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Abstract: Hearing is essential for communication, and its loss can cause a serious disruption to one’s
social life. Hearing loss is also recognized as a major risk factor for dementia; therefore, addressing
hearing loss is a pressing global issue. Sensorineural hearing loss, the predominant type of hearing
loss, is mainly due to damage to the inner ear along with a variety of pathologies including ischemia,
noise, trauma, aging, and ototoxic drugs. In addition to genetic factors, oxidative stress has been
identified as a common mechanism underlying several cochlear pathologies. The cochlea, which
plays a major role in auditory function, requires high-energy metabolism and is, therefore, highly
susceptible to oxidative stress, particularly in the mitochondria. Based on these pathological findings,
the potential of antioxidants for the treatment of hearing loss has been demonstrated in several animal
studies. However, results from human studies are insufficient, and future clinical trials are required.
This review discusses the relationship between sensorineural hearing loss and reactive oxidative
species (ROS), with particular emphasis on age-related hearing loss, noise-induced hearing loss, and
ischemia–reperfusion injury. Based on these mechanisms, the current status and future perspectives
of ROS-targeted therapy for sensorineural hearing loss are described.
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1. Introduction

Hearing, which is integral to communication, is a sensory ability shared by most
animals, and its loss significantly impairs social life. There are various causes of hearing
loss, including congenital hearing loss, which is mainly due to genetic predisposition,
age-related hearing loss (ARHL, which will be restricted to sensorineural hearing loss in
the context of this review), noise-induced hearing loss (NIHL), and hearing loss caused
by drugs and other chemicals, or by ischemia [1]. Hearing loss is not only a physical
and financial burden on one’s social life but also contributes to psychological problems
and psychiatric disorders, including cognitive decline and depression [2,3]. The growing
recognition of hearing loss as a major risk factor for dementia underscores the urgency of
addressing it as a global issue [4–7]. The World Health Organization (WHO) estimates that
by 2050, a staggering 2.5 billion people, primarily those over 60 years old, will be living
with some degree of hearing loss [8–10].

Hearing loss can be caused by various factors; however, damage to hair cells in the
cochlea of the inner ear is irreversible. Aging is the most common cause of hearing loss
due to this inner ear damage, and its underlying mechanisms are becoming increasingly
clear. In 1956, Harman proposed the free radical theory, which states that the production of
reactive oxygen species (ROS) and their subsequent damage to biological components are
key factors in the aging process [11]. Free radicals are defined as molecular entities or molec-
ular fragments containing one or more unpaired electrons. ROS include both free-radical
and non-radical derivatives of oxygen [12]. Because mitochondria are a major source of
intracellular ROS, the link between aging and ROS has been the focus of mitochondrial
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research [13]. ROS production is implicated in several apoptotic and necrotic cell death
pathways in the auditory structures [14] and can cause most types of sensorineural hearing
loss (SNHL), including ARHL, hereditary hearing loss, ototoxic drug-induced hearing loss
(DIHL), and NIHL. In addition to genetic factors, oxidative stress has been identified as
a common mechanism underlying several cochlear pathologies, including noise-induced,
ototoxic drug-induced, and age-related cochlear degeneration. Oxidative stress and ROS
disruption of the redox state have been implicated in cochlear damage [15–17]. The cochlea
is one of the most susceptible organs to oxidative stress, owing to the high metabolic
demands of hair cells in response to sound stimuli. These findings, together with the
elucidation of various mechanisms related to hearing loss and ROS, have led to inten-
sive research on the use of antioxidants in the treatment of inner ear disorders. Notably,
animal studies are beginning to demonstrate their efficacy; however, the role of antioxi-
dants in human studies remains controversial, with many uncertain results. This review
outlines the auditory system and SNHL, mainly due to inner-ear damage, focusing on
the relationship between hearing loss and ROS, particularly in ARHL, NIHL, DIHL, and
ischemia–reperfusion injury. Based on these mechanisms, we discuss the current status and
future perspectives of ROS-targeted therapies for SNHL.

