigation aimed to investigate the combined effects of specific mulberry leaf flavonoids
(kaempferol, quercetin, rhamnocitrin, tetramethoxyluteolin, and norartocarpetin) on both type 2
diabetes mellitus (T2DM) and AD. Additionally, the role of the gut microbiota in these two diseases’
treatment was studied. Using network pharmacology, we investigated the potential mechanisms
of flavonoids in mulberry leaves, combined with gut microbiota, in combating AD and T2DM. In
addition, we identified protein tyrosine phosphatase 1B (PTP1B) as a key target for kaempferol in these
two diseases. Molecular docking and molecular dynamics simulations showed that kaempferol has
the potential to inhibit PTP1B for indirect treatment of AD, which was proven by measuring the IC50 of
kaempferol (279.23 µM). The cell experiment also confirmed the dose-dependent effect of kaempferol
on the phosphorylation of total cellular protein in HepG2 cells. This research supports the concept
of food–medicine homology and broadens the range of medical treatments for diabetes and AD,
highlighting the prospect of integrating traditional herbal remedies with modern medical research.

Keywords: mulberry leaf compounds; Alzheimer’s disease; type 2 diabetes mellitus; network
pharmacology; molecular dynamics simulation

1. Introduction

Alzheimer’s disease (AD) is a prevalent neurodegenerative disease. It causes 60–80%
of dementia cases and notably impacts the daily lives and well-being of the elderly [1–5].
Diabetes mellitus, as a chronic metabolic disease, is one of the most important public health
threats in the 21st century [6–8]. Type 2 diabetes mellitus (T2DM) primarily arises from
cells that inadequately respond to insulin, resulting in elevated levels of blood sugar [9,10].
As the most common type, T2DM accounts for 90–95% of diagnosed diabetes cases and
poses a substantial health burden [11,12]. Furthermore, compelling evidence suggests a
shared pathophysiology between T2DM and AD [13–16]. Mechanistically, impaired glucose
absorption in neurons disrupts energy production, exacerbating cognitive impairment.
Recent studies have underscored the pivotal role of insulin in brain function, with the brain
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as an important target of insulin. Dysfunction in insulin signaling among individuals with
T2DM can lead to the overactivation of glycogen synthase kinase-3, resulting in elevated tau
phosphorylation, modifications of tau, and the degeneration of neurofibrils. Additionally,
prolonged hyperglycemia may further worsen the blockage of blood flow to the brain [14].
Based on the association between the two diseases, some theories have even suggested
labeling AD “Type 3 Diabetes” [17–19]. This association involves intricate pathways
including insulin resistance, insulin growth factor signaling, inflammation, oxidative stress,
the glycogen synthase kinase 3β (GSK3β) signaling mechanism, amyloid beta formation,
neurofibrillary tangle formation, and altered acetylcholine esterase activity [19]. These
pathways collectively contribute to the progression of both T2DM and AD, underscoring
the complex interplay between metabolic dysfunction and cognitive decline.

Mulberry leaves refer to the dried leaves obtained from the Morus alba plant. Renowned
as a traditional herbal remedy, they boast a spectrum of beneficial properties including an-
tibacterial and anti-inflammatory effects, blood sugar regulation, blood pressure reduction,
lipid-lowering effects, antioxidant properties, and even potential anticancer benefits [20–28].
These leaves can be used in culinary applications as well as tea preparation. In Japan, the
mulberry leaf tea is affectionately referred to as “longevity tea”. Importantly, given its lack
of theophylline and caffeine, mulberry leaf tea is a favorable choice for individuals suffering
from stomach discomfort or seeking a soothing drink before bedtime. The main active
ingredients of mulberry leaf include flavonoids, alkaloids, phytosterols, γ-aminobutyric
acid, mulberry leaf polysaccharides, and more [22]. Notably, the flavonoid quercetin has
been proven to be effective in improving diabetes symptoms and exhibiting neuroprotective
effects [29–32]. Our cluster analysis aimed to identify structural analogs of quercetin in
mulberry leaf that may play a role in intervening in AD.

Additionally, existing research has confirmed a causal relationship between gut micro-
biota and cognitive deficits in AD [33,34]. The potential mechanism involves bidirectional
regulation through neuro-endocrine-immune network pathways connecting the enteric ner-
vous system with the central nervous system [35,36]. The combined use of gut microbiota
and quercetin structural analogs holds promising potential for intervening in AD.

Network pharmacology amalgamates bioinformatics and pharmacology to compre-
hensively comprehend how drugs function within biological systems. It anticipates the
multifaceted impacts of drugs, identifies novel drug targets, and amalgamates protein-
compound/disease-gene networks to elucidate drug mechanisms [37–39]. We combine
computer-assisted screening and network pharmacology to explore how flavonoids (no-
tably kaempferol), in conjunction with the gut microbiota, intervene in T2DM and AD.
A pivotal shared target implicated in both conditions, protein tyrosine phosphatase 1B
(PTP1B), was pinpointed [40–42]. PTP1B is a tyrosine phosphatase whose main function is
to remove phosphate groups from proteins. It plays an important role in regulating various
metabolisms such as diabetes, obesity, and cancer-related pathways [43,44]. Molecular
docking and molecular dynamics simulation assessed the interaction between the target
PTP1B and flavonoid molecules derived from mulberry leaf. Subsequently, experimen-
tal validation confirmed kaempferol’s ability to inhibit the PTP1B target, highlighting its
potential for intervening in diabetes and AD [40–42].

