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Abstract: Vascular endothelial growth factor 165 (VEGF165) is a prominent isoform of the VEGF-A
protein that plays a crucial role in various angiogenesis-related diseases. It is homodimeric, and each
of its monomers is composed of two domains connected by a flexible linker. DNA aptamers, which
have emerged as potent therapeutic molecules for many proteins with high specificity and affinity,
can also work for VEGF165. A DNA aptamer heterodimer composed of monomers of V7t1 and del5-1
connected by a flexible linker (V7t1:del5-1) exhibits a greater binding affinity with VEGF165 compared
to either of the two monomers alone. Although the structure of the complex formed between the
aptamer heterodimer and VEGF165 is unknown due to the highly flexible linkers, gaining structural
information will still be valuable for future developments. Toward this end of accessing structural
information, we adopt an ensemble docking approach here. We first obtain an ensemble of structures
for both VEGF165 and the aptamer heterodimer by considering both small- and large-scale motions.
We then proceed through an extraction process based on ensemble docking, molecular dynamics
simulations, and binding free energy calculations to predict the structures of the VEGF165/V7t1:del5-1
complex. Through the same procedures, we reach a new aptamer heterodimer that bears a locked
nucleic acid-modified counterpart of V7t1, namely RNV66:del5-1, which also binds well with VEGF165.
We apply the same protocol to the monomeric units V7t1, RNV66, and del5-1 to target VEGF165.
We observe that V7t1:del5-1 and RNV66:del5-1 show higher binding affinities with VEGF165 than any
of the monomers, consistent with experiments that support the notion that aptamer heterodimers are
more effective anti-VEGF165 aptamers than monomeric aptamers. Among the five different aptamers
studied here, the newly designed RNV66:del5-1 shows the highest binding affinity with VEGF165.
We expect that our ensemble docking approach can help in de novo designs of homo/heterodimeric
anti-angiogenic drugs to target the homodimeric VEGF165.

Keywords: VEGF; aptamer heterodimer; ensemble docking; molecular dynamics simulation

1. Introduction

The vascular endothelial growth factor (VEGF) family of proteins plays key roles
in regulating physiological vasculogenesis and angiogenesis, namely the process of new
blood vessel formations [1–3]. At the same time, the VEGF family is also responsible for
pathological angiogenesis in diseases such as tumor growth and neovascular age-related
macular degeneration [2–7]. Therefore, VEGF’s family members are important targets for
diagnosing these diseases [2,3]. The human VEGF family comprises five members [7],
among which the most studied one is VEGF-A, which is often referred to simply as VEGF.
It has several isoforms with different numbers of amino acid residues [7], but VEGF165 with
165 residues is the most abundant and is known to play an important role in pathological
angiogenesis [7]. It is a homodimeric protein, with each monomer having a heparin-
binding domain (HBD) and a receptor-binding domain (RBD) connected by a flexible linker
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(Figure 1A) [7,8]. The experimental structures of HBD and RBD are known [9,10], but due
to the high flexibility of the linker region, the full structure of the homodimeric VEGF165 is
experimentally unknown [8]. Functionally, VEGF binds with VEGF receptors (VEGFRs)
and induces dimerization and activation of VEGFR. This triggers signal transduction
pathways that are crucial for angiogenesis (Figure 1B) [11,12]. While there are a series
of VEGFR variants, VEGFR-2 is known to play a main role in both physiological and
pathological angiogenesis [13]. Up to now, significant research efforts have been directed
toward discovering inhibitors targeting VEGF to prevent its binding to VEGFR [14]. Several
VEGF inhibitors have currently been approved for anti-angiogenic treatment, such as
Bevacizumab [15], Aflibercept [16], and Macugen [17].
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dimer, V7t1 and del5-1 are connected using 10 thymine nucleotides as a linker [23]. The 
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Figure 1. (A) Schematic representation of VEGF165 as a homodimer with two monomers. Each
monomer is composed of RBD and HBD, connected by a flexible linker. (B) VEGF165 binding with
VEGFR toward its activation. VEGFR is also a homodimer and is composed of an extracellular
domain with seven sub-domains in each monomer, a transmembrane domain lying in lipid, and an
intracellular domain extruding into the cytoplasm.

Aptamers are short single-stranded DNA or RNA molecules used for the molecular
recognition of targets with high affinity and specificity [18,19]. Not surprisingly, aptamers
have also been used to inhibit the activity of VEGF. Indeed, Macugen is a Food and
Drug Administration (FDA)-approved RNA aptamer used for treating age-related macular
degeneration [17]. Several DNA aptamers, including VEa5, 2G19, and Vap7, have been
further developed as anti-angiogenic agents against VEGF [20–23]. In addition, efforts have
been made to enhance the binding affinity of aptamers to VEGF by designing G-quadruplex-
forming aptamers [23–25] and aptamer dimers [20,23,26–29]. Naturally, it is important to
find an aptamer with high binding affinity to VEGF. Experimentally, it has been shown
that homodimers made for monomeric aptamers VEa5, del5-1, and 3R02 show higher
affinities with VEGF165 than their respective monomers [26,29]. Another experimental
study demonstrated the efficacy of an aptamer heterodimer composed of DNA aptamers
V7t1 and del5-1 (V7t1:del5-1) [23]. In particular, V7t1:del5-1 showed higher affinity towards
VEGF165 than its monomeric components, with del5-1 attaching to the HBD part and V7t1
attaching to the RBD part [23]. V7t1 is a 25-mer aptamer with a G-quadruplex structure and
was derived from Vap7 [23]. On the other hand, del5-1 is a 50-mer aptamer derived from
VEa5, and it encompasses three stem-loop regions [26]. In the heterodimer, V7t1 and del5-1
are connected using 10 thymine nucleotides as a linker [23]. The structure of the bound
complex formed by the aptamer heterodimer and VEGF165 is not known experimentally,
primarily due to the high flexibility of the linkers present in both components. Even still,
understanding the interactions between the aptamer heterodimer and VEGF165 will be
indispensable for developing new aptamer heterodimers with improved properties.
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In the absence of experimental structures, in silico methods such as molecular docking
and molecular dynamics (MD) simulations are useful tools [30–32]. The molecular docking
approach facilitates the prediction of a ligand-binding site on the target molecule as well
as the binding affinity and provides useful information on the position and orientation of
the ligand [30]. Conversely, MD simulations capture the dynamic behavior of the ligand–
target complex, providing useful information on stability, flexibility, and the associated
conformational changes [31]. Additionally, end-point free energy methods [32–34] have
been extensively utilized for calculating ligand–target binding free energies. They often
use only the conformations in the free and bound states of the ligand and target and can be
computationally less expensive than more rigorous alchemical- and pathway-based free
energy methods [35–37]. Even though the end-point methods lack somewhat in accuracy
compared to these rigorous methods, they can still offer higher accuracy than docking
scoring functions [32].