2. Auditory System and Sensorineural Hearing Loss

Sound is the result of air vibrations, and the brain has a highly successful mechanism
for detecting it [18]. Air vibrations travel to the outer ear and are transmitted to the
tympanic membrane and through the middle ear. Connected by three ossicles to the inner
ear, the middle ear amplifies the vibrations and transmits them to the inner ear. The cochlea,
a part of the inner ear, contains a spiral row of sensory cells called hair cells. Cochlear
function is essential for sound recognition in the brain. In humans, the cochlea is a bony
organ that forms a two-and-a-half-turn spiral with the cochlear axis at the center. The
basilar membrane and organ of Corti exist between the scala tympani and the cochlear
duct, whereas the cochlear duct and scala vestibuli are separated by Reissner’s membrane.
The scala tympani and vestibuli are connected by a helicotrema at the apical turn. This
area contains perilymph fluid, which is similar in composition to normal extracellular
fluid. In contrast, the cochlear duct is filled with endolymphatic fluid rich in K+ [19]. The
organ of Corti has a single row of inner hair cells (IHCs) and three rows of outer hair cells
(OHCs) [20,21]. In humans, there are about 16,000 hair cells, both inner and outer, in the
cochlea [22]. These cells have stereocilia, the lower end of which connects to a protein
complex containing an ion channel called the mechanoelectric transducer channel. IHCs
are mainly innervated by auditory afferent fibers, whereas OHCs are mainly innervated by
inhibitory efferent fibers. When sound enters the ear, the footplate of the stapes vibrates,
transmitting the vibrations to the basilar membrane [23]. These vibrations cause the IHCs
to depolarize, leading to the release of neurotransmitters and the generation of action
potentials [24]. OHCs are motile, contracting upon depolarization and expanding upon
hyperpolarization [25]. The vibrations of the basilar membrane, enhanced by the OHCs,
amplify this electro-mechanical conversion. These electrical signals are transmitted to the
brain via the nerves and are ultimately recognized as sound [18].

Hearing loss occurs when any part of the auditory system is affected. There are two
types of hearing loss: conductive hearing loss and SNHL. Although SNHL is the most
common type of hearing loss, it is usually not treatable by medical or surgical means
once the symptoms have passed without improvement. SNHL arises from a dysfunction
in the cochlear or nerve pathways involved in hearing. Genetic mutations are critical
causal factors of SNHL; several pathologies have also been implicated, including ischemia,
infection, intense noise [26–28], trauma, aging, the use of ototoxic drugs [29,30], and
autoimmunity. Despite the diverse adverse factors, many common factors, such as the
influence of ROS and inflammatory cytokines, are believed to be pivotal in causing hearing
loss, mainly by damaging hair cells. Treatment with corticosteroids aims to prevent the
progression of the damage [31]. Steroids exhibit various physiological activities, including
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anti-inflammatory and immunosuppressive effects. However, many patients with SNHL do
not recover adequately despite optimal treatment [16], warranting the need for an enhanced
understanding of the pathophysiology and the development of new treatments [32].

3. Reactive Oxygen Species

ROS comprise highly reactive oxygen molecules involved in oxidation reactions, with
the most common examples being superoxide (O2

−), hydrogen peroxide (H2O2), hydroxyl
radicals (•OH), and singlet oxygen. The broader term also includes nitric oxide (NO), nitro-
gen dioxide, and ozone. Although once considered solely toxic to organisms, ROS have
been reported to play important beneficial roles as well. When the equilibrium between
the production and elimination of ROS is disrupted, affecting cell physiology, this state is
termed oxidative stress [33]. Low ROS levels are required for cell proliferation, differentia-
tion, and survival, whereas moderately increased ROS levels can cause DNA damage and
promote mutations [34–36]. High ROS levels ultimately cause oxidative stress and lead
to cellular damage and death. ROS are chemically reactive species containing unpaired
electrons and are highly toxic to cells and intracellular structures. It is estimated that ROS
are associated with more than 100 clinical symptoms [37,38]. ROS are produced during
several processes, including mitochondrial activity in vivo, the oxidation of chemicals and
biomolecules, exposure to environmental pollutants such as electrical and UV radiation,
and in response to hypoperfusion and reperfusion followed by ischemia [34,36,39]. These
ROS are normally detoxified by a variety of antioxidant enzymatic scavengers, such as
superoxide dismutase (SOD), catalase, glutathione S-transferase, and glutathione peroxi-
dase (GPX).