Overall, this study endeavors to shed light on the specific targets and pathways
involved in leveraging quercetin analogs from mulberry leaves for the prevention and
mitigation of T2DM and AD. The findings suggest that kaempferol, in collaboration with
the gut microbiota, notably through PTP1B modulation, exhibits potential for intervention
in both T2DM and AD. This research reinforces the notion that food and medicine share
common roots, broadening the spectrum of therapeutic options for diabetes and AD,
and highlighting the importance of integrating traditional herbal remedies with modern
medical research.
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2. Results

Figure 1 shows the process of our work. To begin, this study employed a cluster
analysis to group together the structural analogs of quercetin found in mulberry leaf.
Subsequently, genetic targets sourced from diverse online databases were compiled to
identify potential targets associated with specific flavonoids of mulberry leaf (kaempferol,
quercetin, rhamnocitrin, tetramethoxyluteolin, and norartocarpetin), gut microbiota, AD,
and T2DM. Then, we analyzed the mechanisms of flavonoids in mulberry leaves against AD
and T2DM through GO and KEGG enrichment as well as a PPI network analysis. Molecular
docking, molecular dynamics simulations, and experiments were used to investigate the
inhibitory effect of kaempferol on PTP1B.
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2.1. Cluster Analysis of Mulberry Leaf Components

The SMILES formula of the active small molecules, acquired by searching mulberry
leaf components in the TCMSP database, was utilized for t-SNE clustering. Based on
the structural similarity of small molecules, 269 components of mulberry leaves were
divided into ten categories. The molecule closest to the centroid coordinates within each
category was designated as the representative molecule, and we named each category based
on these representative molecules (Figure 2) (Table S1). The results of t-SNE clustering
showed that the molecules kaempferol, quercetin, rhamnocitrin, tetramethoxyluteolin, and
norartocarpetin of mulberry leaf flavonoids are in the same category (Henicosane). Table 1
shows their spatial coordinates.

Int. J. Mol. Sci. 2024, 25, 4062 4 of 29 
 

 

TM2D and AD. In quantum chemistry computational plots, green indicates positive orbital phases, 
while blue indicates negative orbital phases. 

2.1. Cluster Analysis of Mulberry Leaf Components 
The SMILES formula of the active small molecules, acquired by searching mulberry 

leaf components in the TCMSP database, was utilized for t-SNE clustering. Based on the 
structural similarity of small molecules, 269 components of mulberry leaves were divided 
into ten categories. The molecule closest to the centroid coordinates within each category 
was designated as the representative molecule, and we named each category based on 
these representative molecules (Figure 2) (Table S1). The results of t-SNE clustering 
showed that the molecules kaempferol, quercetin, rhamnocitrin, tetramethoxyluteolin, 
and norartocarpetin of mulberry leaf flavonoids are in the same category (Henicosane). 
Table 1 shows their spatial coordinates. 

 
Figure 2. The left part of the figure depicts the coordinates of ten categories of mulberry leaf com-
ponents. Within the red circle are the spatial positions of quercetin and its four closest compounds. 
The right part illustrates the structures of quercetin and the four closest compounds. 

Figure 2. The left part of the figure depicts the coordinates of ten categories of mulberry leaf
components. Within the red circle are the spatial positions of quercetin and its four closest compounds.
The right part illustrates the structures of quercetin and the four closest compounds.



Int. J. Mol. Sci. 2024, 25, 4062 5 of 27

Table 1. Clustering of components with similar structures in mulberry leaves, the coordinates of
quercetin, and the four nearest compounds.

Name MOL ID Dimension 1 Dimension 2 Dimension 3

quercetin MOL000098 13.98971333 −15.4718551 −12.91115122
kaempferol MOL000422 14.93055973 −15.56046554 −13.2378193

rhamnocitrin MOL000251 14.27188684 −15.25028232 −13.87688149
tetramethoxyluteolin MOL007879 14.28316604 −14.20247304 −12.73193365

norartocarpetin MOL006630 15.14767912 −14.11761894 −13.39243877

2.2. Targets of Mulberry Leaf Components Combined with Gut Microbiota to Intervene in AD
and T2DM

For gut microbial metabolites, 348 common targets were identified across Super-
pred [45], SwissTargetPrediction (STP) [46], and SEA [47] (Figure 3A).
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exhibit 59, 50, 50, and 58 common targets, respectively (Figure 3C–F). These shared targets
are defined as core targets of the above five mulberry components (Table S2). The core tar-
gets indicate the potential targets for each component, in collaboration with gut microbiota,
to intervene in AD and T2DM.

2.3. Construction of PPI Networks and Top 15 Targets’ Screening

The core targets of mulberry leaf components were input into the STRING [48]
database to construct the PPI networks (Figure S1). Table 2 shows the nodes, edges,
average node degree, and average local clustering coefficient of the PPI network. Using
cytoHubba [49] and applying the topology analysis method of Maximal Clique Centrality
(MCC), a functionally related protein network of mulberry leaf components combined
with intestinal microbial intervention in AD and T2DM was created. Scores estimating
relationships between nodes and edges were obtained using the MCC algorithm, where
higher scores indicate more significant correlations between genes and the two diseases.
We screened the top 15 targets with the highest scores for each active ingredient (Figure 4).
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Table 2. The nodes, edges, average node degree, and average local clustering coefficient of the
PPI networks.

Name Number of Nodes Number of Edges Average Node Degree Avg. Local Clustering
Coefficient

quercetin 62 316 10.20 0.46
kaempferol 59 233 7.90 0.42

rhamnocitrin 50 194 7.76 0.52
tetramethoxyluteolin 50 192 7.68 0.55

norartocarpetin 58 227 7.83 0.50

2.4. GO Gene Enrichment and KEGG Pathway Analysis

A gene ontology (GO) enrichment analysis is the prevailing method for assessing
the enrichment of gene ontology terms within gene collections. It typically categorizes
genes into three main levels: the cellular component (CC), biological process (BP), and
molecular function (MF). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis primarily focuses on delineating the roles of genes within metabolic
and signaling pathways. By examining the enrichment of pathways within gene sets, we
can gain a comprehensive understanding of the functions and regulatory mechanisms of
these genes within organisms.

Enrichment analysis of GO and KEGG pathways was performed using the core targets
of mulberry leaf components. The calculated data were demonstrated as bubble charts and
histograms derived from GO and KEGG (Figures 5–9).
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of kaempferol.