With the above in mind, here we propose an ensemble docking approach for predicting
an ensemble of complex structures of V7t1:del5-1 bound to VEGF165 by taking into account
both small- and large-scale motions in both VEGF165 and the aptamer heterodimer. We first
utilize anisotropic network model (ANM) analysis to gain insights into large-scale motions
based on the lowest-frequency normal modes [38], followed by biased MD simulations to
generate molecular structures considering these motions. In fact, identifying large-scale
changes that typically involve low-frequency normal-mode motions in a complex system is
a challenging task with atomistic MD. ANM can be a reasonable approach to generating
large-scale collective motions occurring between the domains/monomers connected by a
linker in both VEGF165 and the aptamer heterodimer. Through biased MD simulations, we
obtain several conformations of VEGF165 and the aptamer heterodimer corresponding to
their lowest-frequency normal modes. The obtained structures are then used for extraction
based on ensemble docking, followed by unbiased MD simulations as well as binding
free energy calculations based on molecular mechanics generalized Born surface area
(MM/GBSA) [32], to predict the complex structures of the aptamer heterodimer bound
to VEGF165.

We also designed a new aptamer heterodimer, RNV66:del5-1, against VEGF165 by
replacing V7t1 with a locked nucleic acid (LNA) modified version of V7t1, namely RNV66.
Although V7t1 effectively targets the RBD part of VEGF165, it exhibits polymorphism, re-
sulting in multiple G-quadruplex structures [24]. In contrast, the 25-mer RNV66 generated
by replacing guanine residues at positions 5, 21, and 24 of V7t1 with LNA-G residues has
a single stable G-quadruplex structure [24]. Moreover, RNV66 by itself is an outstand-
ing anti-VEGF aptamer and is known to inhibit cancer proliferation with higher binding
affinity and nuclease resistance than V7t1 [25]. Using our ensemble docking protocol men-
tioned above, we also provide the complex structures of RNV66:del5-1 bound to VEGF165.
For comparison, the three constituting monomeric units (V7t1, RNV66, and del5-1) are
also included in the ensemble docking approach with VEGF165. All five VEGF165/aptamer
complexes obtained are then analyzed in detail to explore binding poses, hydrogen bond
(H-bond) interactions in VEGF165/aptamer complexes, and steric clashes between the
aptamer and VEGFR-2 when the complex interacts with VEGFR-2. In addition, the stability
of the G-quadruplex structure of RNV66 or V7t1 upon binding with VEGF165, either as a
monomer or as part of a heterodimer, is also examined.

2. Results and Discussion
2.1. Designing Anti-VEGF165 Aptamers

In this paper, we study two aptamer heterodimers, RNV66:del5-1 and V7t1:del5-1,
as well as three monomeric aptamers, RNV66, V7t1, and del5-1, for targeting VEGF165.
Through computational means, we tried to incorporate small- and large-scale motions into
the consideration of the protein–aptamer interaction [39] involving VEGF165.

To have a pictorial sense of the large-scale motion, the lowest-frequency normal mode
of VEGF165 was first predicted using ANM analysis on VEGF165. As mentioned above,
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this approach was selected because observing large-scale motions induced by flexible
linkers solely through unbiased MD simulations is highly challenging due to the sampling
difficulty. This motion could be characterized as a scissoring bending vibration between the
two HBD units, with oscillations in the distance between the two (Figure 2A). To reflect this
large-scale motion, we generated seven different VEGF165 conformations by using biased
MD simulations, increasing the distance between the centers of mass (COMs) of the two
HBD units from 3 nm to 9 nm in 1 nm intervals (Figure 2B). In addition, from each 10 ns
long biased MD trajectory, VEGF165 snapshots were extracted at every 500 ps to account for
small-scale motions of the protein. Accordingly, 20 VEGF165 structures were extracted from
each biased MD simulation, resulting in a total of 140 (7 × 20) VEGF165 conformations. With
these, we calculated all possible intra-monomer COM distances between RBD and HBD
as well as the inter-monomer ones, and the distances ranged 2.0–6.2 nm and 2.5–6.1nm,
respectively (Figure 2A).
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Figure 2. (A) Schematic representation of VEGF165 motion. The two monomers of VEGF165 are shown
in blue and red. The orange arrows indicate the lowest-frequency normal-mode motion obtained
from ANM. The yellow stars represent the COMs of HBD and RBD, with the yellow and green arrows
indicating, respectively, the intra-monomer and inter-monomer COM distances between HBD and
RBD. (B) Biased MD simulation results for generating seven VEGF165 conformations, with HBD–HBD
COM distances restrained at the designated distances.