ROS include both endogenous and exogenous species, and the major endogenous
sources of physiologically relevant ROS include different cellular organs such as mito-
chondria, peroxisomes, and endoplasmic reticula. Exogenous sources of ROS include
smoking, ozone exposure, hyperoxia, ionizing radiation, and exposure to heavy metal
ions [40,41]. Mitochondria, the primary source of ROS, generate them as a metabolic
byproduct. Mitochondrial ROS have been reported to regulate postmetabolic feedback,
autophagy, and inflammatory responses [42–44]. Most oxygen is metabolized in the mi-
tochondria, rendering mitochondrial DNA (mtDNA) susceptible to free radical damage.
mtDNA has the disadvantages of high information density and low repair capacity, and
ROS inhibit mitochondrial transcription. The inner mitochondrial membrane is rich in
unsaturated fatty acids but is easily deformed by ROS. This susceptibility to damage stems
from the unsaturated nature of the fatty acids, making them prone to peroxidation by ROS.
Consequently, the oxidative damage in mtDNA gradually accumulates, leading to cell
degeneration and death, which is considered to underlie the progression of aging [45].

4. Role of Mitochondrial Oxidative Stress in Hearing Loss

Mitochondria play an important role in ROS production, and genetic mutations af-
fecting mitochondrial function are associated with hereditary hearing loss. Mitochondrial
oxidative stress is the common cause of most types of SNHL, including age-related, genetic,
and ototoxic drug- and noise-induced hearing loss [46]. Oxidative stress and free radical
generation have been shown to contribute to ARHL in inbred mice [47–49]. Moreover,
superoxide dismutase 1 (SOD1) has been implicated in ROS processing during the oxidative
stress response [50]. SOD1 is widely distributed in inner ear tissues, including the spiral
ligaments, stria vascularis, and organs of Corti. Notably, SOD1-knockout mice exhibit early
progression of ARHL [51]. Similarly, the senescence-accelerated mouse prone 8 (SAMP8)
strain, a model for accelerated aging, shows early deafness. Oxidative stress has been
implicated in the molecular mechanisms associated with premature cochlear senescence
in SAMP8 mice [52]. In these mice, OHCs, spiral ganglion neurons (SGNs), and stria
vascularis are reported to gradually degenerate. Moreover, guinea pigs overexpressing
catalase in the cochlea display significant protection of hair cells and hearing thresholds
after ototoxic treatment [53,54].
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The cochlea is extremely susceptible to oxidative stress owing to the high metabolic
demands of hair cells in response to sound stimuli. Normally, under physiological con-
ditions, ROS produced in the mitochondria of hair cells are eliminated by the intrinsic
antioxidant effects of hair cells. However, under conditions of excessive ROS levels due
to external factors, such as noise or ototoxic drugs, the antioxidant defenses of hair cells
are compromised, resulting in permanent cochlear degeneration [55,56]. mtDNA is con-
stantly exposed to DNA-damaging agents, similarly to nuclear DNA [57,58]. Owing to its
proximity to the electron transport chain and the lack of protective histones, mtDNA is
more susceptible to damage from toxic chemicals compared to nuclear DNA [59]. Muta-
tions in mtDNA accumulate and expand during cell division, causing age-related diseases.
Oxidative damage to hair cell mtDNA induces mitochondrial dysregulation and triggers
apoptosis [60,61]. The activation of the c-Jun N-terminal kinase/mitogen-activated protein
kinase (JNK/MAPK) pathway, an apoptotic signaling pathway, has also been observed in
OHCs in response to oxidative stress [62]. In addition to apoptosis, ROS generation leads
to inflammation and the production of the pro-inflammatory cytokines interleukin-6 [63]
and tumor necrosis factor-alpha [64]. The presence of vasoactive lipid peroxidation prod-
ucts, such as isoprostanes, may also contribute to reduced cochlear blood flow associated
with excessive noise [65,66]. Noise-induced ischemia and subsequent reperfusion further
potentiate ROS [16] (Figure 1).
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Figure 1. Summary figure of mitochondrial oxidative stress in relation to hearing loss. When the
balance between the production and elimination of ROS is disrupted, cellular physiology is affected.
Mitochondria play an important role in ROS production. Excessive levels of ROS, caused by external
factors such as noise or ototoxic drugs, compromise the antioxidant defenses of hair cells, induce
apoptosis, and cause inflammation, resulting in permanent cochlear degeneration.