The core targets of five flavonoids, including quercetin, kaempferol, norartocarpetin,
rhamnocitrin, and tetramethoxyluteolin, are associated with various biological processes.
Quercetin, kaempferol, and norartocarpetin are linked to the response to oxidative stress,
the rhythmic process, and amyloid-beta. Meanwhile, rhamnocitrin, norartocarpetin, and
tetramethoxyluteolin are associated with the response to the xenobiotic stimulus, response
to oxygen levels, and response to hypoxia. In summary, flavonoid compounds present in
mulberry leaves exhibit promising neuroprotective strategies by combating oxidative stress,
regulating circadian rhythms, and mitigating the effects of amyloid-beta. Additionally,
they play a role in cellular defense mechanisms against chemical and reactive oxygen
species challenges.

Among the core targets enriched in cellular components, the five flavonoids—quercetin,
kaempferol, norartocarpetin, rhamnocitrin, and tetramethoxyluteolin—are all associated
with the apical part of the cell, vesicle lumen, and ficolin-1-rich granule. In these cell
locations, flavonoids from mulberry leaves mainly act to produce their effects. Furthermore,
except for tetramethoxyluteolin, all five demonstrate an association with the ficolin-1-rich
granule lumen. Moreover, with the exception of kaempferol, the remaining four are linked
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to the secretory granule lumen and cytoplasmic vesicle lumen. The ficolin-1-rich granule
lumen, secretory granule lumen, and cytoplasmic vesicle lumen are also potential sites
where flavonoids in mulberry leaves may manifest their influence.
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The molecular functions of core targets include a variety of activities related to trans-
porter functions and protein binding. Specifically, five flavonoids are associated with xeno-
biotic transmembrane transporter activity and ABC-type xenobiotic transporter activity.
Additionally, four of these compounds, excluding quercetin, are linked to efflux trans-
membrane transporter activity. Furthermore, kaempferol, norartocarpetin, and quercetin
are associated with heat shock protein binding, while norartocarpetin, rhamnocitrin, and
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tetramethoxyluteolin demonstrate involvement in ABC-type transporter activity. In sum-
mary, the anti-AD and -T2DM effects of flavonoids in mulberry leaves may be associated
with xenobiotic transmembrane, ABC-type, ABC-type xenobiotic, efflux transmembrane
transporter, and heat shock protein binding activities.
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of norartocarpetin.

The enriched KEGG pathways of quercetin, kaempferol, rhamnocitrin, tetramethoxylu-
teolin, and norartocarpetin were similar and they were all related to ABC transporters, bile
secretion, prostate cancer, and antifolate resistance; quercetin, kaempferol, rhamnocitrin,
and tetramethoxyluteolin were all related to the HIF-1 signaling pathway and renal cell
carcinoma; quercetin, rhamnocitrin, tetramethoxyluteolin, and norartocarpetin were all
related to the serotonergic synapse.

2.5. Quantum Chemical Calculation

The Gaussian quantification calculation utilizing the B3LYP/6- 31G* method was
employed to analyze five components of mulberry leaf. The calculations produced the
following HOMO-LUMO orbital results: (1) quercetin—HOMO orbital energy = −5.52 eV
and LUMO orbital energy = −1.86 eV, with an energy gap of 3.65 eV; (2) kaempferol—
HOMO orbital energy = −5.55 eV and LUMO orbital energy = −1.81 eV, with an energy
gap of 3.74 eV (Figure 10). The calculation results of the HOMO-LUMO orbital energies of
rhamnocitrin, tetramethoxyluteolin, and norartocarpetin are shown in Figure S2.
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Figure 10. Molecular structure and HOMO-LUMO orbital diagram of (A) quercetin and
(B) kaempferol, green indicates orbital phases are positive, while blue indicates orbital phases
are negative.

2.6. Molecular Docking

Within the PPI network associated with kaempferol, PTPN1, as one of the top 15 hub
genes, aroused our interest. PTPN1 encodes for PTP1B, which is a ubiquitous prototype
non-receptor tyrosine phosphatase that plays a dephosphorylation role in the KEGG path-
ways that are enriched by kaempferol. These pathways involve the adherens junction,
insulin resistance, and chemical carcinogenesis—reactive oxygen species (Figure 6). Ex-
periments have confirmed that quercetin is an effective inhibitor of PTP1B [50]. Therefore,
we speculate that kaempferol, as a structural analog of quercetin, may play a similar role
to quercetin and can be combined with gut microbiota to intervene in AD and T2DM. We
performed molecular docking of kaempferol and PTP1B, with quercetin serving as a control.
For PTP1B, we utilized the 2VEV structure available in the Protein Data Bank (PDB). The
docking box was defined by the original ligand position, setting the dimensions to 40, 50,
and 40 grids in x, y, and z dimensions, respectively, with a grid of 0.375 Å. The docking
results showed that kaempferol is situated at the periphery of the pocket formed by three
folds (Figure 11B). The conventional hydrogen bonds between kaempferol and the residues
of PTP1B were Arg221, and the benzene ring in Tyr46 interacts with the benzene ring in
kaempferol (Figure 11D). The position and interactions of kaempferol closely resemble
those of quercetin (Figure 11A,C). Molecular docking revealed an optimal conformational
affinity of −7.40 kcal/mol for kaempferol and −7.60 kcal/mol for quercetin. Additionally,
Figure S3 shows our molecular docking results using the updated and higher-resolution
8SKL structure and they are similar to 2VEV.
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2.7. Molecular Dynamics Simulations