With these distance values in mind, we also performed ANM analyses on the equili-
brated structures of RNV66:del5-1 and V7t1:del5-1 as obtained from the MD simulations.
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From these, wavy motions with which the two aptamer monomers became closer and
farther from each other were commonly observed as the lowest-frequency normal mode
in both heterodimers (Figure 3A). To better handle this large-scale motion, we performed
biased MD simulations with restraints on the inter-monomer COM distances by increasing
the restraining distances from 2.0 nm to 7.5 nm in steps of 0.5 nm intervals. For each
COM distance, the biased simulations were continued up to 10 ns, leading to 12 distinct
conformations for each heterodimer bearing large-scale motions (Figure 3B). Small-scale
motions were then added by extracting snapshots at 500 ps intervals from each 10 ns
biased MD simulation, leading to a total of 240 (12 × 20) structures obtained for each
heterodimer. As RNV66 or V7t1 binds to RBD [23–25] while del5-1 binds to HBD [26],
it was necessary to consider distance ranges between RNV66 and del5-1 and between V7t1
and del5-1 that could encompass the RBD-to-HBD distances. This was the reason we chose
the heterodimer distance range of 2.0–7.5 nm. Because V7t1:del5-1 was effective with a
linker made of 10 thymine nucleotides [23], we used the same linker for RNV66:del5-1
as well. For the cases of the 3 aptamer monomers, we similarly extracted snapshots at
every 500 ps of a single 10 ns MD simulation of each without any restraint, resulting in
20 monomer structures for each monomer type.
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Figure 3. (A) RNV66:del5-1 together with its lowest-frequency normal-mode motion from ANM,
illustrated with green and orange arrows. The sequence information is also given on the right.
(B) Twelve RNV66:del5-1 structures obtained from biased MD simulations, with the inter-monomer
COM distances restrained at the designated distances.
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2.2. Ensemble Docking of Aptamers with VEGF165

To generate the VEGF165/aptamer complexes, we utilized the HDOCK docking pro-
gram [40,41] by utilizing all combinations of the conformations described in the previous
section. In fact, HDOCK has been extensively adopted recently to analyze protein–RNA
and protein–DNA interactions [42–44], and it has shown excellent performance [45] in the
community-wide Critical Assessment of Prediction of Interactions (CAPRI) [46]. To fur-
ther verify its applicability to our systems, we conducted a docking experiment between
VEGF121 and domains 2 and 3 (D23) of VEGFR-2 with it. The docked structure (Figure
S1 in Supporting Information (SI)) was a close match with the experimentally known
VEGF-A/VEGFR-2 D23 structure (PDB ID: 3V2A) [47] after adding the missing residues in
the crystal structure through homology modeling with SWISS-MODEL [48].

In total, 240 structures for each aptamer heterodimer and 20 for each aptamer monomer
underwent docking with 140 VEGF165 structures. Consequently, a total of 33600 docked
poses or structures (i.e., 140 × 240) for each aptamer heterodimer and 2800 poses (i.e.,
140 × 20) for each aptamer monomer were obtained (Figure 4). Based on the obtained
docking results, we extracted the initial structures required for subsequent MD simulations
to calculate the binding free energies with MM/GBSA [32]. For each type of aptamer het-
erodimer, 400 docked structures (20 VEGF165 snapshots × 20 aptamer snapshots) were gen-
erated for each of the 84 variants (7 VEGF165 variants × 12 aptamer variants). Subsequently,
the docked structures that did not meet the “attachment criteria,” i.e., RNV66 or V7t1
attaching to the RBD part and del5-1 attaching to the HBD part, were manually excluded.
From the remaining docked structures for each type of aptamer heterodimer, the top-3
complexes with the highest docking scores were selected for each of the 84 variants. Simi-
larly, for each type of monomeric aptamer, 400 docked structures (20 VEGF165 snapshots ×
20 aptamer snapshots) were generated for each of the 7 variants (7 VEGF165 variants × 1
aptamer). Within the docked structures for each type of monomeric aptamer, those that
did not satisfy the attachment criteria were eliminated first, and the top-three complexes
with the highest docking scores were selected from the rest for each of the seven variants.
Consequently, we obtained 252 complex structures each for VEGF165/RNV66:del5-1 and
VEGF165/V7t1:del5-1 and 21 complex structures each for VEGF165/RNV66, VEGF165/V7t1,
and VEGF165/del5-1 (Figure 4). Thus, a total of 567 VEGF165/aptamer structures were
selected as initial structures for the subsequent MD simulations. The docking scores of
these selected conformations are provided in SI (Tables S1 and S2).
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2.3. Binding Affinity of Aptamers with VEGF165

To obtain binding free energies using MM/GBSA, we first performed 15 ns MD
simulations for each complex with the chosen structures. After analyzing the time course
of the root-mean-square deviation (RMSD) for each complex from its 15 ns MD trajectory,
we confirmed that all 567 structures were equilibrated within 10 ns. The time course of the
RMSD for each complex was calculated with respect to its initial structure. However, upon
observing the complex structures after the 15 ns period, we found that some complexes did
not meet the attachment criteria mentioned above. Thus, these trajectories were excluded
from the list, and there remained 491 trajectories in total for further analyses, as follows:
218 for VEGF165/RNV66:del5-1; 210 for VEGF165/V7t1:del5-1; 21 for VEGF165/RNV66;
21 for VEGF165/V7t1; and 21 for VEGF165/del5-1. For each MD trajectory, using the
snapshots sampled at every 10 ps over its last 5 ns, we calculated the binding free energy
using the single-trajectory approach of MM/GBSA [32]. The time courses of the RMSD
values obtained from the MD trajectories with the lowest binding free energies for the five
types of VEGF165/aptamer complexes are shown in Figure 5. In this case, the RMSD values
were calculated using the complex structure at the 10 ns mark of each MD trajectory as the
reference structure.

