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Abstract: Cancer continues to pose a significant global health challenge, as evidenced by the increasing
incidence rates and high mortality rates, despite the advancements made in chemotherapy. The
emergence of chemoresistance further complicates the effectiveness of treatment. However, there
is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes
mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise
mechanism of action of metformin in cancer therapy is not fully understood, it has been found to
have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation,
and the regulation of cellular proliferation. This comprehensive review examines the anticancer
properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as
well as from clinical trials and observational research. This review discusses the mechanisms of action
involving both insulin-dependent and independent pathways, shedding light on the potential of
metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are
challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations
regarding dosing, and the development of resistance. These challenges highlight the importance
of further research to fully harness the therapeutic potential of metformin in cancer treatment. The
aims of this review are to provide a contemporary understanding of the role of metformin in cancer
therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.

Keywords: metformin; cancer; chemoresistance; anticancer; adjuvant therapy; mechanisms of action;
clinical trials

1. Background

Globally, cancer remains a significant public health concern, resulting in a staggering
number of deaths and new cases. In 2020 alone, there were approximately 10 million deaths
and 19.3 million new cases reported [1,2]. Tragically, cancer claims the lives of nearly one
in six individuals, with liver, colon, stomach, and breast cancers being particularly fatal,
causing 788,000, 774,000, 754,000, and 571,000 deaths, respectively [3]. Disturbingly, the
incidence of cancer is projected to rise even further, with Cancer Research UK estimating
a 54.9% increase, leading to 28 million new cases by 2040 [4]. This alarming trend can
be attributed to various factors, such as aging, hyperlipidemia, type 2 diabetes mellitus
(T2DM), and obesity, all of which contribute significantly to the heightened incidence of
cancer. Despite the progress made in chemotherapy, the emergence of chemoresistance and
relapse poses significant challenges to achieving successful cancer treatment [1].

Metformin, an oral biguanide, is the most recommended drug for T2DM [5]. Despite
the fact that its precise mechanism of action remains poorly understood, metformin has
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been shown to decrease liver gluconeogenesis, enhance insulin sensitivity in muscle and
adipose tissue, and increase glucose uptake in the gut [5]. Currently, metformin is well
known for its pleiotropic effects, which include reducing body weight, influencing the lipid
profile, and regulating inflammatory markers. A notable reduction in the cancer incidence
among metformin users has been reported in an observational study [6], leading to a
significant interest in exploring metformin’s potential for cancer prevention and treatment.
Several mechanisms of action have been proposed for metformin in the context of cancer.
One such mechanism involves its ability to reverse the Warburg effect observed in cancer
cells, characterized by an increase in fatty acid degradation and anaerobic glycolysis [7,8].
Metformin also exerts its influence on cancer cells by modulating the AMPK/mTOR path-
way and inhibiting cytokines [3]. Furthermore, it affects cell proliferation markers [9] and
mitigates the production of reactive oxygen species, oxidative stress, and DNA damage [10].

The clinical translation of metformin poses a challenge due to conflicting results
between clinical trials and preclinical studies. This comprehensive review aims to provide
an updated understanding of metformin’s potential as an anticancer agent. It examines
data from in vitro and in vivo studies, exploring the efficacy of metformin as a standalone
or adjuvant drug in the treatment of various cancers. A comprehensive literature search
identified relevant studies in PubMed and Google Scholar using terms like “metformin and
cancer”, “metformin and interventional chemotherapy”, and “metformin mechanism of
action”. This ensured the inclusion of in vitro and in vivo studies on metformin’s anticancer
effects across diverse cancers. Additionally, relevant epidemiological studies on metformin
and cancer risk reduction were incorporated. Finally, information on ongoing clinical
trials was obtained from ClinicalTrials.gov (NIH) using “cancer”, “chemotherapy”, and
“metformin” for a current understanding of metformin’s potential in cancer prevention
and treatment. Any study with incomplete results was excluded. Additionally, this review
addresses the controversies surrounding the repurposing of metformin as an anticancer
agent and the regulatory aspects to be considered.

2. Metformin as an Anticancer Drug: In Vivo and In Vitro Studies

In 2005, Evans et al. first reported the anticancer effects of metformin in their pilot
case–control study conducted in Scotland [6]. They found that metformin-treated diabetic
patients had a lower incidence of cancer compared to those taking other diabetes medica-
tions. Similarly, Bowker et al. demonstrated a significant decrease in the cancer-related
mortality among T2DM patients on metformin compared to those on sulfonylureas or
insulin [11]. Several observational studies and meta-analyses have consistently reported
a remarkable reduction in the incidence of various cancer types and improved outcomes
with the use of metformin (Table 1). Interestingly, this effect has been observed in both
diabetic and non-diabetic patients [12]. Furthermore, several preclinical studies have been
conducted to evaluate the anticancer properties of metformin, including its synergy with
cytotoxic chemotherapy and radiotherapy. In vitro studies have demonstrated that met-
formin sensitizes cells to various chemotherapeutic agents by reducing their 50% inhibitory
concentration (IC50) (Table 2). Additionally, numerous studies have aimed to elucidate the
pathways involved in these effects. For example, recent research has shown that metformin
increases radiosensitivity by influencing the production of reactive oxygen species (ROS)
after radiotherapy and by promoting the degradation of HIF-1α, a protein associated with
radio-resistance [13]. Similarly, several interventional clinical trials have been conducted to
evaluate the role of metformin in cancer patients (Table 3).

However, it is important to note that some of these trials failed to confirm the anticancer
role of metformin. The reasons for these discrepancies are discussed later in Section 6 of
this review. It is noteworthy to mention that the generalizability of the current evidence is
hampered by several methodological shortcomings. For instance, the small sample sizes
raise concerns about the robustness of the findings and increase the likelihood of type I and
type II errors. While in type I errors, a statistically significant effect is mistakenly observed
due to chance alone, type II errors lead to the failure to detect a true effect because the study
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lacks sufficient statistical power. Second, restricted follow-up durations limit the ability
to capture long-term effects. Third, the absence of data on potential confounders, such as
obesity, diet, and physical activity, impedes proper adjustment. Fourth, the incomplete
reporting of metformin adherence introduces uncertainty regarding the true treatment
effect. Finally, susceptibility to time-related biases, including immortal time bias, time-
window bias, and time-lag bias [14–18], might inflate the observed protective effects of
metformin. Collectively, these limitations suggest potential tumor site- or type-specific
benefits of metformin, contributing to the observed inconsistencies across clinical trials.

Table 1. Observational studies investigating the association between metformin and cancer incidence.

Authors [Ref.] Year Study Design Outcome Relative Risk (95% CI) a

Bowker et al. [11] 2006 Cohort Cancer mortality 0.8 (0.6–0.9)

Currie et al. [19] 2009 Cohort Any cancer 0.54 (0.43–0.66)

Wright et al. [20] 2009 Case–control Prostate cancer 0.56 (0.32–1.00)

Libby et al. [21] 2009 Cohort Any cancer 0.63 (0.53–0.75)

Bowker et al. [22] 2010 Cohort Cancer mortality 0.8 (0.65–0.98)

Dandon et al. [23] 2010 Case–control Liver cancer 0.15 (0.04–0.5)

Bodmer et al. [24] 2010 Nested case–control Breast cancer 0.44 (0.24–0.82)

Lee et al. [25] 2011 Cohort Any cancer 0.12 (0.08–0.19)

Chen et al. [26] 2011 Cohort Liver cancer 0.24 (0.07–0.8)

He et al. [27] 2011 Cohort Prostate: all-cause
mortality 0.55 (0.32–0.94)

Monami et al. [28] 2011 Nested case–control Any cancer 0.28 (0.13–0.57)

Bosco et al. [29] 2011 Nested case–control Breast cancer 0.81 (0.63–0.96)

Bodmer et al. [30] 2011 Nested case–control Ovarian cancer 0.61 (0.3–1.25)

Geraldine et al. [31] 2012 Cohort Any cancer 0.2 (0.03–0.82)

Lai et al. [32] 2012 Cohort Lung cancer 0.55 (0.32–0.94)

Lee et al. [33] 2012 Cohort
Colorectal: all-cause

mortality/cancer
mortality

0.66 (0.45–0.98)/0.66
(0.48–0.92)

He et al. [34] 2012 Cohort
Breast: all-cause
mortality/cancer

mortality

0.52 (0.28–0.97)/0.47
(0.24–0.9)

Romero et al. [35] 2012 Cohort
Ovarian cancer

progression/all-cause
mortality

0.38 (0.16–0.90)/0.43
(0.16–1.19)

Bodmer et al. [36] 2012 Nested case–control Pancreatic cancer 0.43 (0.23–0.8)

Bodmer et al. [36] 2012 Nested case–control Colorectal cancer 1.43 (1.08–1.9)

Franciosi et al. [37] 2013 Systematic review Any cancer: all-cause
mortality 0.65 (0.53–0.80)

Preston et al. [38] 2014 Nested case–control Prostate cancer 0.84 (0.74–0.96)

Kim et al. [39] 2014 Cohort Gastric cancer 0.57 (0.37–0.87) b

Chen et al. [40] 2015 Cohort Any cancer 1.36 (1.11–1.67)

Calip et al. [41] 2016 Cohort Breast cancer 0.95 (0.51–1.77)

Häggström et al. [42] 2016 Cohort Prostate cancer 0.96 (0.77–1.19)

Franchi et al. [43] 2017 Nested case–control Endometrial cancer 0.99 (0.80–1.23)
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Table 1. Cont.

Authors [Ref.] Year Study Design Outcome Relative Risk (95% CI) a

Kim et al. [44] 2018 Cohort Any cancer 0.513 (0.318–0.826)

Chang et al. [45] 2018 Cohort Colorectal cancer 0.36 (0.29–0.44) c,
0.6 (0.49–0.74) d

Tang et al. [46] 2018 Meta-analysis Breast cancer/BC
all-cause mortality

0.964 (0.761–1.221)/
0.652 (0.488–0.873)

Kuo et al. [47] 2019 Cohort Prostate cancer 0.69 (0.49–0.96)

Hoiso et al. [48] 2019 Cohort Breast cancer 0.97 (0.89–1.05)

Xiao et al. [49] 2020 Meta-analysis Lung cancer/survival 0.78 (0.70–0.86)/0.65
(0.55–0.77)

Zhang et al. [50] 2021 Meta-analysis Any cancer 0.70 (0.65–0.76)

Kim et al. [51] 2022 Cohort Pancreatic cancer 1.116 (0.648–1.923) e & 2.769
(1.003–7.642) f

Hu et al. [52] 2023 Nested case–control Pancreatic cancer 0.82 (0.69–0.98)

Orchard et al. [53] 2023 Cohort Any cancer/cancer
mortality

0.68 (0.51–0.90)/
0.72 (0.43–1.19)

a: Relative risk is used as a generic term that includes rate ratio, hazard ratio, and odds ratio; b: for more than 3
years use; c: metformin use for 5 years; d: metformin use for 5–10 years; e: in male patients; f: in female patients.