5. Role of Oxidative Stress in ARHL

ARHL, also known as presbycusis, is characterized by a progressive decline in hearing
ability with aging [67,68]. Moreover, self-reported hearing loss can be identified in half of
those aged 85 years and older [69]. The incidence of ARHL is expected to increase as the
older adult population expands [67,70,71]. Several factors have been suggested to influence
the onset and degree of ARHL, including genetic factors; racial differences; a history of
noise exposure; smoking; alcohol consumption; and various health complications such as
diabetes, cardiovascular disease, sex hormones, arteriosclerosis, and obesity [1]. ARHL is
thought to result from the age-related degeneration of the cochlea, with cumulative effects
of extrinsic damage (noise and other ototoxic agents) and intrinsic disorders (e.g., systemic
diseases) [68]. It has been suggested that a substantial contribution to presbycusis accu-
mulates with low-level damage due to noise and other insults [67]. Schuknecht classified
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four types of age-related changes in hearing based on human temporal bone pathological
specimens and audiograms: (1) sensory presbycusis, involving damage to sensory hair cells;
(2) neuronal presbycusis, involving damage to SGNs; (3) metabolic presbycusis, involving
damage to stria vascularis and leading to strial atrophy; and (4) mechanical presbycusis,
characterized by a thick and stiff basilar membrane and cochlear duct [72]. Most patients
with presbycusis present with a mixed pathology, and it has been suggested that the central
auditory pathways that contribute to the onset and progression of ARHL may be affected,
in addition to peripheral pathology.

It is widely accepted that mitochondria are a major source of ROS and represent a
crucial site for ROS-induced oxidative damage and that ROS production increases with
age [34,73]. The accumulation of glutathionylated proteins with age is an indicator of
protein oxidation resulting from the formation of hydrogen peroxide [74–76]. Moreover,
increased 4-hydroxynonenal indicates lipid peroxidation resulting mainly from the forma-
tion of hydroxyl radicals, whereas the presence of 3-nitrotyrosine suggests a peroxynitrite
reaction [77]. In rats, mitochondrial deletions increase with age and are correlated with
deafness [78]. Additionally, ARHL is more rapid and severe in SOD-deficient mice, sug-
gesting the importance of these endogenous antioxidants in cochlear hair cell survival [48].
A study exploring oxidative stress in the cochlea of aging male CBA/J mice revealed no-
table insights, including the accumulation of ROS in different tissues of the aging cochlea.
Notably, the timing and extent of these oxidative changes varied across the different tis-
sues, suggesting diverse mechanisms at play. These results indicate that different types of
oxidative stress are increased in aging cochlea and that the cellular antioxidant defense
system is impaired [47].

Acetyl-l-carnitine and alpha-lipoic acid improve cochlear function by reducing the
age-related loss of hearing sensitivity. This effect appears to be related to the ability of
mitochondrial metabolites to protect and repair age-related cochlear mtDNA damage by
upregulating mitochondrial function and improving the energy production capacity [79].
Lecithin is a polyunsaturated phosphatidylcholine (PPC), a high-energy functional and
structural element of all biomembranes. PPCs are important antioxidants that protect cell
membranes from ROS-induced damage and play a scavenging role in the activation of
enzymes such as SOD and glutathione. mtDNA mutations tend to accumulate more fre-
quently than chromosomal DNA mutations, and the same mechanism has been suggested
for ARHL in a mouse model of ARHL [80]. Thus, ROS-induced damage to mtDNA may
lead to reduced mitochondrial function in the cochlea and consequent hearing loss [81]. In
C57BL/6J mice with the deletion of the mitochondrial pro-apoptotic gene Bak, age-related
apoptotic cell death in cochlear spiral ganglion neurons and hair cells is reduced, and
ARHL is prevented. Thus, the induction of a Bak-dependent mitochondrial apoptosis
program in response to oxidative stress is an important mechanism of action of ARHL in
C57BL/6J mice [82].