The average binding free energies for the five types of complexes are listed in Table 1,
along with the number of trajectories adopted for generating the averages. The averages
revealed that RNV66:del5-1 is the strongest binder and is much better than V7t1:del5-1.
In general, heterodimers are better than monomers. Although any quantitative interpreta-
tion with specific numbers should be avoided due to the inherent limitation of MM/GBSA,
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these binding free energies are also in the same trend with the average docking scores
also listed in Table 1 and are consistent with available experimental data that showed that
V7t1:del5-1 exhibits a higher binding affinity to VEGF165 compared to either V7t1 or
del5-1 [23]. Similarly, RNV66:del5-1 demonstrates a higher binding affinity than its
monomeric counterparts, further supporting the notion that aptamer heterodimers are
more effective anti-VEGF165 aptamers than monomers. Interestingly, from our results,
RNV66:del5-1 appeared as a more potent binder than V7t1:del5-1, suggesting that an ap-
tamer heterodimer designed with RNV66, which is known to be more effective in inhibiting
than V7t1 [25], may potentially serve as a superior anti-VEGF165 inhibitor. To verify that we
are not misguided by any outlying conformation, we selected the structures with the top-ten
lowest binding free energies for each of the five types of VEGF165/aptamer complexes and
re-calculated the averages based only on those top-ten contributors (Table S3). The results
are still consistent with the ones observed with all structures, as discussed above.
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Table 1. Averaged binding free energies (∆G) and docking scores for the five types of VEGF165/aptamer
complexes.

Complex VEGF165/
RNV66:del5-1

VEGF165/
V7t1:del5-1

VEGF165/
RNV66

VEGF165/
V7t1

VEGF165/
del5-1

No. of trajectories 218 210 21 21 21
∆G (kcal/mol) −199.3 ± 44.5 −117.2 ± 41.0 −47.9 ± 24.9 −74.5 ± 44.1 −93.4 ± 30.1

Docking score a −1377.8
± 83.3

−1361.7
± 76.6

−1094.1
± 57.5

−1072.5
± 41.3

−1295.7
± 71.8

a In an arbitrary unit.

When we visually inspected the final snapshots of the 491 VEGF165/aptamer trajecto-
ries using VMD [49], we noticed some typical binding poses, and we classified them into
three categories: sandwich, side, and hug poses. A sandwich pose refers to a configuration
where the two HBD units surround the aptamer in the center. In other words, for the
VEGF165/aptamer complex to exhibit a sandwich pose, both HBD units of VEGF165 must
bind to a single aptamer domain (Figure 6A). Additionally, in the side pose, del5-1 binds to
only one HBD of VEGF165, while RNV66 or V7t1 binds to the outside of VEGF165 (Figure 6B).
In a hug pose, RNV66 or V7t1 is bound to the interior of VEGF165, while del5-1 binds to
only one of the two HBD units, and the other unit is located far from del5-1 (Figure 6C).
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In the classification, to assess whether a specific aptamer has bound to a particular domain
of VEGF165, we considered whether the distances between protein side-chain heavy atoms
and DNA heavy atoms were within 0.45 nm [50]. More extensive pictorial representations
than those in Figure 6 can be found in Figures S2 and S3.

Upon computing the fraction of occurrences of these three binding poses, we observed
that all the five aptamers we adopted preferred the sandwich pose when binding to
VEGF165 (Figure 7). This indicates that the sandwich pose is the most stable structure
for complexation. Interestingly, aptamer heterodimers displayed fewer sandwich and
hug poses compared to monomeric aptamers. The binding poses of the top-ten complex
structures for each type of VEGF165/aptamer complex can be found in Table S4.
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Figure 6. Typical poses of VEGF165/aptamer complexes: (A) a sandwich pose of VEGF165/RNV66:del5-
1, (B) a side pose of VEGF165/RNV66:del5-1, and (C) a hug pose of VEGF165/RNV66:del5-1. The
structures obtained through VMD for each pose are presented alongside their schematic represen-
tations. The representative structures for each pose were arbitrarily chosen. For aptamers, RNV66
and V7t1 are shown in yellow, while del5-1 is in red, with the linker in silver. For VEGF165, RBD is in
green, while HBD is in blue, with the linker in orange.
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2.4. Hydrogen Bonds between Aptamer and Key Residues of VEGF165

From experiments, the key VEGF165 residues involved in its binding with heparin [9]
and VEGFR-2 [47] are known. For comparison, we investigated to identify which of these
key VEGF165 residues are involved in binding with the five aptamers through H-bonds.
We focused specifically on examining the formation of H-bonds with the seven residues
(Y21, Y25, I43, N62, D63, E64, and Q89) in the RBD part, which were identified as the key
residues for binding with VEGFR-2 [47], as well as the ten residues (R123, R124, K125, K140,
R145, R149, R156, K162, R164, and R165) in the HBD part, known to interact with heparin
(Figure 8) [9].
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Figure 8. (A) Key residues of VEGF165 in binding with VEGFR-2 and heparin, with the RBD/HBD/
linker unit depicted in green/blue/silver. (B) Schematic representation of the complex formed by
VEGF165 together with VEGFR-2 D23. VEGFR-2 D23 is highlighted in red.