Table 2. Metformin impact on the IC50s of chemotherapeutic agents in in vitro trials using MTT
assay.

Chemotherapy Cancer Type Cancer Cell
Line

IC50 of Drug
Alone

IC50 of the Drug
+ Metformin

Metformin
Dose Reference

Cisplatin

Oral squamous
cell carcinoma

HSC3 17.44 ± 1.10 µM 8.32 ± 0.92 µM 10 µM

[54]SCC3 9.86 ± 1.55 µM 3.59 ± 1.02 µM 10 µM

TCA8113 9.83 ± 1.30 µM 5.73 ± 0.77 µM 10 µM

Ovarian cancer
SKOV3 14.35 µg/mL 11.20 µg/mL

10 mmol/L [55]
SKOV3/DPP 70.26 µg/mL 6.21 µg/mL

Lung cancer A549 20.4 µM 15.4 µM 10 mM [56]

Methotrexate

Ovarian cancer
SKOV3 4.21 µg/mL 2.80 µg/mL 10 mmol/L

[55]
SKOV3/DPP 15.27 µg/mL 2.74 µg/mL 10 mmol/L

Hepatocellular
carcinoma

HepG2 29.8 ± 0.6 nM 14.6 ± 0.8 nM
2.5 mM [57]

HepG2/MTX 219 ± 8 nM 17 ± 1 nM

Doxorubicin Breast cancer
MCF7 0.283 ± 0.036 µM 0.253 ± 0.031 µM 10 mM

[58]
MCF7/Dox 3.23 ± 0.14 µM 1.182 ± 0.1 µM 10 mM

Paclitaxel
Prostate cancer PC-3 cells 13.170 ± 1.12 nM 5.423 ± 0.734 nM 5 mM [59]

Breast cancer T47D cells 0.2 mg/mL 0.048 mg/mL 40 mg [60]
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Table 3. Completed clinical trials investigating anticancerous impact of metformin.

Metformin Monotherapy

NCT No. Year + Cancer Type
No. of

Patients
Included

Diabetes
Status Study Design Results

NCT00930579 [61] 2014 BC (DCIS) 35 Non-diabetic Phase II No proliferation changes though reduction
in relevant biomarkers was observed

NCT01447927 [62] 2015 Barret’s
Esophagus 74 Non-diabetic Phase II No significant change in pS6K levels

NCT02376166 [63] 2017 Prostate cancer 14 Non-diabetic _ Metformin was well tolerated and exhibited
minimal anti-PCa activity

NCT01266486 [64] 2018 BC 41 Non-diabetic Phase II

There are two distinct metabolic responses
to metformin: the OXPHOS transcriptional

response (OTR) and FDG response. The
OTR was resistant to metformin, manifested

by increased proliferation. Mitochondrial
response to metformin in primary breast
cancer may define the anti-tumor effect.

NCT03118128 [65] 2018 ALL 102 Non-diabetic Phase II Metformin + chemotherapy is effective in
patients with high ABCB1 gene expression

NCT01312467 2019 CRC 32 Non-diabetic Phase II Non-significant change in pS6K Ser235

NCT01101438 [66] 2022 Early BC 3649 Non-diabetic Phase III In high-risk operable BC, metformin did not
improve the DFS.

Metformin Added to Conventional Chemotherapy

NCT No. Year + Cancer Type
No. of

Patients
Included

Diabetes
Status Study Design Chemo-Drug Results

NCT01941953 [67] 2014 Refractory
metastatic CRC 22 Non-diabetic Phase II Fluorouracil,

leucovorin

Anticancer activity
and better response

to treatments

NCT01971034 [68] 2015
Metastatic
pancreatic

cancer
41 Non-diabetic Phase II Paclitaxel

Poor tolerance and
no prognostic value

in patients

NCT01210911 [69] 2015 Pancreatic
cancer 121 Non-diabetic Phase II Gemcitabine

erlotinib

No additional
outcome

improvement

NCT00490139 [70] 2017 Breast cancer 8381 Diabetic and
non-diabetic Phase III

Trastuzumab,
lapatinib, or their

combination

Improved the bad
prognosis, mainly in
primary HER2- and
HR-positive breast

cancer.

NCT01666730 2018
Metastatic
pancreatic

cancer
31 Diabetic and

non-diabetic Phase II
Oxaliplatin,
fluorouracil,

leucovorin calcium

According to RECIST,
≈50% of patients

benefited clinically
from metformin use

NCT01589367 [71] 2019 ER-positive
breast cancer 153 Non-diabetic Phase II Letrozole

>10% higher
response rate and

more patients with
Ki67 < 10%

NCT01310231 [72] 2019
Metastatic

breast cancer
(MBC)

40 Non-diabetic Phase II
Anthracycline,

platinum, taxane,
capecitabine/vinorelbine

No significant effect
on RR, PFS, or OS

NCT02325401 2020
Locally

advanced
HNSCC

20 Non-diabetic Phase I Cisplatin and
chemoradiation

High OS (≈83.33%
for 2 g metformin
and ≈100% for 2.5
and 3 g) and 100%

PFS with all
metformin doses
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Table 3. Cont.

Metformin Added to Conventional Chemotherapy

NCT No. Year + Cancer Type
No. of

Patients
Included

Diabetes
Status Study Design Chemo-Drug Results

NCT02048384 [73] 2020 Pancreatic ade-
nocarcinoma 22 N/R Phase Ib Rapamycin

Well tolerated, and
stable disease

associated with
exceptionally long

survival was
achieved

NCT01796028 [74] 2021 Prostate
neoplasms 100 Non-diabetic Phase II Docetaxel Failed to improve the

outcome

NCT04143282 [75] 2021 MBC 50 Non-diabetic Phase II

Gemcitabine +
carbo-

platin/paclitaxel;
FAC; AC;

vinorelbine;
capecitabine;

paclitaxel

Improved radiologic
RR and, better yet,

insignificant OS and
PFS

NCT02115464 [76] 2021 LA-NSCLC 54 Non-
diabetics RCT: Phase II Cisplatin ±

radiotherapy

Worse treatment
efficacy and more

toxic effects

NCT02755844 2022
Recurrent

endometrial
cancer

35 Diabetic and
non-diabetic Phase I/II Cyclophosphamide

and olaparib

Significant
non-progression rate

in recurrent
advanced or
metastatic

endometrial cancer

NCT05351021 [77] 2023 Breast cancer 73 Non-diabetic Phase II Paclitaxel

Remarkable
protection against
paclitaxel-induced

PN

NCT02949700 [78] 2023 Head and neck
cancer 16 Non-diabetic Phase I/II Cisplatin-based

chemoradiation

2-year PFS = 90% and
OS = 85%. Yet, the
small sample size

renders effectiveness
of metformin as

chemo-
radiosensitizer

unclear

NCT04170465 [79] 2023 Primary breast
cancer 70 Non-diabetic RCT: Phase II AC-T

Better control of
chemotherapy-

induced toxicities

NCT05840068 [80] 2023 MBC 107 Non-diabetic Phase II N/R

No significant IGF-I
reduction in MBC

patients on
metformin

NCT03243851 [81] 2023 Glioblastoma 81 Non-diabetic Phase II Temozolomide

Well tolerated, but no
clinical benefit in

recurrent/refractory
GBM

+ Year: Year of the trial’s publication, or year of final completion if there is no publication available; ALL: acute
lymphoid leukemia; BC: breast cancer; CRC: colorectal cancer; DCIS: ductal carcinoma in situ; HR: hormonal
receptor; LA-NSCLC: locally advanced non-small-cell lung cancer; MBC: metastatic breast cancer; N/R: not
reported; DFS: disease-free survival; OS: overall survival; PFS: progression-free survival; RR: recurrence rate.

3. Mechanism of Action of Anti-Tumorigenic Effect of Metformin

Metformin exerts its influence on multiple facets of cancer cell biology, encompassing
energy levels [82], metabolism [83], cellular growth and proliferation, angiogenesis [84], and
programmed cell death. The impact of metformin on cancer cells involves the indirect mod-
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ulation of insulin-dependent pathways as well as direct effects through insulin-independent
pathways (Figure 1). Importantly, these pathways exhibit interplay and mutual interaction.
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Figure 1. Summary illustration of the direct and indirect effects of metformin in cancer. GH: growth
hormone; GLP-1: glucagon-like peptide 1; EMT: epithelial–mesenchymal transition; CSC: cancer stem
cells. ↓: decrease; ↑: increase; ⊥: inhibits.

3.1. Metformin Direct Effect (Insulin-Independent)

Metformin exerts its influence on cancerous cell metabolism through the inhibition
of respiratory complex I, also known as NADH-coenzyme Q oxidoreductase, which is a
component of the electron transport chain (ETC) located in the mitochondria (Figure 2). The
inhibition of complex I leads to a decrease in the flow of electrons to complex III, where ROS
are generated [12]. As a result, the production of ROS, oxidative stress, and DNA damage
are reduced, thereby lowering the risk of mutagenesis. Furthermore, complex I inhibition
leads to mitochondrial dysfunction and cellular energy stress, resulting in a depletion of
adenosine triphosphate (ATP) and an increase in the ratio of AMP to ATP [85–87]. It is
worth noting that the activation of AMP-activated protein kinase (AMPK) is a significant
consequence of increased AMP levels, which can occur through various pathways. These
pathways include direct allosteric modulation, the LKB1-mediated phosphorylation of the
α catalytic subunit at Thr172, and the inhibition of Thr172 dephosphorylation by AMPK
phosphatases [88]. AMPK is a serine/threonine protein kinase composed of three subunits
that plays a crucial role in regulating cellular energy metabolism [87]. Besides AMP,
upstream kinases, such as liver kinase B1 (LKB1) [89], Ca2+/calmodulin-dependent protein
kinase kinase (CaMKK) [90], and TGFβ-activated kinase-1 (TAK1) [89], can activate AMPK.
Once activated, AMPK maintains energy homeostasis by inhibiting anabolic processes and
promoting catabolic pathways [91] (Figure 2).
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Figure 2. Detailed schematic illustration of anticancerous effect of metformin.