6. Role of Oxidative Stress on NIHL

NIHL is the second most common cause of SNHL after ARHL, affecting approximately
5% of the global population [26,83]. NIHL can be unilateral or bilateral, and the hearing loss
can be transient or permanent [84]. In mammals, sensory hair cells, once damaged, cannot
regenerate. Therefore, the noise-induced degeneration of these hair cells and nerves can lead
to permanent hearing loss [85]. Studies suggest that OHCs are the primary target of noise-
induced damage, which is exacerbated by the loss of OHCs in basal cochlear lesions [86].
Various mechanisms have been postulated as the main causes of noise-induced inner ear
damage, including mechanical damage [87], reduced blood flow and hypoxia [88–90],
glutamate-induced excitotoxicity [91], and free radical-induced tissue damage [89,92–94].
Susceptibility to noise can vary among individuals, owing to a mixture of genetic and
environmental factors. The unmodifiable risk factors for hearing loss include age, genetics,
sex, and race [28,95,96]. Several modifiable risk factors, including failure to use hearing
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protection [97], smoking [98], physical inactivity [99], diabetes, and heart disease [100],
have been associated with an increased risk of NIHL [28].

Excessive ROS production is a widely accepted mediator of noise-induced damage
to the cochlea [101–103]. ROS production is noted immediately after noise exposure and
persists for 7–10 days thereafter, expanding from the basal to the apical direction of the
organ of Corti and increasing the area of necrosis and apoptosis [92,104]. Ohlemiller et al.
analyzed hydroxyl (OH) radicals in the cochlea and reported an almost 4-fold increase in
OH 1–2 h after noise exposure [101]. Yamane et al. further demonstrated this noise-induced
increase in free radicals localized to the stria vascularis [93].

Lipid peroxidation products generated by ROS induce apoptosis, and vasoactive lipid
peroxidation products, such as isoprostanes, reduce cochlear blood flow [105,106]. Noise-
induced ischemia and subsequent reperfusion further promote ROS production [101]. ROS
production in the cochlea can also lead to the release of inflammatory cytokines, causing
further damage [63,107,108]. NAD(P)H oxidase (NOX), a membrane-bound protein that
transfers electrons to oxygen molecules across the cell membrane, has been implicated in
noise-induced cellular stress. It may also contribute to ROS production in NIHL, as a re-
duction in permanent hearing loss has been reported after the intracochlear administration
of NOX inhibitors under noise-induced cellular stress [109–112]. A similar mechanism
involving reactive oxygen species has been reported for DIHL [30,113–115].

Animal studies have demonstrated genetic susceptibility to NIHL. One strain of mice
(C57BL/6J) with ARHL is more susceptible to noise than other strains [116–118]. Several
knockout mice, including those for SOD1 [119], GPX1 [120], and plasma membrane calcium-
ATPase pump isoform 2 [121], have been shown to be more sensitive to noise than their
wild-type littermates. A study using knockout mice reported genetic deficits that disrupt
various pathways and structures within the cochlea, thereby increasing the noise sensitivity
of the inner ear [38].

7. Role of Oxidative Stress on DIHL

Ototoxic drug exposure is another major cause of SNHL. While there are several
classes of drugs that are ototoxic, the most clinically important ototoxicity-associated drugs
are platinum-based anticancer drugs such as cisplatin and carboplatin and aminoglyco-
side antibiotics, which are known to cause irreversible hearing loss [29]. Both classes of
drugs primarily damage hair cells in the organ of Corti by producing ROS via apoptotic
pathways [122].