We adopted the MD trajectories corresponding to the top-ten complex structures with
the lowest binding free energies, mentioned in an earlier section, by taking the snapshots
at every 10 ps during the last 5 ns of each trajectory and counting the number of H-bonds
in each snapshot. The criterion for a H-bond was a maximum donor–acceptor distance of
3.5 Å and a maximum H-donor–acceptor angle of 30 deg [51,52]. We then calculated the
time average of the number of H-bonds over the 5 ns period for each trajectory. The results
are shown in Figure 9 separately for the RBD residues and the HBD residues. In general,
HBD is more prone to forming H-bonds than RBD, and heterodimers tend to form more
H-bonds. In a sense, this is not surprising, as we already observed that RNV66:del5-1 and
V7t1:del5-1 are more effective binders than their constituting monomers. Out of the 17 key
VEGF165 residues, R123, R145, R149, R156, K162, R164, and N62 were the most involved in
forming H-bonds, frequently with the five aptamers.
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in (A) the RBD and (B) the HBD parts. Horizontal axes denote the top-ten complex structures for the
given complex type.

2.5. Hydrogen Bonds between Aptamer and the Other Residues of VEGF165

We also conducted an analysis of H-bond formations involving the other residues of
VEGF165 to understand why heterodimer aptamers exhibit higher binding affinity com-
pared to monomeric aptamers. This analysis specifically focused on the top-ten structures
based on the binding free energy for each VEGF165/aptamer complex. For RNV66 and
V7t1, the interactions predominantly involved VEGF165 residues D35, Q37, R56, and H99
when forming H-bonds with the RBD part. For del5-1, significant involvements were
observed with R123, R124, K125, K136, S138, K140, Y142, D143, S144, R145, R149, N154,
R156, R159, R164, and R165 in the HBD part. In contrast, the two heterodimer aptamers
(RNV66:del5-1 and V7t1:del5-1) formed H-bonds not only with D35, Q37, R56, and H99 but
also with K48, K84, H86, and Q89 in the RBD part (Figure 10). In the HBD part, in addition
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to the important VEGF165 residues mentioned for del5-1, interactions with K147, Q150, and
K163 were also observed. These aspects illustrate that the higher binding affinities of the
heterodimer aptamers result from their ability to bind to both the RBD and the HBD units
of VEGF165, providing a distinct advantage in binding. We also speculate that homodimer
aptamers will likely bind only to either RBD or HBD, and they will have lower binding
affinities with VEGF165 than the heterodimers.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 12 of 20 
 

 

important VEGF165 residues mentioned for del5-1, interactions with K147, Q150, and K163 
were also observed. These aspects illustrate that the higher binding affinities of the heter-
odimer aptamers result from their ability to bind to both the RBD and the HBD units of 
VEGF165, providing a distinct advantage in binding. We also speculate that homodimer 
aptamers will likely bind only to either RBD or HBD, and they will have lower binding 
affinities with VEGF165 than the heterodimers. 

 
Figure 10. Representation of VEGF165/RNV66:del5-1 complex and H-bonds formed between ap-
tamer and VEGF165. RNV66 is shown in yellow, del5-1 in red, the linker between RNV66 and del5-1 
in silver, the RBD units in green, the HBD units in blue, and the linker between RBD and HBD in 
orange. The upper panels represent the important residues for forming H-bonds between the HBD 
part and del5-1, while the lower panel depicts the crucial residues for forming H-bonds between the 
RBD part and RNV66. H-bonds are depicted as green dashed lines. 

2.6. Steric Clashes between Aptamer and VEGFR-2 
We believe that an aptamer can act as an effective inhibitor of VEGFR-2 activation 

because it can block the VEGF165-to-VEGFR-2 interaction itself. To fulfill this purpose, 
there should be a considerable steric clash between VEGFR-2 and the VEGF165/aptamer 
complex. To estimate this aspect, we employed the PISA server [53] to calculate the total 
area of the sterically clashing regions between VEGFR-2 and the aptamer based on the 
final snapshots from the MD trajectories of the top-ten complex structures with the lowest 
binding free energies. A detailed description is provided later in the Materials and Meth-
ods section. Here again, aptamer heterodimers generally exhibited significantly larger ar-
eas of steric clashes with VEGFR-2, further supporting the superior effectiveness of the 
heterodimers (Table 2). 

Table 2. Total area of steric clashes in nm2 between aptamer and VEGFR-2 for the top-10 complex 
structures of each VEGF165/aptamer complex type. 

Complex no. VEGF165/ 
RNV66:del5-1 

VEGF165/ 
V7t1:del5-1 

VEGF165/ 
RNV66 

VEGF165/ 
V7t1 

VEGF165/ 
del5-1 

1 35.9 12.9 16.3 2.5 62.0 
2 25.0 24.5 22.0 16.8 27.1 
3 43.9 51.8 9.8 19.2 26.8 
4 26.0 50.9 8.5 8.1 23.1 

Figure 10. Representation of VEGF165/RNV66:del5-1 complex and H-bonds formed between aptamer
and VEGF165. RNV66 is shown in yellow, del5-1 in red, the linker between RNV66 and del5-1 in
silver, the RBD units in green, the HBD units in blue, and the linker between RBD and HBD in orange.
The upper panels represent the important residues for forming H-bonds between the HBD part and
del5-1, while the lower panel depicts the crucial residues for forming H-bonds between the RBD part
and RNV66. H-bonds are depicted as green dashed lines.