AMPK exerts its effects primarily by inhibiting the growth regulator mammalian target
of rapamycin (mTOR) through phosphorylation or degradation [92–95]. Phosphorylation-
mediated inhibition targets either the raptor subunit of mTOR or the tuberous sclerosis
complex 2 (TSC2), while mTOR degradation is stimulated by unc-51 like kinase 1 (ULK1),
a crucial regulator of autophagy [95]. Interestingly, metformin can inhibit mTOR inde-
pendently of AMPK by inhibiting the ragulatory complex, inactivating the RAG GTPases,
and dissociating mTORC1 from its activator RHEB [96]. It can also enhance the expres-
sion of the mTOR negative regulator, DNA-damage-inducible transcript 4 protein (DDIT4,
REDD1) [97]. Ultimately, mTOR deactivation inhibits key proteins involved in mRNA
translation, such as ribosome S6 protein kinase (p70S6K) and eIF4E-binding proteins (4E-
BP1), thereby impeding cancer cell proliferation. Furthermore, mTOR inhibition disrupts
the activity of hypoxic inducible factor (HIF-1α), a crucial transcriptional regulator that aids
cells in adapting to hypoxia and contributes to cancer cell resistance in radiotherapy [3].
Metformin-mediated AMPK activation also dephosphorylates insulin receptor substrate-1
(IRS-1), impeding signal transmission from the insulin receptor (IR) and insulin-like growth
factor (IGF-1R) receptor to growth-promoting pathways, such as the phosphatidylinos-
itol 3-kinase/Protein kinase B (PI3K/AKT) pathway [98]. This cascade also negatively
affects mTOR signaling; however, several regulatory pathways counteract this impact on
mTOR [99,100].

Various studies have demonstrated the impact of metformin-induced AMPK activation
on the proliferation of cancer cells. One such mechanism involves the induction of the
DICER1 gene by metformin. DICER1 encodes the DICER enzyme, which belongs to the
RNase III family and is responsible for processing miRNA molecules, thereby influencing
gene expression patterns [101,102]. It is worth noting that the downregulation of DICER has
been associated with poor prognoses in various types of cancer [103–105]. Consequently,
metformin affects the expressions of multiple miRNAs, which, in turn, modulate target
genes involved in metabolic and oncogenic pathways. These miRNAs include miR-21, miR-
26a, miR-33a, miR-140-5p, miR-142-3p, miR-181a, miR-192, miR-193b, R-20mi0, miR-205,
miR-222, let-7a, and let-7c [106,107]. Notably, by manipulating Let-7, metformin inhibits
the proto-oncogene c-MYC, which is known to be overexpressed in many cancers and
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plays a critical role in growth control, differentiation, and apoptosis [108,109]. Furthermore,
metformin interacts with the tumor suppressor protein p53, although the nature of their
relationship has been a subject of controversy. Upon metformin-mediated AMPK activation,
p53 induction has been observed, leading to the subsequent inhibition of the AKT and
mTOR pathways and resulting in cell cycle arrest [110]. Additionally, it has been observed
that p53 forms a complex with LKB1, known as the LKB1-p53 complex, which ultimately
leads to AMPK activation [111].

Moreover, metformin has been shown to induce the phosphorylation of programmed
death ligand 1 (PD-L1) in an AMPK-dependent manner. This phosphorylation event
triggers the degradation of PD-L1 and subsequently promotes the T-lymphocyte-mediated
cell death of tumor cells [112–114]. Apart from PD-L1, metformin has also been found to
interact with other immune regulators, including inhibitory immune checkpoints, M2-like
tumor-associated macrophages, regulatory T cells, and myeloid-derived suppressor cells
(MDSCs), thereby inhibiting immune destruction.

3.2. Metformin Indirect Effect (Insulin-Dependent)

Metformin indirectly affects cancer cells by decreasing the glucose and insulin levels
in the body. It achieves this by targeting three key organs: the liver, muscles, and intestines.
In hepatocytes, metformin stimulates IRS-2 activity and enhances the insulin-mediated
suppression of gluconeogenesis. It also promotes glucose uptake by translocating glucose
receptors (GLUT-1) to the plasma membrane [115,116]. Additionally, metformin inhibits
the respiratory complex I of the mitochondria in hepatocytes, leading to a decrease in ATP
production. This reduction in ATP hampers hepatic gluconeogenic flux, as gluconeogenesis
relies on ATP [117]. The increase in the hepatic AMP levels inhibits adenylate cyclase,
thereby downregulating cAMP-Protein kinase A (cAMP-PKA) activity. This inhibition
further suppresses gluconeogenesis by reducing the activity of gluconeogenic flux enzymes
and inhibiting the CREB-1 transcription factor, which controls the expressions of gluco-
neogenic genes [118,119]. Moreover, metformin suppresses inositol 1,4,5-triphosphate re-
ceptors (I3PRs), which, in turn, inhibits CREB-regulated transcription coactivator 2 (CRTC2).
CRTC2 interacts with CREB-1 to activate the expressions of gluconeogenic genes [98,120].
Metformin also counteracts the gluconeogenic activity of glucagon [116,118]. Furthermore,
metformin activates AMPK in skeletal muscles, leading to increased glucose uptake. This is
achieved by upregulating the expression of IRs and facilitating the translocation of glucose
receptors (GLUT-4) to the plasma membrane [121]. Additionally, metformin-mediated
AMPK activation suppresses fat metabolism, which contributes to the reduced expressions
of gluconeogenic genes [122].

However, within the intestines, metformin functions as a facilitator for the actions of
glucagon-like peptide 1 (GLP-1) by augmenting the expression of GLP-1R and elevating
the GLP-1 plasma levels [123–125]. When faced with glucose, GLP-1 heightens insulin
secretion, diminishes glucagon, and exerts various metabolic effects specific to different
tissues, ultimately reducing the glucose levels [124]. Furthermore, numerous in vivo trials
have demonstrated that metformin reduces the levels of DDP-4, which is responsible for
the degradation of GLP-1 [126–129]. However, in vitro experiments have failed to establish
a direct inhibitory effect of metformin on DDP-4 [125,130]. Instead, it is now hypothesized
that metformin directly enhances GLP-1 production by increasing the expressions of its
precursor proteins in the large intestine, such as pre-proglucagon and proglucagon, through
a β-catenin/TCF7L2-mediated mechanism [131–133]. Indirectly, metformin inhibits the
farnesoid X receptor (FXR) via an AMPK-mediated mechanism, leading to an increase
in the bile acid pool, which subsequently stimulates the TGR5 bile acid receptors on
the L cell. This stimulation triggers GLP-1 secretion through mitochondrial oxidative
phosphorylation and calcium influx [134,135]. Additionally, metformin’s ability to modify
the composition of intestinal microbes, such as by increasing Akkermansia muciniphila [136],
altering enterocyte glucose metabolism, and delaying gastric emptying, contributes to its
hypoglycemic effect [137].
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The anti-tumorigenic effect of metformin is attributed to its ability to reduce glucose
and insulin levels [1,138]. In various cancer types, hyperinsulinemia, which is associated
with obesity, insulin resistance, and T2DM, promotes tumorigenesis through the activation
of IR-A isoforms [1,138]. Additionally, the IGF-IR has been implicated in several cancer
types, either on its own or through hybridization with IR-A. Both receptors play a role
in growth-promoting pathways, such as the PI3K/AKT/mTOR and RAS/RAF/MAPK
signaling network [139]. By reducing the concentration of insulin and IGF-1, metformin
not only decreases the downstream signaling pathways of these receptors in cancer cells
but also downregulates other molecules that promote tumor growth, including growth
factors, sex hormones, proinflammatory cells, cytokines, and metabolic intermediates.
Furthermore, metformin prevents the unfolded protein response (UPR) in an AMPK-
dependent manner, which is crucial for cell survival under stress conditions, such as low
glucose levels [3,140]. It achieves this by activating the PERK/ATF4/CHOP axis and
inhibiting the ATF6/GRP78 axis [141]. Consequently, metformin induces apoptosis in
cancer cells [142]. In addition to its hypoglycemic effect, metformin also influences the
inflammatory process involved in tumorigenesis. Studies have shown that metformin
specifically inhibits the nuclear translocation of NF-κB and the phosphorylation of STAT3,
thereby suppressing the inflammatory response associated with the growth of cancer stem
cells (CSCs) and cellular transformation [143,144]. Noteworthy, CSCs are associated with
drug resistance and tumor relapse [145]

4. Metformin and Cancer Prevention

Metformin not only affects the microenvironment of cancer cells but also influences
various factors that contribute to tumorigenesis, such as diabetes, cancer-promoting alter-
ations associated with aging, hyperlipidemia, and obesity.

4.1. Diabetes

In a meta-analysis conducted by Vigneri et al., it was found that patients with diabetes
had higher incidences of many types of cancer. Specifically, diabetes was associated
with a 2-fold higher risk of liver, pancreatic, and endometrial cancers, and a 1.2–1.5-
fold higher risk of colon, rectum, breast, and bladder cancers [146]. Diabetic patients on
metformin not only exhibited a reduced incidence of cancer but also demonstrated lower
all-cause mortality [147,148]. For instance, there was an observed increase in the complete-
response rates among breast cancer patients treated with metformin [149]. Additionally,
another study showed that diabetic patients diagnosed with prostate cancer experienced a
significant decrease in the risk of cancer-specific and all-cause mortality with prolonged
metformin treatment [150]. Furthermore, research by Tan et al. indicated that diabetic
patients with advanced lung cancer had improved overall survival and longer progression-
free survival with metformin treatment [151]. Remarkably, metformin has demonstrated
efficacy in impeding the advancement of precancerous conditions to cancer even in non-
diabetic individuals. For instance, in a preclinical study, metformin displayed a notable
capacity to restrain oral tumor lesions and halt the progression of precancerous lesions to
squamous cell carcinomas [152]. Similarly, the protective effect of metformin in preventing
adenoma recurrence in colorectal patients was demonstrated [153]. Moreover, studies have
indicated that metformin can induce regression in precancerous states [154,155].

4.2. Aging

When it comes to cancer, aging is considered one of the primary risk factors [156].
Metformin has shown promising effects on mechanisms related to aging and the miti-
gation of age-related ailments, including cancer. Numerous studies have linked the use
of metformin to a reduced occurrence of cancer [154], as well as to its ability to improve
aging-associated characteristics by enhancing nutrient sensing, promoting autophagy, and
protecting against macromolecular damage [157] (Table 4). Interestingly, long-term use
of metformin in diabetic patients has been found to enhance survival in various types of
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cancer [155,158,159]. Importantly, the impact of metformin on aging-related diseases has
been shown to be independent of its anti-diabetic effect [160]. These findings confirm the
role of metformin in protecting against aging, although the exact mechanism is still unclear.
However, metformin has been shown to influence a range of aging processes. One such
mechanism is the activation of AMPK, which regulates cellular metabolism and energy,
thereby promoting healthy aging. Metformin enhances cellular resilience and metabolic
function and counteracts age-related degradation by modulating AMPK/mTOR [161].
Another proposed mechanism for metformin’s anti-aging effect is its ability to reduce
oxidative damage to cells by suppressing ROS production from the mitochondrion ETC, as
described earlier.

Table 4. Metformin impact on aging-related molecular and metabolic changes.