The platinum-based drugs cisplatin, carboplatin, and oxaliplatin are among the most
widely used anticancer chemotherapeutics. Despite their potential to treat cancer and
prolong survival, platinum-based drugs often cause side effects including hearing loss [123].
Cisplatin toxicity in the inner ear is characterized by progressive, bilateral, irreversible
hearing loss, particularly in the high frequencies [124]. Chronic changes due to these
disorders are seen in the OHCs, stria vascularis and SGCs of the inner ear [125–127]. The
mechanism has been reported to involve increased ROS levels in the cochlea and the
induction of cell death by apoptosis [128,129]. Kopke et al. investigated the antioxidant
defense system of the organ of Corti using an in vitro model in rats [130]. Their findings,
and those of others, suggest that cisplatin causes damage to hair cells that is associated
with the production of ROS, the depletion of intracellular GSH, and interference with
antioxidant enzymes in the cochlea [17,131]. Mitochondrial apoptotic pathways have also
been implicated in cisplatin ototoxicity, and the inhibition of cell death may be a potential
strategy for treating cisplatin-related ototoxicity [132].

Aminoglycosides are among the most commonly used antibiotics to treat infectious
diseases; however, they are associated with serious side effects, including nephrotoxicity
and irreversible hearing loss [133]. While nephrotoxic side effects are generally reversible,
severe ototoxic damage is often not and may result in permanent hearing loss, vestibular
dysfunction, or both [134]. One of the major factors in aminoglycoside-induced cochlear
damage is oxidative stress via ROS [135]. Gentamicin is known to reduce the mitochondrial
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membrane potential of OHCs. This leads to the production of NADPH in the OHCs,
which increases ROS and induces apoptosis [136]. Aminoglycosides tend to accumulate
in the mitochondria of hair cells, which can lead to a pool of ROS and cause hearing
loss [137]. The 1555A>G mitochondrial DNA mutation is known to cause hereditary
hearing loss associated with aminoglycoside hypersusceptibility [138]. In addition to the
A1555G mutation, other mitochondrial DNA mutations associated with hearing loss due
to aminoglycoside hypersusceptivity have recently been reported, but the details of their
mechanisms of action remain unclear [139].

8. Mechanisms of Ischemia–Reperfusion Injury

ROS play an important role in ischemia–reperfusion injury; they are produced during
ischemia–reperfusion, inducing organ damage [140,141]. ROS production is intricately
orchestrated through the following various mechanisms: (i) Xanthine oxidase: Xanthine
produces oxidase from hypoxanthine with xanthine, which is produced via the catabolism
of ATP during ischemia. (ii) NOX: NOX is normally divided into a membrane-bound
subunit and a cytoplasmic subunit and binds during ischemia–reperfusion. (iii) Mito-
chondria: During ischemia, the environment within the mitochondria is altered owing
to the failure of the electron-transfer system. During reperfusion, the electron-transfer
system is reactivated, resulting in electron leakage and the production of ROS from oxygen.
(iv) Endothelial nitric oxide synthase (eNOS): Normally, eNOS binds to tetrahydrobiopterin
to synthesize NO. However, during ischemia–reperfusion, 7,8-tetrahydrobiopterin binds to
NO synthase, and ROS is produced from oxygen. ROS produced by these mechanisms acts
on the mitochondrial permeability transition pore (mPTP). The mPTP is normally closed
but can be opened by excess ROS generated during ischemia–reperfusion or by low ATP
levels [142]. The opening of the mPTP disrupts the normal movement of molecules within
the mitochondrial matrix and between the mitochondria and cytoplasm. This can lead
to the mitochondria swelling and collapsing [143], ultimately causing a loss of function.
Consequently, energy production in the mitochondria is insufficient, the activity of calcium
ATPases in the plasma membrane and endoplasmic reticulum is reduced, and intracellular
calcium concentration homeostasis is disrupted [144,145]. The ototoxicity of NO is known
to be greatly enhanced by its reaction with other toxic agents, especially superoxide, in
ischemia–reperfusion injury to form peroxynitrite [146]. In a study on gerbils, transient
ischemia caused a remarkable increase in NO production in perilymph, which might be
attributable to the inducible NOS pathway [147]. In the same animal model, the antioxidant
molecular hydrogen was effective against hearing loss induced by cochlear ischemia, which
is thought to be the main cause of idiopathic SNHL [148].