2.6. Steric Clashes between Aptamer and VEGFR-2

We believe that an aptamer can act as an effective inhibitor of VEGFR-2 activation
because it can block the VEGF165-to-VEGFR-2 interaction itself. To fulfill this purpose, there
should be a considerable steric clash between VEGFR-2 and the VEGF165/aptamer complex.
To estimate this aspect, we employed the PISA server [53] to calculate the total area of the
sterically clashing regions between VEGFR-2 and the aptamer based on the final snapshots
from the MD trajectories of the top-ten complex structures with the lowest binding free
energies. A detailed description is provided later in the Materials and Methods section.
Here again, aptamer heterodimers generally exhibited significantly larger areas of steric
clashes with VEGFR-2, further supporting the superior effectiveness of the heterodimers
(Table 2).



Int. J. Mol. Sci. 2024, 25, 4066 13 of 20

Table 2. Total area of steric clashes in nm2 between aptamer and VEGFR-2 for the top-10 complex
structures of each VEGF165/aptamer complex type.

Complex
No.

VEGF165/
RNV66:del5-1

VEGF165/
V7t1:del5-1

VEGF165/
RNV66

VEGF165/
V7t1

VEGF165/
del5-1

1 35.9 12.9 16.3 2.5 62.0
2 25.0 24.5 22.0 16.8 27.1
3 43.9 51.8 9.8 19.2 26.8
4 26.0 50.9 8.5 8.1 23.1
5 39.9 30.6 13.8 16.9 15.2
6 56.8 52.7 6.1 19.2 22.3
7 36.8 43.0 16.9 7.4 27.2
8 68.1 51.4 16.3 15.3 50.0
9 48.9 38.3 14.6 15.3 18.0
10 34.1 47.5 10.6 7.4 11.9

Average 41.5 40.4 13.5 12.8 28.4

2.7. Stability of G-Quadruplex Structures

RNV66 and V7t1 are known to possess G-quadruplex structures [24]. We attempted
to see whether the G-quadruplex structures of RNV66 and V7t1 were maintained during
their binding to VEGF165, either as a monomeric aptamer or as part of a heterodimer. We
adopted the trajectories of the VEGF165/aptamer complexes containing either RNV66 or
V7t1, for a total of 470 trajectories each 15 ns long, as explained in Section 2.3. In the
case of RNV66, to assess the stability of a G-quadruplex structure, we calculated the
RMSD using the twelve residues that constitute the G-quadruplex region with respect to
its NMR structure (PDB ID: 2M53) [24]. For V7t1, we adopted the corresponding twelve
residues for the RMSD calculation, and the reference was the energy-minimized structure
of V7t1, namely the energy minimization result that started from the NMR structure of
RNV66 after replacing LNA-G residues with DNA-G residues. The results are shown in
Figure 11, in which it can be observed that the binding of RNV66 and V7t1 to VEGF165
either as a monomeric aptamer or as part of a heterodimer did not significantly alter their
G-quadruplex structures. Interestingly, RNV66 preserved the G-quadruplex structure better
than V7t1, and the extent of the preservation was larger in the monomer case (Figure 11B).
This aspect is consistent with the fact that the LNA modifications in RNV66 enhance the
stability of the G-quadruplex structure [24,54] and further supports our prediction that
RNV66:del5-1 will likely work better than V7t1:del5-1.
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3. Materials and Methods
3.1. Modeling DNA Aptamers

The initial structure of RNV66 was taken from its NMR structure deposited in the
Protein Data Bank (PDB ID: 2M53) [24]. Because the experimental structure of V7t1 (5′-
TGTGGGGGTGGACGGGCCGGGTAGA-3′) was not available, we generated it from the
structure of RNV66 (5′-TGTGLGGGTGGACGGGCCGGLTALA-3′) by replacing its LNA-G
residues at positions 5, 21, and 24 with DNA-G residues. This was achieved by removing
O2 and C6 atoms, followed by adding single hydrogen atoms to C2 and C4 (Figure 12). Two
K+ ions were placed between the three G-quartet planes to help maintain the G-quadruplex
structures (Figure S4).
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Figure 12. Chemical structures of DNA-guanine (DNA-G) and LNA-guanine (LNA-G). Atoms
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In the case of del5-1, due to the absence of an available three-dimensional (3D) struc-
ture, it was generated from its sequence information (5′- ATACCAGTCTATTCAATTGGGC
CCGTCCGTATGGTGGGTGTGCTGGCCAG-3′) using various nucleic acid folding pro-
grams. The energetically most stable secondary DNA structure of del5-1 that can be written
in a two-dimensional (2D) form was created with its sequence information using the RNAs-
tructure web server [55]. In fact, the same 2D structure was obtained when we adopted
the Mfold web server [56], further validating the structure. However, because predicting a
3D DNA structure based on 2D DNA structure information is not practically feasible, we
instead generated a 3D RNA structure first based on the 2D DNA structure information
after the apparent nucleobase replacements [57] using the RNAComposer web server [58].
The 3D DNA structure of del5-1 was then obtained from the 3D RNA structure by inversely
replacing uracil with thymine. This indirect computational method, including the genera-
tion of a 3D DNA structure from a 3D RNA structure, while it is approximate and should
be used with care, has been utilized in various earlier studies [59,60]. To generate the
V7t1:del5-1 structure, V7t1 and del5-1 were linked by using ten thymine nucleotides. The
RNV66:del5-1 heterodimer was generated in a similar manner. Structures, including the
RNV66 obtained from the Protein Data Bank and those modeled through various steps,
such as V7t1, del5-1, RNV66:del5-1, and V7t1:del5-1, underwent further refinement through
energy minimization using GROMACS 2022 [61]. The minimization process was halted
when the maximum force convergence reached below 1000 kJ mol−1 nm−1. Subsequently,
2 ns MD simulations under NPT conditions were conducted for equilibration purposes.