To acquire more intricate and comprehensive insights into molecular behavior, we
conducted MD simulations. There were three systems in total, including PTP1B combined
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with kaempferol named Kaempferol, PTP1B combined with quercetin named Quercetin,
and PTP1B named Apo. Firstly, the root mean square deviation (RMSD) of the atomic
positions within the Cα atoms was computed to evaluate the stability throughout the MD
simulations. After binding with kaempferol, PTP1B exhibited a reduced RMSD compared
to the unbound protein, indicating an overall increase in stability (Figure 12A); secondly,
the reduction in solvent-accessible surface area (SASA) indicated a tighter binding between
PTP1B and kaempferol, leading to a decrease in the protein’s surface area and a more
enclosed conformation. This change may suggest a potential tightening of the binding
pocket (Figure 12B); furthermore, the radius of gyration (Rg) characterized the overall
compactness of a protein structure by measuring the square root of the average distance
of atoms from the center of mass within the molecule. After binding with kaempferol, Rg
demonstrated enhanced stability with reduced fluctuations, indicating a more compact
and denser molecular structure (Figure 12C); finally, to investigate the mobility of receptor
residues, calculations were performed on the Root Mean Square Fluctuation (RMSF) of
backbone atoms. The RMSF results revealed that the flexibility of the binding site (Asp181
and Phe182) decreased upon kaempferol binding (Figure 12D). Throughout the MD simu-
lations, both kaempferol and the control, quercetin, showcased remarkably similar effects
on PTP1B. This similarity strongly suggested that kaempferol, similar to quercetin, may
indeed act as a PTP1B inhibitor.
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Figure 12. Molecular dynamics simulation of quercetin and kaempferol binding to PTP1B. (A) RMSD.
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Representative conformations were obtained through K-means clustering. Figure 13A
compares the representative conformation of kaempferol bound to PTP1B with the rep-
resentative conformation of apo. Figure 13B compares the representative conformation
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of kaempferol bound to PTP1B with the representative conformation of quercetin bound
to PTP1B.
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The observed alteration in PTP1B suggested a degree of conformational change, with
the active pocket indeed contracting toward the ligand, which is consistent with our
previous SASA analysis.

The MM-PBSA results for the interaction between kaempferol and PTP1B are shown
in Table 3. Figure 14B displays the key residues for kaempferol binding to PTP1B. Although
the individual contribution of each residue varies, both kaempferol and quercetin exhibit a
notable similarity in their key residues. Specifically, Asp181, Tyr46, Val49, Ile219, Phe182,
Met258, Glu115, and Ala217 are identified as common key residues between them. In addi-
tion, in the binding of kaempferol and PTP1B, Gly259 and Ser50 emerge as crucial residues.
In summary, we found that more residues are involved in the binding of kaempferol and
PTP1B as a complement to the key residues obtained from molecular docking, providing a
complementary perspective.

Table 3. The MM-PBSA results of kaempferol.

Energy Value (kcal/mol)

∆EvdW (van der Waals energy) −19.06 ± 0.44
∆Eele (electrostatic energy) −24.19 ± 1.34

∆Ggas (gas-phase free energy change) 31.89 ± 0.99
∆Gsolv (solvation free energy change) −43.25 ± 1.19

binding free energy −11.36 ± 0.51

Int. J. Mol. Sci. 2024, 25, 4062 17 of 29 
 

 

Figure 13. Comparison of representative conformations. (A) Kaempferol (blue) and Apo (gray). (B) 
Kaempferol (blue) and Quercetin (orange). 

The MM-PBSA results for the interaction between kaempferol and PTP1B are shown 
in Table 3. Figure 14B displays the key residues for kaempferol binding to PTP1B. Alt-
hough the individual contribution of each residue varies, both kaempferol and quercetin 
exhibit a notable similarity in their key residues. Specifically, Asp181, Tyr46, Val49, Ile219, 
Phe182, Met258, Glu115, and Ala217 are identified as common key residues between 
them. In addition, in the binding of kaempferol and PTP1B, Gly259 and Ser50 emerge as 
crucial residues. In summary, we found that more residues are involved in the binding of 
kaempferol and PTP1B as a complement to the key residues obtained from molecular 
docking, providing a complementary perspective. 

Table 3. The MM-PBSA results of kaempferol. 

Energy Value (kcal/mol) 
ΔEvdW (van der Waals energy) −19.06 ± 0.44 
ΔEele (electrostatic energy) −24.19 ± 1.34 

ΔGgas (gas-phase free energy change) 31.89 ± 0.99 
ΔGsolv (solvation free energy change) −43.25 ± 1.19 

binding free energy −11.36 ± 0.51 

 
Figure 14. Key residues for quercetin and kaempferol binding to PTP1B. (A) Quercetin. (B) 
Kaempferol. 

Figure 15A shows the position of kaempferol relative to PTP1B after MD simulation. 
Figure 15D shows the interaction between kaempferol and PTP1B. The conventional hy-
drogen bonds between kaempferol and residues of PTP1B were Ala217 and Asp181. The 
benzene ring in Tyr46 and Phe182 interacts with the benzene ring in kaempferol. After 
MD simulation, the hydrogen bond distances between kaempferol and PTP1B became 
shorter, with increased interactions. We obtained more stable conformations of the bind-
ing between kaempferol and PTP1B. 

Figure 14. Key residues for quercetin and kaempferol binding to PTP1B. (A) Quercetin. (B) Kaempferol.



Int. J. Mol. Sci. 2024, 25, 4062 16 of 27

Figure 15A shows the position of kaempferol relative to PTP1B after MD simulation.
Figure 15D shows the interaction between kaempferol and PTP1B. The conventional hy-
drogen bonds between kaempferol and residues of PTP1B were Ala217 and Asp181. The
benzene ring in Tyr46 and Phe182 interacts with the benzene ring in kaempferol. After MD
simulation, the hydrogen bond distances between kaempferol and PTP1B became shorter,
with increased interactions. We obtained more stable conformations of the binding between
kaempferol and PTP1B.
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Figure 15. Docking results after MD simulation. (A) Three-dimensional docking visualization of
PTP1B with quercetin. (B) Three-dimensional docking visualization of PTP1B with kaempferol.
(C) Two-dimensional docking interaction diagram of PTP1B with quercetin. (D) Two-dimensional
docking interaction diagram of PTP1B with kaempferol.
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2.8. Half Maximal Inhibitory Concentration (IC50) and Tyrosine Phosphorylation of Kaempferol

The half-inhibitory concentration of PTP1B was tested. The inhibitory constant of
kaempferol on PTP1B is 279.23 µM (Figure 16) (Table S3).
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Figure 16. IC50 of kaempferol on PTP1B.