Aging Hallmark Significance
Metformin Impact

At Molecular Level Outcome

Dysregulated nutrient
signaling

Distorted metabolic
homeostasis

• ↓ IGF-1, ↓ mTOR
• ↑ AMPK, ↑ Sirt-1 Improved signaling

Lost proteostasis Cell dysfunction and reduced
viability

• ↑ UPR-related chaperone
proteins: HSP60, HSP90,
GRP78, and C/EBP

• ↑ KLF2

Suppressed protein
misfolding and improved

autophagy

Mitochondrial dysfunction Energy and homeostasis are
affected

• ↑ AMPK → H3K79m3
→ ↑ SIRT3 → ↑ PGC-1α

• ↓ ROS production

Mitochondrial biogenesis
upregulation and delayed

aging

Low-grade inflammation
Epigenetic changes, no

protein stability, and stem cell
dysfunction

↑ Sirt-1 → ↓ NF-κB →
↓ cytokines (TNF-α & IL-6) Inhibition of inflammation

Telomere attrition Accelerated aging and
diseases

AMPK regulates telomere
transcription through
telomere repeat RNA

Prevented telomere
shortening

DNA damage Genomic instability
↑ ATM, ↑ Checkpoint
Kinases-2
↓ AKT

Antioxidant effect and DNA
damage prevention

Stem cell exhaustion Impaired tissue regenerative
capacity and dysfunction

↑ antioxidation, ↑ AMPK
↓ mTORC1
↑ Nrf2 → ↑GPx7

Delayed premature cellular
senescence and extended

lifespan of stem cells

Senescence and SASP

↑ Sirt1
↑ MBNL-1 → ↑miR-130a-3p
→ ↓ STAT3
↓ NLRC4
↓ NF-κB

Reduced premature
senescence and SASP

MBNL-1: muscleblind-like 1. ↓: decreased; ↑: increased; →: causes

Indeed, metformin acting on mitochondria produces an anti-aging effect as well. This
is because mitochondrial dysfunction contributes significantly to aging, as it impairs cellular
metabolism and homeostasis. Karnewar et al. [162] recently reported that metformin
directly stimulates SIRT1, leading to an upregulation of DOT1L and an increase in the
trimethylation of H3K79 (H3K79me3). This, in turn, results in an increase in SIRT3, a
major mitochondrial biogenetic marker. The upregulation of SIRT3 not only promotes
mitochondrial biogenesis but also delays the senescence process by increasing PGC-1α.

Senescence is an irreversible cell cycle arrest process that has been strongly implicated
in aging and aging-related diseases, including cancer. Over time, senescent cells secrete a
senescence-associated secretory phenotype (SASP) and accumulate, creating an inflamma-
tory microenvironment that promotes aging-related diseases [163]. Various studies have
shown that metformin inhibits SASP and cellular senescence through different mechanisms.
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These mechanisms include the regulation of MBNL-1/miR-130a-3p/STAT3 [164], the up-
regulation of SIRT1 [165], the downregulation of NLRC4 [166], and the downregulation
of NF-κB signaling [167]. Although the connection between these anti-senescence effects
and the anticancer effect of metformin has yet to be explored, different cancers have been
reported to exhibit SIRT upregulation [168], p53 downregulation [169], and mTOR attenu-
ation [170]. It is important to note, however, that the modulatory effect of metformin on
senescence should be interpreted cautiously, as it has been reported to increase SASP and
senescence in various cancer cells and to even help cancer cells evade senescence [171–173].
This ambiguity in the current knowledge highlights the need for further investigations in
this area.

Furthermore, the expressions of antioxidant genes are enhanced by metformin through
the SKN-1/Nrf2 transcription pathway [174]. The activation of this pathway leads to the
activation of several antioxidant enzymes, including superoxide dismutase and catalase,
which effectively neutralize ROS and safeguard cells against oxidative stress. In addi-
tion, another significant mechanism involved in the regulation of aging is the targeting
of stem cells. Over time, the regenerative capacity of stem cells diminishes, contributing
to age-related diseases. Fang et al. discovered that a low dose of metformin increases
the expression of GPx7, a glutathione peroxidase localized in the endoplasmic reticulum,
through the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2). This upregu-
lation of GPx7 helps delay premature cellular senescence [175]. It is worth noting, however,
that metformin exhibits a cytotoxic effect on the expressions of CSCs, as evidenced by the
inhibition of various CSC markers.

4.3. Hyperlipidemia and Dyslipidemia

Hyperlipidemia and hypercholesterolemia are modifiable factors that have been iden-
tified as significant contributors to the development of cancer [176]. In fact, dyslipidemia
has been found to have a detrimental impact on the clinical outcomes in cancer patients,
as it facilitates tumor metastasis [177], promotes chemoresistance [178], and increases the
cytotoxicity of chemotherapies [179]. However, it is important to note that the findings
regarding the association between lipid profiles and different types of cancer have been
conflicting. For example, studies have shown that high levels of cholesterol and reduced
levels of HDL are positively correlated with the aggressiveness of breast cancer [176,180].
Similarly, elevated total cholesterol levels have been closely linked to prostate cancer and
testicular cancer, while high cholesterol levels have been associated with a lower risk of
liver cancer, stomach cancer, and lymphatic cancers [176,181]. In a cross-sectional study
conducted by Ghahremanfard et al., it was observed that the triglyceride levels were el-
evated in ovarian cancer but reduced in colorectal cancer (CRC) [182]. Additionally, the
same study found that the total cholesterol and LDL levels were elevated in breast cancer
but diminished in gastric cancer (GC).

Cholesterol plays a role in the development of tumors through various mechanisms.
When it directly binds to the G-protein-coupled receptor, it activates the oncogenic Hedge-
hog signaling pathway, which is associated with cell differentiation, cell proliferation,
and the formation of cancer [183,184]. Cholesterol has also been found to bind to the
PDZ domain of NHERF1/EBP50 [185], a key contributor to the PI3K/Akt and Wnt/B-
catenin pathways, thereby promoting the development of cancer [186]. Additionally,
lysosomal cholesterol stimulates mTOR through the SLC38A9-Niemann-Pick C1 signaling
complex [187]. In addition to cholesterol itself, its anabolic and catabolic metabolites also
play a role in cancer metastasis and overall aggressiveness [186]. Two particularly notable
metabolites are mevalonic acid (MVA) and isoprenoids. MVA serves as a precursor to
cholesterol and activates mTOR and NF-κB, leading to changes in apoptosis and the cell
cycle. Interestingly, MVA is closely linked to isoprenoids in terms of cancer progression. As
a first-line therapy, statins inhibit the cholesterol pathway by blocking HMG-CoA reductase,
the enzyme that is the rate-limiting step in cholesterol synthesis [188]. This alteration in
the cholesterol pathway also affects the production of MVA and isoprenoids, as they are
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derivatives of HMG-CoA [189]. Furthermore, metformin has been found to impact cancer
by modulating pathways specific to cholesterol synthesis. When combined with statins,
metformin has been shown to result in a more than 50% reduction in cancer mortality in
patients with high-grade prostate cancer, compared to those treated with statins alone [190].

Several studies have been conducted to investigate the specific mechanisms underlying
the cholesterol-lowering effects of metformin. A study by Hu et al. revealed that the
introduction of metformin to mouse cells led to an increase in glycolysis, resulting in
elevated lactate dehydrogenase (LDH) activity and a reduction in the translocation and
formation of PCSK9 [191]. PCSK9 plays a crucial role in cholesterol homeostasis, and its
decrease leads to an upregulation of LDL receptors, ultimately causing a decrease in the
free cholesterol levels. Additionally, a study by Sharma et al. demonstrated a significant
decrease in the expressions of cholesterol regulatory genes (such as HMG-CoA reductase
and SREBP1) upon the introduction of metformin to breast cancer cells, which are known
for their high cholesterol content [192]. The impact of metformin on cholesterol levels
extends to its effects on cancer metastasis, the epithelial–mesenchymal transition (EMT),
and stemness, as observed in diffuse large B-cell lymphoma (DLBCL), a high-grade non-
Hodgkin’s lymphoma [193]. The most prominent pathway identified in this study, which
involved three DLBCL cell lines, was the B-cell receptor (BCR) signaling pathway and the
biosynthesis of cholesterol. The administration of metformin inhibited the growth of the
lymphoma by targeting HMGCS1, phosphorylated SYK, and AKT, which are typically
activated by BCR signaling [193]. This attenuation of downstream signaling ultimately
leads to a decrease in the cholesterol levels in the body, thereby halting the survival and
colonization of the lymphoma [193].

4.4. Obesity

Obesity is a prevalent condition that increases the susceptibility to numerous chronic
illnesses, including T2DM, cardiovascular disease, and, notably, cancer [194]. It has been
documented that obesity is not only linked to a higher risk of various cancer types but
also to elevated rates of cancer recurrence and mortality [195,196]. However, the molecular
mechanisms connecting obesity and cancer remain incompletely comprehended. In the
context of obesity, dysregulated fatty acid secretion and metabolism, anabolic and sex
hormone secretion, immune dysregulation, and chronic inflammation contribute to the
development and spread of cancer [197,198].

Several trials have reported the ability of metformin to reduce weight gain and pro-
mote weight loss in diabetic and non-diabetic obese subjects [199–201]. It is believed that
metformin affects weight by influencing adipose tissues. Previous research conducted
by Kim et al. [202] demonstrated that metformin induces weight loss by modulating fi-
broblast growth factor 21 (FGF21), a hormone that enhances lipolysis in white adipose
tissue and prevents fat accumulation. Subsequent preclinical studies have revealed that
metformin enhances the metabolic activity of brown adipose tissue, thereby preventing
weight gain [203–205]. In brown adipose tissues, the metformin-induced activation of
AMPK and FGF21, along with its ability to regulate various thermogenic markers, such as
UCP1, NRF1, and PGC1α, contribute to its weight loss effects [206]. Metformin has also
been shown to exert control over appetite. The suppression of appetite with metformin
has been attributed to lactate-mediated mild metabolic acidosis [207–209], the increased
production of GLP-1 mediated by the bile acid pool [210], and increased expressions of
leptin receptors in the hypothalamus [211]. Interestingly, the potential contribution of
metformin’s effect on obesity to its anticancer impact has yet to be established. However,
due to its ability to lower glucose, insulin, and free fatty acids, as well as to disrupt the
insulin/IGF-1-PI3K/AKT/mTOR and fatty acid/lipid biosynthetic pathways, metformin
may serve as a metabolically targeted therapy for obesity-driven cancers, thereby eliminat-
ing the association between obesity and cancer [109,212–214]. Furthermore, recent studies
investigating the impact of visceral obesity, rather than a high BMI, in NSCLC and CRC
have shown that metformin mitigates the resulting poor prognostics [215,216].
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5. Metformin Use in Different Cancer Types
5.1. Breast Cancer

Breast cancer (BC) is a prevalent form of cancer worldwide, with a significant number
of newly diagnosed cases and death cases in 2020 [217]. The current treatment for BC
involves various approaches, such as surgery, radiotherapy, chemotherapy, endocrine
therapy, and targeted therapy [218]. However, the development of chemoresistance and
metastasis poses challenges in the treatment of BC, leading to a poor prognosis. Metformin
has attracted considerable attention due to its potential impact on breast cancer. Previous
studies have indicated that the long-term use of metformin can reduce the risk of breast
cancer in diabetic women [24]. Additionally, it has been reported that long-term metformin
treatment can decrease the risk of ER-positive breast cancer [219]. A recent meta-analysis
involving a large number of BC patients demonstrated that metformin not only increased
the complete/partial response rate in BC but also suppressed various BC biomarkers,
including HOMA-IR, insulin, sex hormones, SHBG, Ki67, obesity, hs-CRP, caspase-3, p-
Akt, blood glucose, and the lipid profile [220]. Furthermore, the addition of metformin
to neoadjuvant chemotherapy and ERBBS-targeted therapy improved the pathological
complete response (pCR) in HER2-positive BC patients with a specific genetic variant [221].