3.2. Modeling VEGF165

For the protein side, the full experimental structure of the homodimeric VEGF165
is not available. However, the X-ray crystal structure of the homodimeric RBD (PDB ID:
2VPF) [10] and the NMR structure of the monomeric HBD (PDB ID: 1VGH) [9] are available,
and we manually linked HBD to each RBD monomer using the sequence information [8,39].
The interdomain linker sequence was RPKKDRARQENP, where RPKKD and ARQENP
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corresponded to the X-ray crystal structure of RBD (PDB ID: 2VPF) and the NMR structure
of HBD (PDB ID: 1VGH), respectively. The missing residue R110 was generated using
Avogadro [62]. Employing VMD [49], the individual components were manually linked
to form the complete structure of the homodimeric VEGF165. Following this, the structure
was refined through 500 steps of energy minimization and 2 ns of MD simulation under
NPT conditions. We stress that the structure after 2 ns MD should not be considered a
representative equilibrium structure. Because VEGF165 with the linker will inevitably be
very flexible at room temperature, it will exist by forming a diverse structural ensemble.
This is actually the most important reason for using the ensemble docking method.

3.3. Anisotropic Network Model (ANM) Analysis

The lowest-frequency normal modes of the aptamer heterodimers and VEGF165 were
analyzed using the ANM web server [63]. ANM is a simple normal-mode analysis method
at the residue level, showing the collective motions of large molecules [38]. While we
utilized ANM to identify the lowest-frequency normal modes of VEGF165 and aptamer
heterodimers (Figures 2 and 3), we conducted additional 500 ns MD simulations for them
to confirm that the motions from ANM appear consistently. The rationale behind this
additional endeavor is the fact that both VEGF165 and aptamers are quite flexible without
any uniquely defined representative equilibrium structures, and how ANM will behave
without a well-defined equilibrium structure may be rather unclear. Upon applying ANM
to the resulting structures of these long MD simulations, we confirmed that, like the initial
structures we employed, the lowest-frequency normal modes were scissoring motions for
VEGF165 and wavy motions for the aptamer heterodimers.

3.4. Docking with HDOCK

All docking calculations were carried out using HDOCK [40,41], with which a target
was immobilized and only the ligand was allowed to wander in translational and rotational
space with a fixed step size. An interval of 15 deg was used for the rotational sampling,
and an interval of 0.12 nm was used for the fast Fourier transform (FFT)-based translational
sampling [40]. A shape-based pairwise scoring function was employed to score the binding
modes obtained through the sampling. The top-ten translations with the best shape
complementarity were re-scored and optimized for each rotation by an iterative knowledge-
based scoring function. The best-scored translation was then kept for each rotation [40].

3.5. MD Simulations

In the case of unbiased MD simulations, systems were solvated with TIP3P water [64]
with a minimum distance of 10 Å between the solute and the edge of the box. Namely,
for the initial structures, VEGF165 was placed in a simulation box with dimensions of
9.9 × 11.2 × 11.0 nm3; RNV66:del5-1 and V7t1:del5-1 were placed in a box with dimensions
of 10.9 × 8.7 × 9.5 nm3; RNV66 and V7t1 were placed in a box with dimensions of
5.5 × 6.3 × 5.9 nm3; and del5-1 was placed in a box with dimensions of 6.9 × 7.9 × 7.8 nm3.
For charge neutralization, counter ions were added. The DNA aptamers were described
using the AMBER OL15 force field [65], with the missing parameters for the LNA-G residues
in RNV66 taken from an earlier work [54]. The force field parameters for VEGF165 were
taken from AMBER ff19SB [66]. The ions were modeled using the parameters proposed
by Joung and Cheatham [67]. The topology files for the simulations were generated using
AmberTools22 [68]. For each system, energy minimization using the steepest descent
method [69] was first taken, followed by equilibration for 2 ns under NPT conditions. The
minimization convergence was declared when the maximum force became smaller than
1000 kJ mol−1 nm−1.

For biased MD simulations, the conformations after 2 ns of initial equilibration were
solvated in TIP3P water with a minimum distance of 60 Å between the solute and the
edge of the box. With this, the simulation box sizes were the following: for VEGF165,
20.6 × 20.1 × 20.3 nm3; for RNV66:del5-1, 18.2 × 17.7 × 16.9 nm3; and for V7t1:del5-1,
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19.2 × 17.0 × 19.7 nm3. To generate discrete conformations of VEGF165 and aptamer
heterodimers along the lowest-frequency normal modes, biasing potentials with a force
constant of 1000 kJ mol−1 nm−2 were applied along the distance between COMs. At this
stage, the umbrella sampling tool [70] was employed as a practical tool for conducting
biased MD simulations. The duration of any simulation was 10 ns after undergoing energy
minimization and equilibration. For each monomeric aptamer that did not require a biased
simulation, to be fair, 10 ns of MD simulations were performed without adding any bias.
These processes were performed for all the complexes extracted based on the docking
scores for further MD simulations, and production MD simulations were performed for
15 ns under NPT conditions, following energy minimization and 100 ps of equilibration
under NVT conditions.