9. Potential of Antioxidants for the Treatment of Sensorineural Hearing Loss

Antioxidants have the potential to both preserve and restore hearing function by
mitigating mtDNA mutations, as demonstrated in experiments using C57BL/6 mice, a
common model for ARHL. Examples of such antioxidants include vitamin C, vitamin E,
and melatonin [38,82,149]. Antioxidants are broadly classified as endogenous, produced
in vivo, or exogenous, supplied externally. Bipolar antioxidants, such as alpha-lipoic
acid, act as antioxidants and restore the antioxidant effects of glutathione, vitamin A,
vitamin C, and vitamin E [150]. The administration of alpha-lipoic acid prevents NIHL
and carboplatin-induced hearing loss in animals [151–153]. N-acetyl-L-cysteine (NAC), a
precursor of glutathione, is an endogenous antioxidant enzyme with antioxidant proper-
ties [154] that has been reported to reduce the ototoxic effects of noise exposure in animal
models [155–159].

Water-soluble antioxidants include methionine, vitamin C, carnitine, riboflavin, niacin,
folic acid, polyphenols, and catechins. β-carotene, vitamin E, astaxanthin, and coenzyme
Q10 (CoQ10) are widely known as fat-soluble antioxidants and are used as dietary supple-
ments [150]. D-methionine reduces noise-induced oxidative stress and cochlear dysfunction
in mice [160]. Folic acid supplementation reduces hearing loss by reducing oxidative stress
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and homocysteine levels [161]. Vitamin E supplementation reduces cochlear damage
in NIHL [162,163], cisplatin [164,165], and gentamicin [166,167]. CoQ10 [168], synthetic
analogs of CoQ10, idebenone [169], and soluble CoQ10 are effective in reducing hypoxia-
induced hearing loss and NIHL [170]. Studies in guinea pig models of NIHL have shown
that combination therapy with magnesium and antioxidants, such as vitamins A, C, and
E, may have a protective effect, suggesting potential synergy [171]. Notably, calorie re-
striction remains the only reliable method for slowing aging in mammals, with numerous
reports demonstrating its effectiveness in suppressing age-related diseases and extending
lifespan [172,173]. Someya et al. reported that SIRT3, a member of the mammalian sirtuin
family localized in the mitochondria, is essential for the suppression of ARHL in mice by
calorie restriction [174]. These results suggest that mitochondria-localized mammalian
sirtuins play an important role in the suppression of age-related cochlear cell death and
ARHL induced by calorie restriction.

As most evidence for the benefits of antioxidants against hearing loss is based on
animal studies, their role in humans remains unclear. Prospective studies have not indicated
that dietary supplementation with vitamins A, C, or E slows ARHL progression [175–177].
Further clinical trials are required to confirm the protective effects of antioxidants against
different types of SNHL (Table 1).

Table 1. Summary of randomized clinical trials on antioxidants for the treatment of hearing loss.

Summary of RCTs of Antioxidants on
Hearing Loss in Humans

Author Year Antioxidants Type of
Hearing Loss Objectives

Sample Size
(Patients vs.

Control)
Main Findings

Kramer S et al.
[178] 2006 N-

acetylcysteine Loud noise Normal hearing
participants

31
(N/A)

No statistically
significant
differences

L Feldman et al.
[179] 2007 N-

acetylcysteine

Gentamicin-
induced

ototoxicity

Hemodialysis
patients

40
(20/20)

Significantly more
patients exhibiting
ototoxicity in the

control group

E Kharkheli
et al. [180] 2007 Vitamin E

Gentamicin-
induced

ototoxicity

Acute
pulmonary
infections

52
(23/29)

No statistically
significant
differences

Yıldırım M et al.
[181] 2010 Salicylate/N-

acetylcysteine

Cisplatin-
induced

ototoxicity

Solid organ
tumors

54
(18/18/18)

No difference
detected between

N-acetylcysteine or
salicylate

Lin CY et al.
[182] 2010 N-

acetylcysteine

Noise-induced
temporary

threshold shift
Male workers 53

(25/28)

NAC significantly
reduced TTS

(p = 0.03)
Effects were more
prominent both
GSTM1-null and

GSTT1-null
genotypes.