Metformin has been found to have various effects on breast cancer. In a study by
Vazquez-Martin et al., it was discovered that metformin inhibits the growth of breast cancer
cells by reducing the levels of HER2 through the modulation of the AMPK/mTOR/p70S6K1
axis [222]. Another study by Hu et al. reported that low-dose metformin in the BT-549 cell
line suppressed the expressions of stemness markers such as CD44, Nanog, OCT-4, and
c-mym, leading to cell cycle arrest by increasing FOXO3 and p53 [223]. Metformin was
also found to reduce the serum levels of estradiol in patients, which may be a possible
mechanism for its ability to resist breast cancer development [224]. Furthermore, metformin
inhibited the expression of cyclooxygenase (COX) 2, which is known to promote breast can-
cer proliferation and angiogenesis, thereby limiting the metastasis of breast cancer [225,226].
Additionally, several studies have reported the regulatory effects of metformin on miRNAs,
as shown in Table 5 [227]. Through an AMPK-dependent mechanism, metformin has been
shown to decrease the levels of HIF-1α at both the mRNA and protein levels, thereby
exhibiting antiproliferative and anti-Warburg potential in breast cancer [110]. Metformin
also inhibits angiogenesis by targeting the HER2/HIF-1α/VEGF secretion axis [228].

Table 5. Effect of metformin on miRNAs involved in BC proliferation.

MiRNA Regulatory Effect Effector Gene Reference

miR-200c ↑ ↓ AKT2 [229]

miR-21-5p ↓ ↑ AMPK → ↓ mTOR [230]

miR-27a ↓ ↑ AMPKα2 [231]

miR-26a ↑ ↓ PTEN, ↓ EZH2, ↓
BCL-2 [232]

miR-193b ↑ ↓ FAS [233]
↓: decrease; ↑: increase.

In addition to inhibiting the growth of cancer cells, a study by Zimmermann et al.
revealed that metformin demonstrated a synergistic effect when combined with fulvestrant,
an estrogen receptor antagonist, in ER-positive breast cancer cells [234]. This combination
led to cell cycle arrest at the G1 phase by enhancing the expression of Cyclin G2 and the
cell cycle arrest induced by fulvestrant. Another study found that metformin inhibited
the growth of MCF7 cells by causing cell cycle arrest at the G0/G1 phase [235]. This
was achieved through the regulation of the AMPK/mTOR/cyclin D1 axis, preventing the
cells from entering the S phase. Furthermore, the concurrent administration of metformin
with paclitaxel induced robust cell cycle arrest at the G2/M phase by modulating the
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AMPK/mTOR signaling pathway [236]. Additionally, a recent study demonstrated that
metformin caused the regression of MDA-MB231, a metastatic breast cancer cell line,
and sensitized it to cyclophosphamide by downregulating PDGF-B and normalizing the
vessels [237].

Remarkably though, several studies had contradictory results, making the anticancer-
ous role of metformin in BC questionable. In a recent RCT trial of 3649 by Goodwin
et al. [66], it was reported that there was a non-significant impact of metformin on the inva-
sive disease-free survival in non-diabetic patients with high-risk operable BC. Furthermore,
the use of metformin was found to be associated with an increased risk of ER-positive BC
according to Park et al. [219]. Factually, in BC, the response to metformin is influenced
by various factors. As indicated by further studies, the protective role of metformin is
dependent on the type of BC, the hormonal levels, and the glucose level. For example,
Zhouang et al. [236] described that the effects of metformin-mediated AMPK activation in
breast cancer cells varied depending on the specific cell line. In fact, metformin treatment
resulted in growth arrest in five breast cancer cell lines (MCF7, BT20, T47D, MDA-MB-453,
and MDA-MB-474), while MDA-MB-231 showed resistance to the effects of metformin.
The response of breast cancer to the anticancerous effect of metformin also varies based on
the availability of glucose. High glucose levels not only promote breast cancer regression
but also diminish the antiproliferative and pro-apoptotic effects of metformin [238–240].
Conversely, under normoglycemia-like conditions, metformin-mediated lethality in breast
cancer was observed in vitro [241].

5.2. Colorectal Cancer (CRC)

CRC is the third most prevalent cancer and the second deadliest worldwide [242].
Though both obstructing and non-obstructing colon tumors have the best tumor prognosis
if resected surgically [243], non-resectable ones must be treated by chemotherapeutic agents,
like oxaliplatin and 5-fluorouracil (5-FU) [243]. When considered as an adjuvant therapy in
CRC, metformin has been proven effective, as it decreases the CRC proliferation, stemness,
and metastatic activity [244]. A study concerning aberrant crypt foci (ACF)-positive mice
demonstrated that, with metformin, the number was significantly lowered, and S6 kinase,
p-mTOR, and S6 protein were decreased [245]. Similarly, when studied in KRAS-mutated
human cells, which are resistant to chemo-drugs, metformin caused CRC cell cycle arrest
at the G1/S phase [246]. Cyclin D1, a CDK protein, was inhibited via the regulation of its
activation pathway: RAS/RAF proto-oncogene signaling [246].

Metformin-induced apoptosis has been linked to Bcl-2, Bax, Caspase-3, Mcl-1, and
TRAIL [247]. The initial three molecules were linked to an increase in tumor-infiltrating
lymphocytes as well as a decrease in CD163 (+) M2 cells caused by metformin [248]. Met-
formin has been linked to increased TRAIL-induced apoptosis in CRC and Mcl-1 reduction
by ubiquitination and degradation [249]. Recently, a study by Xiao et al. identified the
metformin-mediated inhibition of Inhibin βA, halting CRC cell proliferation by hindering
the TGF-β/PI3K/Akt signal transductions [250]. Moreover, a significant positive correla-
tion suggests that metformin may interfere with the EMT process and improve the CRC
prognosis [251]. Metformin has also been shown to affect HT29 and p53−/− CRC cells by
targeting their stem cells. A noted decrease in the expression of the cyclin D1 CDK and
c-Myc protein suggested cell cycle arrest, which was supported by an increased percentage
of cells arrested at the G0/G1 phase [252].

The effect of metformin is prominent when combined with anti-CRC agents. For
instance, the numbers of tumor cells in mice were remarkably reduced when exposed
to metformin and fluorouracil/oxaliplatin compared to no metformin use [253]. 5-FU
and metformin both work synergistically to alter the NF-κB pathway to reduce gastric
inflammation [254]. When the two drugs were tested against SNU-C5/5FuR, a 5-FU-
resistant CRC cell line, there was a decreased expression of NF-κB, the factor responsible for
cytokine-mediated inflammation, through AMPK/mTOR signaling [254]. Metformin also
enhances the actions of cisplatin against CRC cells by activating the PI3/Akt pathways [255].
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Furthermore, metformin boosted the cyclophosphamide efficacy in non-angiogenic CT-
26 cells, which are chemoresistant, by enhancing vascularization and blocking caspase-
mediated endothelial apoptosis [256].

Perhaps the most crucial and specific pathways in CRC are the Wnt/β-catenin signal-
ing pathways. These pathways initiate the activation of the destruction complex, which is
typically degraded by the proteasomes in the vicinity [257]. When mutated, the β-catenin,
a component of the destruction complex, evades the proteasome and stimulates tumor cell
proliferation [257,258]. Although there are currently no approved therapeutic interventions
targeting this pathway, metformin has been hypothesized to reduce the proliferation and
stemness induced by this pathway. Experiments with metformin have demonstrated a
decrease in β-catenin levels, resulting in a reduction in the EMT [259]. However, there
is currently insufficient evidence to directly link metformin to the Wnt/B-catenin path-
way [259].

5.3. Gastric Cancer (GC)

Despite the advancements in medical technology and radiotherapy, the 5-year survival
rate for metastatic GC remains very low. While gastrectomy is considered the main curative
therapy, patients with unresectable or metastatic disease typically undergo chemotherapy.
The standard pharmacological treatment involves a combination of epirubucin, cisplatin,
and 5-fluorouracil (ECF), but recent studies have shown that this regimen may do more
harm than good [260]. Furthermore, the survival rates for different age groups affected by
gastric cancer are alarmingly low, with less than 40% surviving beyond 5 years [261]. In con-
trast, the use of metformin has demonstrated significant positive effects in the management
of gastric carcinoma across multiple clinical trials [262,263]. A cohort study specifically
examined the effects of metformin, insulin, and sulfonylureas on the risk of developing GC
and found that the latter two drugs actually increased the risk of GC by elevating the levels
of IGF-1, which promotes cancer cell survival [264]. However, when evaluating the prog-
nostic impact of metformin in diabetic patients with gastric adenocarcinoma, Zheng et al.
reported an improved prognosis with the use of metformin [265]. Similarly, a recent meta-
analysis demonstrated that metformin use in diabetic patients with GC was associated with
better overall survival and recurrence-free survival and a reduced recurrence rate following
gastrectomy [266]. These findings highlight the potential of metformin as a promising
therapeutic option for gastric cancer patients, particularly those with diabetes. Further
research and clinical trials are warranted to fully explore the benefits and mechanisms of
metformin in the treatment of GC.

Metformin has also demonstrated significant efficacy in inhibiting the proliferation of
gastric cells. The activation of AMPK leads to the inactivation of acetyl-CoA carboxylase
(ACC) through phosphorylation, resulting in a reduction in the proliferation of GC cells.
In its dormant state, ACC prevents fatty acid synthesis, creating a state of starvation for
the cancerous cells. Studies conducted on extracted human gastric cells have examined
the ACC/pACC ratio and revealed a strong positive correlation between increased levels
of phosphorylated ACC (pACC) and the prognosis of the cancer [267]. Another factor
that contributes to GC proliferation is hepatocyte nuclear factor α (HNF-α). HNF-α pro-
motes the cell cycle, downregulates cyclins, and facilitates the proliferation of neoplastic
cells. Metformin, through AMPK signaling, inhibits HNF-α and its downstream signaling
mechanisms, suggesting its potential as a diagnostic marker for future therapeutic inter-
ventions [268]. AMPK has also been demonstrated to block cell cycle progression in GC
cells at the G0/G1 phase by reducing the expressions of epidermal growth factor receptor
(EGFR) and insulin-like growth receptor-1 (IGF-1R), dephosphorylating retinoblastoma
(RB), and inhibiting cyclin D1, CDK4, and CDK6 [269]. In this study, three GC cell lineages
were identified that were inhibited through cyclin D inhibition, namely, MKN1, MKN45,
and MKN74 [269].