All simulations were performed with periodic boundary conditions using GROMACS
2022 [61]. The SHAKE algorithm was used to constrain the bonds involving hydrogen
atoms, allowing a time step of 2 fs [71]. The short-range Lennard-Jones interactions
were truncated at a cutoff distance of 1.2 nm, and long-range dispersion corrections were
applied for energy and pressure. The long-range electrostatic interactions were treated
with the Particle Mesh Ewald (PME) approach [72] with a real-space cutoff of 1.2 nm.
The temperature was maintained at 300 K using a velocity-rescale thermostat [73] with a
relaxation time of 1 ps. The pressure was isotropically coupled at 1 bar employing a c-rescale
barostat [74] with a coupling constant of 1 ps and a compressibility of 4.5 × 10−5 bar−1.

3.6. MM/GBSA Binding Free Energy

The MM/GBSA method [32] is an end-point free energy calculation method that
maintains a good balance between computational efficiency and accuracy [75]. In particular,
it has been widely used for the re-scoring of docked poses in structure-based drug design
by calculating binding free energies from MD simulations of the docked poses [76]. In the
MM/GBSA method, the binding free energy of a ligand–target complex is calculated as the
sum of ∆EMM, ∆Gsol, and −T∆S, where they represent the changes in the gas-phase molec-
ular mechanics (MM) energy, the solvation free energy, and the conformational entropy
upon ligand–target binding, respectively [32]. ∆EMM is calculated based on the force field
used for the simulations, while the polar and nonpolar components of ∆Gsol are calculated,
respectively, using the generalized Born (GB) model and the solvent-accessible surface
area (SASA)-based approach [77,78]. The −T∆S term is usually calculated either by a
normal-mode analysis or by a quasi-harmonic analysis [79], which are computationally bur-
densome and tend to bear a large margin of errors [80–82]. Therefore, MM/GBSA binding
free energies are often calculated by ignoring the −T∆S term [25,32,80–82], especially when
the relative binding free energies of closely related ligands with the same target are needed,
as in our case [32]. We adopted the single-trajectory MM/GBSA approach [32], which
ignores ligand and target conformational changes upon binding, leading to a significant
reduction in noise in the binding free energy calculation [82]. All MM/GBSA calculations
were performed using AmberTools22 [68].

3.7. Total Area of Steric Clashes between Aptamer and VEGFR-2

To estimate the total area of steric clashes between aptamer and VEGFR-2 when the
VEGF165/aptamer complex binds to VEGFR-2, we first overlaid the final snapshot of the
VEGF165/aptamer complex obtained after 15 ns of MD simulations onto the X-ray crystal
structure of the VEGF-A/VEGFR-2 D23 complex (PDB ID: 3V2A). The structural overlay
was performed by aligning the RBD part of the VEGF165/aptamer complex with that of the
VEGF-A/VEGFR-2 D23 complex, which resulted in significant steric clashes between the
aptamer and VEGFR-2. The buried surface area between the aptamer and VEGFR-2 was
then calculated using the PISA server [53]. This value was equivalent to the total area of
steric clashes between the aptamer and VEGFR-2.
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4. Conclusions

The aptamer heterodimer V7t1:del5-1 has been shown experimentally to be a superior
inhibitor of VEGF165 compared to its monomeric counterparts, V7t1 and del5-1 [23], but
the flexible linker present in both VEGF165 and the aptamer heterodimer is preventing
the experimental structure determination of the complex formed between the aptamer
heterodimer and VEGF165. To overcome this limitation, an ensemble docking approach,
considering both small- and large-scale motions in both VEGF165 and the aptamer het-
erodimer, is proposed here to obtain trustworthy structures of the aptamer heterodimer
complexed with VEGF165. This ensemble docking approach was used to find the complex
structures of V7t1:del5-1 and the newly designed RNV66:del5-1, as well as their monomeric
counterparts (V7t1, RNV66, and del5-1) with VEGF165. The binding free energy analy-
sis found that RNV66:del5-1 has the highest binding affinity with VEGF165 among the
five types of aptamers studied, suggesting RNV66:del5-1 as a promising new aptamer
heterodimer against VEGF165. Additionally, aptamer heterodimers show higher binding
affinities to VEGF165 compared to their monomeric counterparts, consistent with the ex-
perimental results. This adds reliability to our ensemble docking approach for generating
the structures of VEGF165/aptamer complexes. It was found that all five types of aptamers
predominantly prefer a sandwich pose while forming complexes with VEGF165. In the
sandwich pose, the aptamer is sandwiched between the two HBD units of VEGF165. Side
and hug poses were also observed in the structures of VEGF165/aptamer complexes. Com-
pared to monomeric aptamers, aptamer heterodimers have more H-bonds with the key
residues of VEGF165 involved in the heparin and VEGFR-2 binding events, as well as a
larger area of steric clashes with VEGFR-2 when the VEGF165/aptamer complex interacts
with VEGFR-2, suggesting aptamer heterodimers as the most effective anti-VEGF165 ap-
tamers over monomeric aptamers. Based on our simulation results, we found that the
G-quadruplex structure of RNV66 or V7t1 is not significantly damaged upon binding with
VEGF165, either as a monomeric aptamer or as part of an aptamer heterodimer. Moreover,
the G-quadruplex structure of RNV66 was found to be more stable than that of V7t1 in the
complexes of both monomeric and heterodimeric aptamers with VEGF165. The structural
stability of RNV66 over V7t1 found in our simulations is consistent with the findings
from previous experimental and molecular simulation studies that demonstrated that the
presence of LNA residues in RNV66 stabilizes its G-quadruplex structure [24,54]. We believe
that our ensemble docking approach, which incorporates both small- and large-scale motions,
will be valuable in the development of new homo/heterodimeric therapeutic drugs against
the homodimeric VEGF165.
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