After stimulating HepG2 cells with varying concentrations of kaempferol for 30 min,
Western blot results revealed a dose-dependent increase in the tyrosine phosphorylation
level of total cellular protein (Figure 17). Treatment with kaempferol at 100 µM and
200 µM significantly elevated the total protein tyrosine phosphorylation level in HepG2
cells (Figure 17). These findings indirectly validate the inhibitory capacity of kaempferol
on PTP1B.
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kaempferol in HepG2 cells. Quantitative analysis of phosphorylated protein/β-actin in the control.
Data presented as mean ± SD. **** p < 0.0001.
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2.9. Prediction of ADMET Properties

Using ADMETLAB 2.0, predictions were made for the absorption, distribution, metabolism,
excretion, and toxicity of kaempferol. The results indicated favorable intestinal absorption
for kaempferol, as evidenced by the Caco-2 Permeability (−4.974) and Human Intestinal
Absorption (0.008) scores (detailed assessment criteria in Figure S5, point 3). Caco-2
Permeability is a measure of a compound’s permeability across human intestinal epithelial
cells (Caco-2 cells), and a Caco-2 Permeability higher than −5.15 Log unit suggests good
intestinal absorption. The literature indicates that the lipophilic nature of kaempferol
enables its absorption in the small intestine through mechanisms such as passive diffusion,
facilitated diffusion, or active transport. When individuals absorb 14.9 mg/d of kaempferol
from the intestine, plasma concentrations reach 16.69 ng/mL [51]. Distribution can be
assessed using the Volume Distribution index, with values falling within the range of
0.04–20 L/kg considered optimal. Kaempferol exhibited uniform distribution in tissues
and plasma, with a Volume Distribution of 0.522. Reported works indicate that kaempferol
is metabolized in the liver and small intestine, with metabolites being absorbed into the
systemic circulation, distributed to various tissues, and ultimately excreted via feces or
urine [52]. Furthermore, the database predicted a low likelihood of kaempferol crossing the
blood–brain barrier (Blood–Brain Barrier Penetration = 0.009; detailed assessment criteria
in Figure S5, point 4). In terms of metabolism, kaempferol is more likely to inhibit CYP1A2,
CYP2D6, and CYP3A4 enzymes (assessment criteria in Figure S5, point 5). The interaction
of kaempferol with the CYP450 enzyme may increase its bioavailability [53]. For excretion,
kaempferol’s Clearance was predicted to be 6.868 mL/min/kg, indicating a moderate
level. Studies have shown that 1.9–2.5% of ingested kaempferol is lost in the urine [52].
Additionally, kaempferol’s half-life was predicted to be greater than 3 h (T1/2 = 0.905;
detailed assessment criteria in Figure S5, point 6). Regarding toxicity, kaempferol was
predicted to have low Rat Oral Acute Toxicity (0.156), indicating good safety (detailed
assessment criteria in Figure S5, point 7).

Compared to quercetin, kaempferol exhibited better drug-likeness, improved intesti-
nal absorption, and higher bioavailability (detailed assessment criteria in QED, Caco-2
Permeability, and F20% in Figures S4 and S5).

3. Discussion

In this study, we employed a network pharmacology approach to explore how
flavonoids in mulberry leaf, combined with gut microbiota, may intervene in AD and T2DM.

Due to the proven effectiveness of the flavonoid quercetin in improving diabetes
symptoms and exhibiting neuroprotective effects, we first conducted a clustering analysis
to identify analogs of quercetin, including kaempferol, rhamnocitrin, tetramethoxyluteolin,
and norartocarpetin.

Following the construction of PPI networks and conducting a GO and KEGG enrich-
ment analysis, we identified the key component kaempferol and the potential therapeutic
target PTP1B. In terms of structure, quercetin is most similar to kaempferol (closest in the
clustering analysis), prompting further exploration and analysis. Kaempferol shares 59
common targets with gut microbiota, AD, and T2DM. Utilizing the topological properties
of the PPI network (analyzed through cytoHubba), we ranked the targets. PTPN1 held
the 13th position, placing it among the top 15 hub genes. That demonstrated its close
interaction with other proteins related to AD and T2DM. The PTPN1-encoded PTP1B is a
well-established protein crucial in intervening in diabetes, and it is also in the predicted
targets associated with AD [40–42]. We hypothesize that PTPN1 is a key target through
which kaempferol indirectly influences AD. The KEGG enrichment analysis of core tar-
gets of kaempferol confirmed our hypothesis, revealing that PTPN1 participates in the
significantly enriched (p value < 0.01, q value < 0.01) pathways, including the adherens
junction, insulin resistance, and chemical carcinogenesis—reactive oxygen species—where
it plays a role in the upstream dephosphorylation of IRS-1, MET, and β-Catenin, regulating
downstream pathways. Moreover, based on the PPI network, PTPN1 has direct interactions
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with GSK3B, PIK3R1, and CAPN1 in the Alzheimer’s disease pathway. These may be
mechanisms through which PTPN1 indirectly intervenes in AD.

In previous studies conducted in our laboratory, the inhibitory effect of quercetin
on PTP1B was confirmed [45]. Due to the structural similarity between kaempferol and
quercetin, we inferred that kaempferol could also inhibit PTP1B. Subsequently, molecular
docking and MD simulations were performed for kaempferol and PTP1B, and the inhibitory
effect of kaempferol on PTP1B was experimentally validated.