In addition, metformin has been found to induce apoptosis in patients with gastric
cancer (GC). This process is mediated by AMPK, which inhibits mTOR and mitochondrial
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complexes, ultimately leading to the apoptotic death of GC cells while sparing normal-
functioning cells [262]. When metformin was introduced to AGS cells, the levels of p-mTOR
and p-AKT, which are apoptosis regulators, were significantly reduced [270]. Interestingly,
metformin has also been shown to decrease the levels of mitochondrial-dependent proteins
involved in apoptosis, such as cytochrome C, phosphorylated Bcl-2, and BAD. The com-
bination of metformin and cisplatin has been studied in relation to inducing apoptosis in
GC cells, although the specific outcome and underlying mechanism of this combination
remain unclear. It has been observed that the combination of metformin and cisplatin leads
to a decrease in the cancer circumference and a slowdown in metastasis [271]. However,
contrary to expectations, the levels of p-mTOR and p-4EBP1 were found to be significantly
increased rather than decreased [271]. The antiproliferative effects of this drug combination
may be attributed to their synergistic cytotoxic side effects. Furthermore, metformin has
also been studied in combination with oxaliplatin, a drug closely related to cisplatin. The
potencies of these drugs were found to be enhanced when used together. The levels of
Bcl-2 and cyclin D were reduced, while the levels of Bax and caspase-3 were increased,
indicating a pro-apoptotic environment [272].

Metformin has been found to attenuate metastasis in GC through its effects on dif-
ferent proteins. One such group of proteins is cadherins, which are involved in cell–cell
communication. Metformin’s influence on these proteins helps prevent the migration and
growth of cells in other parts of the body, a process known as the EMT [262]. The exact
mechanism by which metformin inhibits the EMT is not fully understood. In addition
to its effects on cadherins, metformin also inhibits metastatic peritoneal proliferation by
downregulating Nf-κB, rather than by activating AMPK [262]. This was demonstrated in
an experiment involving patients who had previously been treated for H. pylori infection
and later developed gastric cancer. Metformin was shown to reduce the risk of gastric
cancer, independent of the levels of HbA1c [273].

Another important aspect of cancer progression is the maintenance of cancer cell
stemness. Metformin has been identified as a potential regulator of this process. One
specific gene, known as sonic hedgehog (SHH), has been studied in relation to cancer and
is considered a potential therapeutic target [274]. In an experiment involving GC cells, an
anti-SHH preparation called cyclopamine was used. Interestingly, the number of viable GC
cells decreased when exposed to cyclopamine [274]. Building on this finding, the role of
metformin in regulating the SHH expression and inhibiting the CSC ability and metastatic
proliferation has been investigated [274].

Despite extensive research on the interplay between GC and metformin, there are still
numerous underlying mechanisms that remain unidentified. One innovative approach
to comprehending the role of metformin in GC involves analyzing RNA sequences [262].
Specifically, researchers are currently investigating the impact of the metformin-induced
inhibition of long noncoding RNAs (lncRNAs). Among these lncRNAs, a particular onco-
genic variant called Loc 100506691 has garnered attention due to its association with GC
proliferation and patient survival [275]. In GC, elevated levels of this lncRNA influence the
expressions of two miRNAs, namely, miR-26a-5p and miR-330-5p. Consequently, these miR-
NAs inhibit the transcription of CHAC1 by targeting its 3′UTR, thereby promoting growth
and metastases [275]. It is believed that metformin disrupts the Loc 100506691-miRNAs-
CHAC1 axis [275]. Although the exact mechanism remains incompletely understood, this
axis holds promise as a potential target for future drug interventions.

5.4. Liver Cancer

Primary liver cancer, the fifth most prevalent cancer worldwide, has the third highest
fatality rate among all cancers. Hepatocellular carcinoma (HCC) accounts for 85% of all
primary liver cancer cases. Various factors contribute to the increased risk of HCC, with
hepatitis B virus (HBV) and hepatitis C virus (HCV) being particularly significant [276].
Additionally, epidemiological evidence indicates that individuals with T2DM have a from 2-
to 3-fold higher relative risk of developing HCC [148,277,278]. Furthermore, in individuals
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without HBV or HCV infection, the coexistence of obesity and diabetes is responsible for
37% of HCC cases [279]. Research has demonstrated that the administration of metformin,
a medication used to treat diabetes, is associated with a reduced risk of HCC and exerts a
protective effect against its development [23,280].

In the context of inflammation-mediated tumorigenesis and the development of HCC,
the NF-κB and STAT3 signaling pathways play crucial roles in regulating various down-
stream genes that govern cell proliferation, apoptosis, stress responses, and immune func-
tions. Notably, the production of the STAT3-activating cytokine interleukin-6 (IL-6), which
is regulated by NF-κB, has been identified as a risk factor for HCC development [281]. There-
fore, targeting both pathways that control IL-6 expression and those that regulate its ability
to activate STAT3 could be a promising approach for therapeutic intervention [282,283].
One potential therapeutic agent that has shown promise in modulating these pathways
is metformin. Upon activation by metformin, AMPK reduces the degradation of IκBα,
thereby attenuating NF-κB signaling, decreasing IL-6 expression, and inhibiting STAT3
signaling [284]. This is supported by the observation that the inhibitory effect of metformin
on proliferation is significantly reduced in cells transfected with p65 (a subunit of NF-κB)
or IBSR (an inhibitor of IκB degradation) [284]. Furthermore, it is worth noting that liver
tumors often exhibit increased lipogenesis and fatty acid production [285]. In this regard,
Bhalla et al. demonstrated that metformin can decrease HCC by inhibiting de novo lipo-
genesis through the suppression of key enzymes involved in this process, such as ACC,
fatty acid synthase (FAS), and ATP citrate lyase (ACLY), at both the mRNA and protein
levels [286]. In addition to these mechanisms, other effects of metformin in HCC have been
described. These include upregulating the hippo signaling pathway by increasing the ex-
pressions of MST1, MST2, LATS1, and YAP [287], promoting KLF6/p21-mediated cell cycle
arrest [288], inhibiting Shh-induced cell proliferation [289], and inhibiting anti-apoptosis
proteins, such as BCL2 and MCL1 [290]. These findings highlight the multifaceted nature
of metformin’s potential therapeutic effects in HCC.

Metformin has also been implicated in the prevention of liver metastasis [291]. The
mechanism of metastasis in HCC is complex and involves the EMT and angiogenesis. One
notable characteristic of HCC is the depletion of fatty acid transport protein-5 (FATP5),
which promotes aggressive progression, the EMT, and metastasis in HCC by silencing
AMPK and promoting mTOR-mediated proliferation [291]. However, the metformin-
induced activation of AMPK can counteract metastasis in FATP5-deficient HCC by reversing
the EMT. Furthermore, when combined with empagliflozin, metformin has been shown
to decrease angiogenesis and metastasis, as evidenced by the decrease in both VEGF and
MMP-2/TIMP-1 [292].

It is worth mentioning that Gao et al. demonstrated that high matrix stiffness in HCC
can promote resistance to the anti-metastatic effects of metformin by upregulating integrin-
β1 and its downstream pathways [293]. Apart from empagliflozin, metformin has also
been found to enhance the cytotoxic effects of various HCC drugs, including aloin [294],
antifolates [295], dichloroacetate (DCA) [296], celastrol [297], and sorafenib [298,299]. Ad-
ditionally, metformin has been reported to sensitize HCC to sorafenib by inhibiting CXCR3
signaling, which contributes to sorafenib resistance [294]. Similarly, the combination of
metformin with 5-fluorouracil has been shown to inhibit HCC proliferation, as well as the
expressions of HIF-1α and multidrug resistance-associated protein 1 (MRP1) [300].

5.5. Lung Cancer

Lung cancer is the second most common type of cancer, accounting for 11.4% (2.21 million)
of all cancer diagnoses [242]. One of the most concerning aspects of lung cancer is its high
mortality rate, with 1.80 million individuals losing their lives to the disease, representing
18% of all cancer deaths [242]. Among the different types of lung cancer, non-small-cell lung
cancer (NSCLC) is the most frequently diagnosed, making up approximately 80–85% of all
cases [301]. When it comes to genetic mutations, NSCLC often exhibits alterations in genes
such as EGFR, K-Ras, p53, and LKB1 [302]. The standard treatment for advanced stage
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NSCLC typically involves a combination of platinum-based chemotherapy and fractionated
thoracic radiotherapy [301].

Numerous studies have highlighted the potential benefits of using metformin in the
fight against lung cancer. For instance, Xiao et al. demonstrated that metformin treat-
ment significantly reduced the incidence of NSCLC [49]. Recent research has also shown
that the use of metformin is associated with a lower risk of lung cancer and improved
progression-free survival in patients with advanced lung adenocarcinoma when combined
with EGFR-TKI therapy [303,304]. These findings align with previous studies that have
explored the impact of metformin on the lung cancer risk in diabetic patients [14,305,306].
Retrospective clinical evidence further supports these findings, indicating improved sur-
vival outcomes in patients with locally advanced NSCLC and diabetes who received
metformin treatment [151,235,307].

Preclinical studies on NSCLC have demonstrated that the use of metformin activates
AMPK, leading to the induction of p53, the suppression of mTOR, and the inhibition
of tumor growth. This ultimately enhances the tumor’s response to radiotherapy and
chemotherapy [235,308]. Remarkably, in NSCLC, metformin attenuates the PI3K/AKT and
MEK/ERK signaling pathways while downregulating IGF-1R. However, in small-cell lung
cancer (SCLC), it suppresses PI3K/AKT but increases MEK/ERK [309,310]. Furthermore,
the addition of metformin to NSCLC A549 cells results in the upregulation of microRNA-7,
which inhibits NSCLC growth and metastasis [311].

There have been reports of synergistic effects when combining metformin with anti-
lung cancer treatments through various mechanisms. For example, metformin has been
shown to enhance the effect of cisplatin by inhibiting the production of ROS and IL-6
secretion. This is achieved by modulating the STAT3 pathway through a mechanism in-
dependent of LKB1-AMPK [312–314]. Li et al. reported that metformin has the ability to
reverse crizotinib resistance by inhibiting IGF-1R, thereby enhancing the cytotoxic effect of
crizotinib [315]. While the role of metformin in lung cancer remains controversial, the over-
expression of SIRT1 has been associated with a poor prognosis in NSCLC [316,317]. A recent
study demonstrated the synergistic activity of tenovin-6 in combination with metformin,
leading to the inhibition of SIRT1 expression and the suppression of cell proliferation [318].

