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Abstract: Animal tumors serve as reasonable models for human cancers. Both human and animal
tumors often reveal triplet EPR signals of nitrosylhemoglobin (HbNO) as an effect of nitric oxide
formation in tumor tissue, where NO is complexed by Hb. In search of factors determining the
appearance of nitrosylhemoglobin (HbNO) in solid tumors, we compared the intensities of electron
paramagnetic resonance (EPR) signals of various iron–nitrosyl complexes detectable in tumor tissues,
in the presence and absence of excess exogenous iron(II) and diethyldithiocarbamate (DETC). Three
types of murine tumors, namely, L5178Y lymphoma, amelanotic Cloudman S91 melanoma, and
Ehrlich carcinoma (EC) growing in DBA/2 or Swiss mice, were used. The results were analyzed in
the context of vascularization determined histochemically using antibodies to CD31. Strong HbNO
EPR signals were found in melanoma, i.e., in the tumor with a vast amount of a hemorrhagic necrosis
core. Strong Fe(DETC)2NO signals could be induced in poorly vascularized EC. In L5178Y, there
was a correlation between both types of signals, and in addition, Fe(RS)2(NO)2 signals of non-heme
iron–nitrosyl complexes could be detected. We postulate that HbNO EPR signals appear during
active destruction of well-vascularized tumor tissue due to hemorrhagic necrosis. The presence
of iron–nitrosyl complexes in tumor tissue is biologically meaningful and defines the evolution of
complicated tumor–host interactions.

Keywords: EPR; ESR; hemoglobin; DETC; NO; hemorrhagic necrosis; melanoma; lymphoma;
Ehrlich carcinoma

1. Introduction

Nitrosylhemoglobin (HbNO) was the first iron–nitrosyl complex investigated by electron
paramagnetic resonance spectroscopy (EPR; alternatively: electron spin resonance—ESR),
initially in solutions [1,2], then in tumor tissues [3,4], including human tumor tissues [5–7].
It was also found in normal tissues, induced by hypoxia or necrosis [8–11]. Since the 1960s,
HbNO has been employed to study conformational changes of hemoglobin caused by
ligand binding [12–14]. It has turned out to play a significant role in the investigation
of NO generation in tumor and normal tissues due to endotoxemia [15,16], antitumor
response [17,18], or allograft rejection [19,20], in particular after the discovery of NO
generation by cytotoxic activated macrophages [21].

EPR possesses two features that allow this technique to be used for the measurement
of NO in living cells. First: it is a direct process which does not require intermediate
phenomena or factors (such as monoclonal antibodies, etc.) to assess NO. Second: it is
independent of other necessary procedures like electrophoresis, etc. It is also believed to be
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the only procedure, apart from polarimetry, to directly measure or record the phenomenon
of life.

Even though HbNO was discovered a long time ago (1960s [22,23]), its presence in
many animal tumors has not been satisfactorily clarified. It must be emphasized that NO
is not only trapped by Hb to produce this complex, but NO itself influences tumor blood
supply by vasodilation, stimulation of neovascularization [24], etc., and consequently, the
availability of Hb as a spin trap for NO determines the level of HbNO [25]. Hemoglobin is
not uniformly distributed in the tumor tissue because it is only present in the blood vessels
of the tumor and in areas where blood is perfused into the tumor tissue, being inaccessible
in the remaining areas of the tumor.

Another type of endogenous iron–nitrosyl EPR-detectable complex, also called
dinitrosyl–iron complex (DNIC), is formed with non-heme iron (Fe(RS)2(NO)2) [26,27]).
Their levels not only depend on the local iron(II) supply to the tissue, but also on the levels
of heme targets, and on the local intensity of NO generation [17,18,21,26,28–30]. It makes
both types of endogenous iron–nitrosyl complexes difficult to use as a direct estimator of
NO levels in tumor tissues. Consequently, in EPR-measurements in vivo, exogenous spin
traps are usually used, mainly diethyldithiocarbamate (DETC) [31] and its derivatives [32].
Two molecules of the trap initially chelate Fe2+ ion (endogenous or exogenous), which
eventually coordinates NO to yield the characteristic, EPR-detectable nitrosyl complex
Fe(DETC)2NO [33], also called the mononitrosyl–iron complex (MNIC) [34]. Even in this
case, however, the yield of NO complexing is not the same throughout the tumor. First, gen-
eration of NO in solid tissue is heterogeneous [30,31,35]. Second, there are local differences
in the conditions necessary for the formation of the complexes, such as the redox environ-
ment, accessibility of iron and chelator, solubility of the spin trap, short diffusion distance of
NO due to NO scavengers and targets, as well as the elution of the complexes [30,32,35–37].
Such situations would lead to the generation of local “hot spots” with high concentrations
of trapped NO, often manifested in the EPR spectrum.

Vascularization and blood supply strongly influence tumor growth and invasiveness
in vivo, and therefore determine the results of cancer treatment and prompt the important
targets for anticancer therapy [38–41]. Particular types of tumors may differ significantly
in their vascularization [42–44] and blood content, and this parameter must be taken into
careful consideration when designing the appropriate treatment strategy. NO synthesis in
tumor tissue not only affects tumor vascularization and blood supply, but also causes tumor
growth slowdown, tumor growth arrest, or even tumor regression and necrotization [45–47],
especially when formed in high quantities [18,24,28].