It is noteworthy that the position of kaempferol after our MD simulations closely
resembles the location of the small-molecule inhibitor of PTP1B (ABBV-CLS-484) in the
study by Shuwei Liang et al. [54]. The planar naphthalene core of the ABBV-CLS-484 is
situated between the protein exterior’s Phe182 and the hydrophobic surface formed by
residues Tyr46, Val49, Ile219, and Ala217. The naphthol moiety of the inhibitor engages in
hydrogen bonding with Asp181, while the fluorine atom is in proximity to Gln262. These
residues significantly overlap with the binding pocket and crucial interaction residues
identified in our MD simulations. Furthermore, in the study by Brent Douty et al., the
inhibitor occupies a pocket formed by residues Arg47, Asp48, Val49, Ile219, Gln262, and
Phe182, similar to the position of kaempferol in our investigation [55]. This substantiates
the accuracy and reliability of our MD results.

Additionally, the results obtained from ADMETLAB 2.0 have revealed the drawbacks
of kaempferol as a drug and provided directions for improvement (Figure S5). Kaempferol
exhibited low solubility values, as indicated by its Fsp3 value (the number of sp3 hybridized
carbons/total carbon count) of zero. Furthermore, the MCE-18 value of kaempferol, being
less than 45, suggests a poor balance between its pharmacological activity and chemical
properties. The Plasma Protein Binding (PPB) of kaempferol is 95.496%, suggesting a poten-
tially low therapeutic index. Modifying the structure or employing suitable pharmaceutic
preparation could enhance the bioavailability and therapeutic index of kaempferol. Fur-
thermore, toxicity prediction for kaempferol indicates the potential for Drug-Induced Liver
Injury. This toxicity can be mitigated by adjusting the dosage and employing structural
modifications in the drug development process.

Compared with other network pharmacology studies exploring the therapeutic mech-
anisms of traditional herbal medicines [56,57], we provided a more comprehensive analysis
by integrating multiple databases and bioinformatics tools, as well as through molecular
dynamics and experimental validation. This facilitated a more comprehensive understand-
ing of how mulberry leaf components impact AD through pharmacological mechanisms.
Specifically, our research considered the potential interplay between AD, T2DM, and the
microbiome, revealing that kaempferol, a structural analog of quercetin, might possess
indirect intervention capabilities in AD. Moreover, our study moved beyond predictions,
conducting real biological assays to determine the half-inhibitory concentration (IC50) of
kaempferol on PTP1B and tyrosine phosphorylation levels, providing empirical evidence
supporting our computational predictions. Our research is mutually confirmed through a
combination of dry and wet experiments. It enhanced the reliability and accuracy of our
research, ensuring that our findings hold biological significance.

Despite these advantages, there are some limitations in our findings. For the metabo-
lites obtained from the gutMGene database, we did not consider whether their substrates
were ingested by the human body. Some metabolites that did not have a SMILES type in
PubChem were also ignored by us. At the same time, our focus was solely on the potential
collaborative targets of kaempferol and gut microbiota in addressing AD and T2DM. We
did not account for the potential influence of kaempferol on the gut microbiota itself, de-
spite such an influence potentially existing [58]. Additionally, our focus primarily centered
on studying the impact of kaempferol on the PTP1B target protein, omitting an in-depth
exploration of other quercetin analogs and alternative targets. Furthermore, although
there are existing reports on the interaction mechanisms among AD, T2DM, and intestinal
microorganisms, their precise relationship remains unclear. A clearer understanding of the
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interaction mechanisms between AD and other diseases, as well as AD and gut microbiota,
could significantly advance research on the indirect effects of herbal ingredients on AD.

Overall, this study provided valuable insights into the potential pharmacological
mechanisms and therapeutic effects of mulberry leaf components, especially kaempferol,
combined with gut microbiota, to intervene in AD and T2DM. By analyzing the connections
between these targets, we can help uncover and address limitations and challenges in
treating AD. Future research can continue to advance our understanding of the complex
interactions between traditional herbal medicine and modern scientific methods, ultimately
helping the development of safe and efficacious treatments, either direct or indirect, for AD
and its associated conditions.

4. Materials and Methods
4.1. Acquisition and Cluster Analysis of Components in Mulberry Leaf

Mulberry leaf components were obtained through the TCMSP database (https://old.
tcmsp-e.com/tcmsp.php, accessed on 23 October 2023) [59], and a total of 270 components
were found. Clustering was implemented through the R programming language, and we
used several R packages, including rcdk, dplyr, rcdklibs, Rtsne, stats, ggplot2, and plotly.
The process began by translating SMILES notations into binary fingerprint vectors and
subsequently reducing data dimensions using t-SNE for three-dimensional visualization.
Following this, the data were clustered to uncover groups or clusters sharing similarities
among molecules. Ultimately, the clusters were visualized in a 3D plot using plotly for an
in-depth analysis, and the clustered data were saved.

4.2. Prediction of AD-Related Targets and T2DM-Related Targets

First, we screened for potential T2DM target genes from the DisGeNET (https://www.
disgenet.org/, accessed on 30 October 2023), GeneCards (https://www.genecards.org/,
accessed on 28 October 2023), and PharmGKB [60] (https://www.pharmgkb.org/, accessed
on 30 October 2023). We identified 3134 potential targets in DisGeNET databases, 2950
potential targets with a relevance > 0.1 in GeneCards, and 55 potential targets in PharmGKB.
After performing a union operation on the potential targets from three databases, 4639
unique potential targets were obtained. The same method was used to search for potential
AD targets (we accessed DisGeNET, GeneCards, and PharmGKB on 28 October 2023),
identifying 3401 results.