The efficacy of metformin in lung cancer, similar to breast cancer, has been a subject of
controversy due to conflicting findings. The combination of metformin and chemotherapy
in non-diabetic NSCLC patients resulted in poorer treatment outcomes and increased
toxic effects when compared to chemoradiotherapy alone [76]. Furthermore, the met-
formin group exhibited lower rates of 1-year progression-free survival and overall survival
compared to the control group. Similarly, a meta-analysis conducted by Tian and col-
leagues found that metformin did not improve the overall survival in diabetic patients with
NSCLC [319].

5.6. Ovarian Cancer

Metformin has demonstrated promising anticancer effects in research conducted on
ovarian cancer. According to a recent cohort study, the prolonged use of metformin in
ovarian cancer patients was linked to a decrease in mortality rates and improved overall
survival [320]. Metformin has been shown to effectively inhibit the PI3K/AKT/mTOR
signaling pathway in ovarian cancer cells, leading to cell cycle arrest at the G2/M check-
point [321,322]. However, the impact of metformin on cancer cells seems to be less signifi-
cant when glucose levels are high, whereas its cytotoxic effects are enhanced in low-glucose
conditions due to the induction of ASK1-mediated mitochondrial dysfunction [323,324].
Metformin has been shown to reduce the transcription of Axl and Tyro3, two receptor
tyrosine kinases associated with cell survival and resistance to apoptosis, in ovarian cancer
cells [325]. It also inhibits the activation of downstream signaling molecules, including Erk
and STAT3, in triple-negative breast cancers [326]. The deactivation of ERK and STAT3
can have significant consequences in cancer progression. ERK promotes tumorigenesis
by inhibiting FOXO3a, leading to increased cell proliferation and tumorigenicity [327].
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Similarly, STAT3 activation is associated with tumor angiogenesis and metastasis [328,329].
The inhibition of ERK-MAPK signaling can suppress angiogenesis and tumor growth [330],
while targeting STAT3 can induce apoptosis and inhibit tumor cell proliferation [331].
Metformin has also been found to inhibit the growth of ovarian cancer cell lines and
reduce angiogenesis, adhesion, and macrophage infiltration in both in vitro and in vivo
models [321,332,333].

Metformin has been found to reduce angiogenesis in metastatic tissues, decrease
the adhesion of ovarian cancer cells, and suppress the infiltration of macrophages [334].
Rattan [321] and Wu [334] both demonstrated that metformin reduces neovascularization,
with Rattan attributing this to the blocking of the mTOR signaling pathway and Wu
attributing it to the diminishment of the angiogenic and carcinogenic properties of platelets.
Furthermore, Rattan [335] and Lengyel [322] showed that metformin suppresses tumor
growth and enhances the cytotoxicity of cisplatin while also increasing the sensitivity to
paclitaxel. These findings suggest that metformin could be a valuable addition to the
treatment of ovarian cancer.

5.7. Pancreatic Cancer

Pancreatic cancer, which accounts for 2.6% of all cancer cases and ranks as the 10th
most common cancer, has one of the lowest survival rates among all cancer types. In
2020, approximately 495,773 cases were reported, resulting in the deaths of an estimated
466,003 patients, making it the seventh highest cause of cancer-related deaths [242]. Ac-
cording to the American Cancer Society, the 5-year survival rate for all stages of pancreatic
cancer is only 12% [336]. It is worth noting that pancreatic ductal adenocarcinoma (PDAC)
comprises more than 90% of all pancreatic cancer cases [337].

The impact of metformin on PDAC patients remains a subject of debate. A case–control
study found that diabetic patients who took metformin had a significantly lower risk of
developing PDAC compared to those who did not take the medication (OR = 0.38; 95%
CI, 0.22–0.69; p = 0.001) [338]. Similarly, a meta-analysis involving 1,535,636 patients from
37 studies reported a 46% reduced risk of pancreatic cancer among metformin users [339].
However, the exact mechanism through which metformin affects human cells, particularly
in the context of PDAC, is not yet fully understood [340].

Metformin exerts its effects on PDAC through two distinct mechanisms. Firstly, it can
directly impact pancreatic cells, and secondly, it can indirectly influence PDAC through
systemic pathways [5,341]. In terms of its direct effects, metformin acts in both an AMPK-
dependent and AMPK-independent manner to affect PDAC. KRAS mutations play a
significant role in tumor initiation in PDAC [342]. The metformin-mediated activation
of AMPK inhibits the IRS/PI3K/AKT pathway and mTORC1 [343–345], resulting in the
inhibition of ERK signaling and DNA synthesis. Additionally, metformin can suppress the
expression of YAP/TAZ in various cancers, including PDAC, through AMPK-mediated
mechanisms [346]. Recent research has also demonstrated that metformin induces apoptosis
in pancreatic cancer cells by downregulating PCAF proteins [347].

Furthermore, metformin exerts indirect effects on PDAC by reducing the levels of
insulin and IGF-1 [348–350], as well as by modulating the gut microbiome [136,137]. It
is important to note that the anti-PDAC effects of metformin are dose-dependent. Many
studies investigating PDAC cells utilize higher concentrations of metformin (5–30 mM)
compared to its physiological concentration (10–40 µM) [351–354]. Interestingly, low con-
centrations and high concentrations of metformin (>1 mM) suppress proliferation through
AMPK-dependent and AMPK-independent pathways, respectively [355,356]. However,
further research is necessary to fully comprehend the implications of metformin in PDAC
progression and growth [340].

5.8. Prostate Cancer (PCa)

PCa is a significant cause of cancer-related mortality in the United States, accounting
for one-third of all new cancer cases each year [357]. The primary treatment for PCa is
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androgen-deprivation therapy (ADT), but resistance to this therapy typically develops
within 12–18 months, leading to the progression of the disease into castration-resistant
prostate cancer (CRPC) and eventually the formation of metastases [358–360].

The relationship between diabetes, insulin levels, and the risk of prostate cancer is
a topic of debate. Some studies have reported that patients with T2DM have a lower
risk of developing PCa [361,362], while other researchers have presented conflicting
findings [363–365]. Interestingly, elevated levels of insulin have been associated with the
increased growth and mortality of PCa [366–368]. Additionally, high levels of IGF-IR have
been linked to the invasion, aggressiveness, and poor prognosis of PCa [369–373].

Similarly, studies investigating the impact of metformin on PCa have yielded incon-
sistent results. Some studies have shown that diabetic patients who take metformin are
less likely to develop PCa [217,374], but Zingales et al. [375] reported an increased risk of
PCa development. However, Wu et al. and Chen et al. found no correlation between the
use of metformin and the development of prostate cancer [376,377]. The combination of
metformin with anti-PCa therapies has proven to be effective in reducing PCa cell pro-
liferation and promoting cell death in laboratory settings both in vitro and in vivo [378].
This synergistic effect has been observed with the use of drugs such as bicalutamide [379],
exenedin-4 [380], and 2-deoxyglucose (2DG) [381]. Interestingly, lower concentrations of
metformin were found to be sufficient for it to exert its anti-PCa effects when combined
with a Plk1 inhibitor [382], simvastatin [383], and solamargine [384]. Additionally, a recent
study has revealed that vitamin D3 enhances the anticancer properties of metformin in
PCa [385].

Several mechanisms have been described to explain the effects of metformin specifi-
cally in PCa. Metformin has been shown to induce cell cycle arrest at the G1/S phase in
PCa cells by activating the AMPK/mTOR pathway [379]. In DU145 cells, LKB1 is required
for metformin to activate AMPK, although it promotes cell death through a mechanism
independent of LKB1-AMPK signaling [386]. Furthermore, the antiproliferative effects
of metformin on PCa cells are mediated by REDD1 and cyclin D1 [97,378]. Metformin
also leads to a significant reduction in the androgen receptor (AR) levels in LNCaP cells
by decreasing c-MYC at both the protein and mRNA levels [387–389]. It is believed that
metformin reverses the increase in AR expression by enhancing the activity of the MID1
translation regulator complex [375]. Moreover, metformin inhibits the proliferation of
LNCaP cells by preventing the overexpression of androgen-dependent IGF-1R, primarily
through the modulation of the mTORC1 complex rather than AMPK [390]. Similar to HCC,
PCa is characterized by increased lipogenesis, which is associated with tumor growth and
the development of aggressive forms of PCa [391]. Metformin has the ability to alter the
expressions and activities of lipogenic enzymes and transcription factors, including FAS,
ACC, and SREBP-1c, leading to energy depletion in cancer cells [392].

Multiple studies have demonstrated that androgen-deprivation therapy (ADT) can
create microenvironments that are conducive to the development of hormone-independent
cancer cells. This is achieved by increasing factors involved in the epithelial–mesenchymal
transition (EMT) and exerting selective pressure towards the EMT [393,394]. Interestingly,
metformin has been found to have various effects on the prostate cancer EMT. One mech-
anism is through the inhibition of the COX2/PGE2/STAT3 axis [395], which is known
to be involved in the invasion and migration of prostate cancer cells [396–399]. In fact,
metformin has been shown to sensitize castration-resistant prostate cancer (CRPC) patients
to enzalutamide by blocking the EMT through this pathway [400]. Another mechanism
is by reducing the expression of FoxM1 [401], a protein that plays a crucial role in cell
proliferation, cell cycle regulation, angiogenesis, invasion, and metastasis [402,403]. Ad-
ditionally, metformin inhibits the EMT by modulating microRNAs, such as miR30a and
miR-708-5p, which have the ability to suppress tumor growth and metastasis [404–406].
Yang et al. demonstrated that metformin upregulates miR-708-5p in both LNCaP and PC3
cells, leading to the induction of endoplasmic reticulum stress and apoptosis [407].
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6. Challenges of Metformin Repurposing as an Anticancer Drug

Numerous studies have examined the potential of metformin as an anticancer agent,
revealing its ability to inhibit cancer proliferation, reduce the cancer risk, and enhance
cancer prognoses. However, conflicting data and inconclusive results have also been re-
ported, leading researchers to conduct further clinical trials to validate the beneficial effects
of metformin in various types of cancer. A summary of ongoing trials can be found in
Table 6. The diversity of findings can be attributed to several factors, including the study
design [408,409]. Previous observational studies often suffered from residual confounding,
selection bias, and immortal time bias, which cast doubts on their results [14–18]. Further-
more, variations in the analysis methodologies, the inclusion of different cancer types and
subtypes, and differences in the patients’ demographics and diabetic conditions may have
contributed to the inconsistent outcomes. Additionally, the diets followed by patients may
also influence their responses to metformin. Elgendy et al. demonstrated that dietary
restriction with intermittent fasting can improve the response to metformin [410].

Table 6. Ongoing clinical trials assessing anticancer role of metformin in cancer.