Tokgoz B et al.
[183] 2011 N-

acetylcysteine

Ototoxicity
drug-induced
(Aminoglyco-

sides and
vancomycin)

Continuous
ambulatory
peritoneal

dialysis
treatment

60
(30/30)

Patients taking NAC
had better hearing

function test results
4 weeks after the

treatment (p < 0.05)
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Table 1. Cont.

Summary of RCTs of Antioxidants on
Hearing Loss in Humans

Author Year Antioxidants Type of
Hearing Loss Objectives

Sample Size
(Patients vs.

Control)
Main Findings

Yang CH et al.
[184] 2011 Zinc

Idiopathic
sudden

sensorineural
hearing loss

SSNHL patients 66
(33/33)

A significantly larger
hearing gain, an

increased percentage
of recovery, and an

increased rate of
successful recovery

Hoffer ME et al.
[185] 2013 N-

acetylcysteine Blast exposure
Active duty

service
members

81
(41/40)

In a seven day
symptom resolution

rate of 86% as
compared to 11%

Doosti A et al.
[186] 2014 N-

Acetylcysteine/GinsengNoise-induced Textile workers 48
(16/16/16)

Reduced
noise-induced TTS

for NAC and ginseng
groups at 4, 6 and
16 kHz (p < 0.001)

Kang HS et al.
[187] 2014 Vitamin C

Idiopathic
sudden

sensorineural
hearing loss

SSNHL patients 67
(35/32)

HDVC group
showed significantly
greater complete and

partial recovery
improvement

(p = 0.035)

Kopke R et al.
[188] 2015 N-

acetylcysteine

Military noise
during

weapons
training

Healthy Marine
Corps recruit

volunteers

566
(277/289)

No significant
differences were

found for the
primary outcome

Villani V et al.
[189] 2016 Vitamin E

Cisplatin-
induced

ototoxicity

Solid
malignancies

23
(13/10)

At 1 month, a
significant hearing

loss at 2k and 8k HZ
k was detected

in placebo group

Freyer DR et al.
[190] 2017 Sodium

thiosulfate
Cisplatin-
induced

Aged 1–18
years with

newly
diagnosed

cancer

125
(61/64)

The likelihood of
hearing loss was

significantly lower in
the sodium

thiosulfate group
(p = 0.0036)

Kil J et al. [191] 2017 Ebselen
Calibrated

sound
challenge

Healthy adults
aged 18–31

years

83
(22/20/21/20)

Mean TTS at 4 kHz
was in the 400 mg

ebselen group
representing a

significant reduction
of 68% (p = 0.0025)

Brock PR et al.
[192] 2018 Sodium

thiosulfate

Cisplatin-
induced

ototoxicity

Hepatoblastoma
patients

109
(57/52)

48% lower incidence
of hearing loss in the

cisplatin-sodium
thiosulfate

group (p = 0.002)

Rolland V et al.
[193] 2019 Sodium

thiosulfate

Cisplatin-
induced

ototoxicity

Stage III or IV
squamous cell

carcinoma

13
(N/A)

Not statistically nor
clinically significant

differences
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10. Conclusions

In recent decades, research has revealed the relationship between ROS and ARHL, as
well as between ROS and sensorineural hearing loss caused by noise, ischemia, or ototoxic
drugs. The urgency for new hearing loss therapies is rising, fueled by evidence from several
studies. The cochlea, which plays a major role in auditory function, requires constant high-
energy metabolism and is, therefore, extremely vulnerable to oxidative stress, particularly
in the mitochondria. While the vast body of literature on this subject is too extensive to be
covered comprehensively, the key findings and insights are included in this review. The
potential of antioxidants in the treatment of hearing loss has been demonstrated in several
animal studies, but results from clinical studies are still insufficient. Randomized controlled
clinical trials are required to demonstrate the efficacy of antioxidants in the treatment of
hearing loss. Additionally, age-related and noise-, drug-, and ischemia-induced hearing
loss have a common cause in the form of ROS, which may prove relevant to prevent the
disease. We hope that further clarification of the pathology of hearing loss will lead to its
enhanced prevention, as well as that of associated dementia.
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