4.3. Prediction of Targets of Quercetin and Its Structural Analogs

We screened Super-Pred (https://prediction.charite.de/subpages/target_prediction.
php, accessed on 30 October 2023), SwissTargetPrediction (http://swisstargetprediction.
ch/, accessed on 30 October 2023), and SEA (http://sea.bkslab.org/, accessed on 30 Oc-
tober 2023) databases for potential targets on which quercetin and its structural analogs
may act. For quercetin, we identified 132 potential targets in Super-Pred databases, 86
potential targets with a Probability > 0.4 in STP, and 147 potential targets in SEA. After
performing a union operation on the potential targets from three databases, 256 unique
potential targets were obtained. Similarly, for kaempferol, we obtained 263 targets; for
rhamnocitrin, we obtained 215 targets; for tetramethoxyluteolin, we obtained 194 targets;
and for norartocarpetin, we obtained 250 targets.

4.4. Prediction of Gut Microbiota Metabolite Targets

The gutMGene database was used to obtain metabolites of gut microbiota (http:
//bio-annotation.cn/gutmgene/, accessed on 12 November 2023) [61], and a total of 208
metabolites were obtained. PubChem was used to obtain SMILES formulas of metabolites,
resulting in 184 SMILES formulas. The resulting SMILES formulas were entered into
Super-Pred (accessed on 21 November 2023), STP (accessed on 21 November 2023), and
SEA (accessed on 22 November 2023) to predict its potential targets. The obtained targets
were screened based on the human gene names in the swiss-prot data set in the UniProt
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database (https://www.uniprot.org/, accessed on 30 October 2023) [62], and 592 targets
were obtained in Super-Pred, 946 targets were obtained in STP, and 1415 targets with
Probability > 0 were obtained in SEA.

4.5. Acquisition Targets for Mulberry Leaf Ingredients Combined with Gut Microbiota to Intervene
in AD and T2DM

For accuracy, we utilized the online tool VENNY2.1 (https://bioinfogp.cnb.csic.es/
tools/venny/index.html, accessed on 28 November 2023) to assess the overlap of gut
microbiota metabolite targets among Super-pred, STP, and SEA. These targets, alongside
predicted mulberry leaf component targets, AD-related targets, and T2DM-related targets,
were comprehensively analyzed using VENNY2.1.

4.6. Construction of the Protein–Protein Interaction (PPI) Network

The construction of the PPI network relied on data sourced from the STRING database
(http://string-db.org/, accessed on 29 November 2023) to evaluate potential interactions
among the identified hub targets. The visual representation of these interactions was
achieved using Cytoscape (version 3.9.1). Subsequently, the PPI network’s topological
properties were analyzed, leading to the identification of the top 15 hub genes through
Cytoscape’s analytical tool—cytoHubba.

4.7. GO and KEGG Enrichment Analysis

We employed several R packages—clusterProfiler, AnnotationHub, org.Hs.eg, enrich-
plot, pathview, dplyr, and ggplot2—for conducting enrichment analyses on gene ontology
(GO) [63,64] biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG)
based on core target data. Utilizing a significance threshold of p = 0.01 and q = 0.01,
we retrieved GO information from org.Hs.eg.Db in Bioconductor. The outcomes are pre-
sented through bar charts and bubble charts to offer a comprehensive visualization of the
final results.

4.8. Quantum Chemical Calculation

Gaussian09W and GaussView 5.0 [65] were used to perform quantitative calcula-
tions on the structures of quercetin and its analogs. The Method of Gaussian Calculation
was B3LYP of DFT in the Ground State, and we made the Basis Set 6-31G*. The visual
HOMO-LUMO orbitals’ diagrams of the quantitative calculation were drawn through
Multiwfn [66].

4.9. Molecular Docking

We delved deeper into the gene target XDH, one of the top 15 hub genes identified in
the PPI network associated with kaempferol. The gene encodes for protein tyrosine phos-
phatase 1B (PTP1B). Kaempferol and quercetin were selected for molecular docking with
PTP1B (PDB code: 2VEV, including the N-terminal Glu2-Glu300 part of PTP1B), the latter
being a confirmed inhibitor of PTP1B, serving as a control. To prepare the receptor, we uti-
lized Discovery Studio 2019 for dehydration and hydrogenation. Subsequently, AutoDock
Vina 1.2.0 [67] was employed for the docking process, and the results of molecular docking
were visualized using Pymol 2.5.7 [68] and Discovery Studio. Figure S6 displays the results
of our docking validation.

4.10. Molecular Dynamics Simulations

Using AMBER 16’s PMEMD engine and the FF14SB AMBER force field [69], we
conducted MD simulations on our systems. We employed the TIP3P water model and
periodic boundary conditions to prevent edge effects. After setting the appropriate system
distance and neutralizing ions, we conducted steps involving energy minimization, gradual
heating, and equilibration. The simulations, spanning 100 ns, operated under the isobaric–
isothermal ensemble (NPT) conditions, featuring randomized seeding, constant pressure

https://www.uniprot.org/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
http://string-db.org/
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of 1 bar (maintained by the Berendsen barostat), a pressure-coupling constant of 2 ps,
a temperature of 300 K, and a Langevin thermostat [70] with a collision frequency of
1 ps. The analyses of MD were conducted utilizing CPPTRAJ [71], and the obtaining of
representative conformations was also conducted utilizing the K-means cluster method of
the CPPTRAJ module.

Similar to our previous work [72], we employed the molecular mechanics/Poisson–
Boltzmann surface area (MM/PBSA) method to investigate the binding affinity between
kaempferol and PTP1B. The binding free energy (∆Gbind) is represented by the follow-
ing formula:

∆Gbind = ∆H − T∆S (1)

∆H = ∆EMM + ∆Gsol (2)

∆EMM = ∆Eele + ∆EvdW + ∆Eint (3)

∆Gsol = ∆Gpb + ∆Gnp (4)

In the above formula, ∆EMM represents the gas-phase energy, ∆Gsol represents the
solvation-free energy, ∆Eele represents electrostatic energy, ∆EvdW represents van der Waals
energy, ∆Eint represents internal energy, ∆Gpb represents the polar solvation-free energy,
and ∆Gnp represents non-polar solvation-free energy.

We conducted calculations every 2 ns, ultimately extracting 50 snapshots from the
final trajectory for MM/PBSA calculations.