Interventional Studies

NCT
Number Conditions Interventions Outcome Measures Phases Location

NCT05759312 Ovarian clear-cell
carcinoma Zimberelimab

PFS, OS, DCR, duration of
response, and recurrence

pattern
Phase I and II US

NCT04926155 Metastatic prostate
cancer

ADT and
abiraterone

PFS, OS, and radiographic
PFS Phase II China

NCT04925063 Metastatic prostate
cancer

ADT and
abiraterone

Castration-resistant prostate
cancer-free survival, OS, and

radiographic PFS
Phase II China

NCT05921942 Colorectal cancer FOLFOX protocol DCR, PFS, OS, and IL-6 levels Phase III Egypt

NCT03379909 Bladder cancer ORR, time to recurrence,
toxicity Phase II Netherlands

NCT06030622 Metastatic
pancreatic cancer

Simvastatin and
digoxin Phase I US

NCT01529593
Metastatic cancer

refractory to
standard therapy

Temsirolimus

Maximum Tolerated Dose
(MTD) of temsirolimus and

metformin and clinical tumor
response

Phase I US

NCT05929495 Glioblastoma Temozolamide PFS at 6 months
post-treatment Phase II Italy

NCT02336087 Pancreatic
adenocarcinoma

Gemcitabine
hydrochlo-

ride/paclitaxel
albumin-stabilized

nanoparticles

Feasibility of, compliance
with, and toxicity of

combination, PFS, OS,
Phase I US

NCT04758000 Osteosarcoma Placebo DFS and toxicity Phase II Italy

NCT04945148 Glioblastoma Radiation IMRT,
temozolomide

OS, ORR, PFS, safety, and
tolerability Phase II Italy

NCT05445791 Non-small-cell
lung cancer Placebo OS, ORR, PFS RCT: Phase

III Mexico
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Table 6. Cont.

Interventional Studies

NCT
Number Conditions Interventions Outcome Measures Phases Location

NCT01042379 Breast cancer Standard therapy pCR, RFS, OS RCT: Phase
III US

NCT05660083 HER2-negative
breast cancer L-NMMA Define recommended dose,

ORR, PFS Phase II US

NCT05023967 Breast cancer Placebo

Frequency of DLT occurrence,
ki67 changes, changes in the

expressions of
PP2A/GSK3β/MCL-1 axis
and circulating biomarkers

RCT: Phase II Italy

NCT05326984
Acute

lymphoblastic
leukemia

Prednisone;
vincristine;

doxorubicin;
L-asparaginase;

etoposide;
cytarabine;

methotrexate; and
6-mercaptopurine

Decrease in ABCB1 gene
expression, increase in AMPK

gene expression, OS
RCT Mexico

NCT02186847 Lung cancer Carboplatin and
radiation therapy

PFS, OS, local–regional
progression Phase II US

NCT01430351 Glioblastoma
Mefloquine/memantine

hydrochlo-
ride/temozolomide

PFS and toxicity Phase I US

NCT05680662 Triple-negative
breast cancer

Combination
product: quercetin,
EGCG, metformin,

zinc

DFS at 3 and 10 yrs, toxicity RCT: Early
Phase I

NCT05507398 Breast cancer Placebo and
atorvastatin

RCT: Phase
IV

NCT04248998 Triple-negative
breast cancer

Preoperative
chemotherapy

pCR, RFS, OS, AA and lipid
profile modifications,

concentration of insulin and
IGF-I

RCT: Phase II Italy

Prospective Observational Studies

NCT
Number Conditions Interventions Outcome Measures Location

NCT04947020 Rectal cancer OS, DFS Poland

NCT05192850
Recurrent

endometrial
carcinoma

Placebo Endometrial cancer recurrence, PFS, OS US

NCT04245644 Pancreatic cancer

Targeted drugs,
such as aspirin,

B-blockers,
metformin, ACE
inhibitors, statins

DFS, OS, pancreatic cancer progression Italy

AA: amino acid; DCR: disease control rate; DFS: disease-free survival; ORR: overall response rate; OS: overall
survival; pCR: pathologic complete response; PFS: progression-free survival; RFS: relapse-free survival.

The translation of in vitro studies into clinical settings is influenced by various factors,
and one of them is the dosage of metformin used (Figure 3). In in vitro studies, it is
common to use supraphysiological doses of metformin, typically ranging from 10 to 40 mM
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(330–6600 mg/L) and even up to 100 mM. These doses exceed the therapeutic plasma
levels, which are typically between 0.465 and 2.5 mg/L [411,412]. The reason for using
high doses in vitro is the non-physiologically high concentrations of the culture medium
constituents, such as glucose, hormones, and growth factors [138]. However, such high
doses are not feasible in clinical settings due to the potential for drug toxicity. It is important
to note that the type of media used in cell cultures can also affect the cells’ sensitivity to
metformin. For instance, cells cultured in DMEM require a higher dose of 10 mM of
metformin to inhibit proliferation, whereas cells cultured in RPMI can be inhibited with a
lower dose of metformin [413]. Even the varying concentrations of medium supplements,
such as pyruvate and, to a less extent, glucose and aspartate, can render cells resistant to
metformin [413].
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Furthermore, the response to metformin may be influenced by the presence of met-
formin transporters. Metformin relies on transporters like OCT1, OCT3, and MATE1 to
move across the cell’s plasma membrane [414,415]. The expressions of these transporters
differ between normal cells and cancer cells, which raises uncertainty regarding the up-
take of metformin by cancer cells. Additionally, the expressions of these transporters
can be influenced by other medications. Shu et al. conducted a study that demonstrated
how genetic variations in OCT1 can impact the effectiveness of metformin [416]. Conse-
quently, the limited uptake of metformin by target cells may hinder its potential as a cancer
treatment [417]. Moreover, several factors, including genetics, the microenvironment, the
metabolic environment, biodistribution, and tissue specificity, can affect the sensitivity of
cancer cells to metformin [418]. Notably, studies have highlighted the significance of p53,
LKB1, and TSC2 in determining the responses of tumors to metformin [138].

Similarly, the prolonged use of metformin may diminish its effectiveness. Just like with
chemotherapy, cancer cells have the ability to become resistant to metformin. It has been
observed that MCF7 breast cancer cells, when subjected to long-term metformin therapy,
developed a resistance not only to metformin but also to tamoxifen. This resistance was
brought about by the activation of AKT-SNAIL1-E-Cadherin signaling [419]. Furthermore,
Seo et al. have recently demonstrated that resistance to metformin could potentially
contribute to the aggressive progression and spread of cancer [420]. These findings highlight
the importance of considering these factors in future studies in order to determine the true
anticancer effects of metformin.

Remarkably, the interest in repurposing metformin as an anticancer agent is gaining
momentum for its low cost, as it has been off-patent since 2004 [421], its well-established
safety profile, with side effects including mild–moderate GI discomfort and a metallic taste,
which typically lessen over time, and the very rare incidence of lactic acidosis, compared
to other biguanides [422]. Notably though, metformin use in males has been associated
with an increased risk of genital malformations in male offspring [423]. This potential
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link is supported by in vitro studies demonstrating metformin’s effects on human and
mouse testicular cells, potentially including testosterone suppression [424,425]. In addition,
chronic use of metformin as well as high dosages (≥15 g/L) have been associated with
vitamin B12 deficiency in 6–30% of patients due to malabsorption, as well as with alterations
in the microbiota, motility, and calcium-dependent transport via the gastric intrinsic factor
glycoprotein [426–428]. Yet, concurrent multivitamin use protects against vitamin B12
deficiency [429].

Despite its economic and clinical appeal for cancer therapy, repurposing metformin
faces some regulatory hurdles. Conducting new clinical trials that adhere to rigorous
protocols with well-defined patient populations, standardized regimens, and robust effi-
cacy/safety data are needed to demonstrate the efficacy and safety against specific cancers.
Re-evaluation of the safety profile is crucial, considering potential side effects in patients
with co-morbidities and interactions with anticancer drugs. Additionally, the generic
nature of metformin reduces financial incentives for large trials compared to patentable
drugs, requiring justification based on existing treatment landscapes. Finally, intellectual
property rights on metformin formulations specific to cancer treatment might require
navigation. Thus, overcoming these challenges in clinical trial design, safety considera-
tions, economic feasibility, and intellectual property management is key for metformin’s
regulatory approval as an anticancer agent.

7. Conclusions

Metformin has emerged as a promising candidate for enhancing cancer treatment
strategies due to its multifaceted approach in combating tumor formation and overcoming
resistance to chemotherapy. The significant impact of cancer on global public health neces-
sitates innovative therapeutic approaches, and the pleiotropic effects of metformin offer
hope in addressing this urgent need. By targeting fundamental pathways involved in the
development and progression of cancer, metformin provides a versatile tool for oncologists.

Observational studies and meta-analyses consistently demonstrate a decrease in the
cancer occurrence and mortality among individuals treated with metformin, indicating
its potential as a preventive agent. Furthermore, preclinical investigations have revealed
its diverse mechanisms of action, ranging from metabolic modulation to direct interfer-
ence with cancer cell growth and survival pathways. These findings highlight the wide
range of anticancer effects exerted by metformin, which go beyond its primary use in
managing T2DM.

However, the translation of promising preclinical results into clinical practice presents
significant challenges. Conflicting outcomes from clinical trials emphasize the complex-
ity of metformin’s interactions within the tumor microenvironment and the need for a
nuanced understanding of its effects in different types of cancer and patient populations.
Considerations regarding dosage, including the disparity between laboratory and in vivo
concentrations, further complicate the therapeutic landscape. Additionally, the emergence
of resistance to metformin underscores the importance of uncovering the underlying mech-
anisms and identifying strategies to mitigate or overcome this phenomenon.

Despite the obstacles faced, ongoing clinical trials provide optimism in terms of
elucidating the role of metformin in cancer therapy and refining treatment strategies.
The focus of biomarker discovery endeavors is to identify indicators that can predict the
treatment response, thereby facilitating personalized approaches to the use of metformin in
cancer patients. Additionally, efforts to optimize dosing regimens and explore combination
therapies hold potential for enhancing the effectiveness of treatment and minimizing
adverse effects.

To summarize, metformin presents a compelling avenue for advancing cancer treat-
ment due to its multifaceted effects, which offer potential benefits across a wide range
of malignancies. Although challenges persist, the continuation of research efforts holds
promise in fully harnessing the therapeutic potential of metformin and improving outcomes
for cancer patients worldwide. Through interdisciplinary collaboration and rigorous inves-
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tigation, metformin may emerge as a fundamental component of modern cancer therapy,
paving the way for more effective and personalized treatment approaches in the future.
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347. Szymczak-Pajor, I.; Drzewoski, J.; Świderska, E.; Strycharz, J.; Gabryanczyk, A.; Kasznicki, J.; Bogdańska, M.; Śliwińska, A.
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