4.11. IC50 and Tyrosine Phosphorylation of Kaempferol

To investigate kaempferol’s impact on PTP1B activity, we determined its IC50.
Following the methodology outlined in previous literature, the catalytic domain

(Met1-Glu298) of PTP1B (∆PTP1B) was synthesized using BL21 bacteria harboring the
PT7-∆PTP1B recombinant plasmid, subsequently isolated and purified [73].

Utilizing p-Nitrophenyl Phosphate (PNPP) as a non-specific substrate for protein tyro-
sine phosphatase, ∆PTP1B catalyzes its breakdown into p-nitrophenol. The quantification
of protein tyrosine phosphatase activity was achieved by measuring the mole count of
p-nitrophenol generated.

Initially, we diluted the kaempferol sample to varying concentrations. By monitoring
the resulting changes in the production of the reaction product (p-nitrophenol) across
different kaempferol concentrations, we gauged the inhibitory effect of kaempferol on
PTP1B, constructing a concentration-dependent inhibition curve. The IC50 value was
derived from this curve. Our experiment utilized a 100 µL system, encompassing diverse
kaempferol concentrations (16.25, 32.5, 65, 125, 250, 500, 1000, and 2000 µM). Table 4 shows
the remaining system components.

Table 4. Remaining components of the 100 µL system.

System Components Concentration

MOPS-NaOH buffer (pH 7.0) 25 mM
EDTA 1 mM
DTT 1 mM
BSA 1 mg/mL
NaCl 0.1 M

p-NPP 10 mM
PTP1B 40 ng

Following a 15 min incubation at 37 ◦C, the reaction was halted by adding 100 µL of
0.1 M NaHCO3 (PH ≈ 8.4). The experiment quantified the p-nitrophenol yield through
absorbance measurement at a 405 nm wavelength, following the methodology outlined in
previous literature. A blank group lacking PTP1B served as the control for comparison.
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To detect the tyrosine phosphorylation effect of kaempferol, HepG2 cells were cultured
in a growth medium supplemented with 10% fetal calf serum until reaching approximately
90% confluence. Subsequently, the cells were treated with varying concentrations of
kaempferol (10, 50, 100, and 200 µM). After a 30 min incubation period, the cells were
exposed to a solution comprising 25 mM glycerophosphate (pH 7.3), 5 mM EDTA, 2 mM
EGTA, 5 mM mercaptoethanol, 1% Triton X-100, 0.1 M NaCl, and a cocktail of protease and
phosphatase inhibitors. Following this, protein extraction was performed by centrifugation
at 12,000× g for 10 min to isolate the supernatant. Subsequently, proteins were separated
using 10% SDS-PAGE gel electrophoresis, transferred onto a polyvinylidene fluoride mem-
brane, and subjected to treatment with a phosphotyrosine antibody (PY99). Enhanced
chemiluminescence was employed for detection purposes (Table 5).

Table 5. Summary table of experimental material sources.

Reagent Name Manufacturers

BL21 with PT7-∆PTP1B recombinant plasmid
Laboratory preservation

(Fisher Laboratory, College of Life Sciences,
Jilin University, Changchun, China)

Kaempferol Aladdin (Shanghai, China)
HepG2 cell Nanjing Keygen Company (Nanjing, China)

SDS-PAGE SIGMA Corporation of America
(Ronkonkoma, NY, USA)

Phosphotyrosine antibody (PY99)
Santa Cruz Biotechnology

(Santa Cruz, CA, USA)
(RRID: AB_628123)

β-Actin antibodies
Santa Cruz Biotechnology

(Santa Cruz, CA, USA)
(RRID: AB_626632)

4.12. Prediction of ADMET Properties

To predict the absorption, distribution, metabolism, excretion, and toxicity of kaempferol
and quercetin, we utilized the ADMET Evaluation module of ADMETLAB 2.0 (https:
//admetmesh.scbdd.com/, accessed on 7 February 2024) [74] by submitting the SMILES
formulas of kaempferol and quercetin.

5. Conclusions

In this study, we employed a network pharmacology approach to explore how struc-
tural analogs of quercetin found in mulberry leaf, especially kaempferol, combined with
gut microbiota, may intervene in AD and T2DM. By constructing a PPI network and ana-
lyzing the top 15 hub genes, we identified the key component kaempferol and the potential
therapeutic target PTP1B. By utilizing a GO enrichment and KEGG pathway analysis, we
can delve deeply into comprehending the biological processes and molecular functions as-
sociated with core genes. Network pharmacology reveals that quercetin structural analogs
combined with gut microbiota have potential functions in the treatment of T2DM and AD.

Molecular docking confirmed the interaction between kaempferol and PTP1B. A
further molecular dynamics analysis demonstrated that upon binding with kaempferol,
PTP1B exhibited increased stability compared to PTP1B without inhibitors. This binding
resulted in a more closed conformation and reduced flexibility at the binding site. Notably,
kaempferol exhibited similar effects to the control quercetin.

Experimental findings demonstrate that kaempferol exhibits inhibitory effects on
tyrosine phosphatase activity, with an observed IC50 value against PTP1B determined at
279.23 µM. Additionally, kaempferol elevates the levels of tyrosine phosphorylation in cells,
indicating its potential therapeutic efficacy in T2DM and AD.

To summarize, this study offers a comprehensive comprehension of the pharmaco-
logical mechanisms and potential therapeutic impact of mulberry leaf components in
intervening in AD. The delineation of crucial components, targets, and signaling pathways

https://admetmesh.scbdd.com/
https://admetmesh.scbdd.com/


Int. J. Mol. Sci. 2024, 25, 4062 24 of 27

holds promise for the development of novel treatments for AD. However, further exper-
imental validation and clinical trials are imperative to confirm the efficacy and safety of
kaempferol, potentially paving the way for its utilization as a preventive and therapeutic
agent for AD and associated conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25074062/s1.
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