Necrosis was one of the first factors found to affect HbNO EPR signals in tissues [8,9,11].
Actually, it was induced by such necrotizing agents as concentrated sulfuric acid (pyrolysis [9],
or hypoxia [8]), including hypoxia caused by excess nitrite [11]. As necrosis is a common
component of solid tumors [48,49], it was suspected that the presence of the primary
HbNO signals in intact tumors is caused by non-specific tissue necrosis, or even by hy-
poxia itself [8,9]. But it has recently become obvious that, in vivo, it was nitrite, not the
resulting hypoxia, that is responsible for HbNO elevation [50,51]. However, hypoxia,
as a factor prolonging the lifetime of NO, strongly favors HbNO synthesis [36,52]. It is
one of the strongest inducers of tumor necrotization [49,53], tumor immunization, and
inflammation [48,54,55]. Finally, there are many types of necrosis, both in normal, and
tumor tissues, among which ischemic necrosis, typically caused by hypoxia and poor blood
supply is usually contrasted with hemorrhagic necrosis [54–59]—liquefactive necrosis, in
some cases caused by inflammation, and in normal tissues, by disruption of blood vessels
and blockage of blood drainage from the organ (e.g., as seen in testicular torsion [56]).

Therefore, the relation between HbNO EPR signals, hypoxia, and necrosis is not as sim-
ple as “HbNO EPR signals being the signals of necrosis or of hypoxia”. In tumors, with their
ineffective blood flow, leaking vessels and blood extravasation, the amount of blood seems
one of the main determinants of the level of HbNO complexes [30,35,60]. The second deter-
minant is the level of NO, resulting primarily from the intensity of cytotoxic activation of



Int. J. Mol. Sci. 2024, 25, 4172 3 of 21

tumor cells, mainly macrophages [18,21,61] but also endothelial cells [62,63], or even some
tumor cells [24,64–66]. The third one, namely the local availability of the high-molecular-
weight hemoglobin for NO, may result from the degree of tissue destruction—progress of
hemorrhagic necrosis—as normally Hb is expected to be enclosed in circulating erythro-
cytes, and not in the vicinity of the NO-generating cells [67].

To determine the relation between HbNO and NO in situ, an independent assay for
NO is necessary [68,69]. We used iron-DETC, which is the most commonly used NO-metric
spin trap, the most hydrophobic one, and the one with the longest retention time in the
body [31,32,37]. We are able to easily detect Fe(DETC)2NO complexes after injury or during
endotoxemia in various organs, including immune privileged organs, like the eye [70]
or brain [71,72].

While the dependence of the level of HbNO on all the factors is intricate and cannot
be used as a simple indicator of NO level, there is always some resultant HbNO level
correlated with a resultant HbNO EPR signal, which can be the primary subject of an
independent study. The goal of the present paper is the first step in this direction. We aimed
at demonstrating that the level of EPR-detectable HbNO complexes reflects not only gross
NO generation, but also important pathological processes in tumor tissue, such as tumor
neovascularization, blood extravasation, and various forms of necrosis. To estimate the
levels of Fe–NO complexes in tumor tissue independently of Hb, we used iron-DETC as the
exogenous spin trap for NO. We also measured the levels of Fe(RS)2(NO)2 complexes in the
investigated tumors. This allowed us to compare the generation of gross NO formation with
the level of endogenous Fe–NO complexes in tumors with different vascularization levels,
growth rates, immunogenicity, and responses induced by the host. It should elucidate what
other factors, in addition to NO levels, affect the levels of Fe–NO complexes, and what
information is provided by the particular types of iron–nitrosyl complexes that are formed
in tumor tissue.

2. Results
2.1. Fe–NO Complexes in Tumors Differing in Vascularization

Complexes of nitric oxide with endogenous heme (HbNO) were detected in tumors
by EPR spectroscopy. We also recorded complexes of NO and endogenous non-heme iron
Fe(RS)2(NO)2, as well as Fe(DETC)2NO complexes with exogenous intraperitoneal (IP)
DETC and Fe(II) (endogenous and/or supplemented SC). EPR spectra of paramagnetic
Fe–NO adducts in EC, L5178Y and Cloudman S91 tumors are shown in Figure 1.

Apparently, all types of the analyzed nitrosyl complexes were EPR-detectable in the
majority of L5178Y tumors. On days 4–5, the signals were low, but steeply increasing
afterwards (days 8–11). This tendency was observed in both types of hosts, however, the
signals were stronger in the allogenic (Swiss), as compared to the syngeneic host (DBA/2)
(Figure 2). All kinds of the analyzed types of Fe–NO complexes were also detected in EC
tumors from Swiss mice, where the levels of the adducts rose from day 8 to day 18. However,
while the EPR signals of Fe(DETC)2NO complexes were very strong, the endogenous
adducts Fe(RS)2(NO)2 and HbNO remained poorly detectable. In all Cloudman S91 tumors
growing in DBA/2 mice, only HbNO complexes were detectable, while there were hardly
any signals of the non-heme Fe–NO adducts: Fe(RS)2(NO)2 or Fe(DETC)2NO.

Figure 2 presents the quantitative assessment of EPR signals of NO complexes with
endogenous hemoglobin and NO complexes with IP exogenously administered DETC and
Fe(II) (endogenous and/or supplemented SC) for individual types of tumors differing in
vascularization. The highest levels of HbNO complexes were observed in hemorrhagic
necrosis of very well-vascularized S91 melanoma tumors and in well-vascularized L5178Y
lymphoma tumors growing in the allogeneic Swiss host. Lower levels of HbNO complexes
were found in the well-vascularized tissue of L5178Y lymphoma and S91 melanoma tumors
growing in the DBA/2 syngeneic host. However, the lowest levels of HbNO complexes
were found in poorly vascularized Ehrlich carcinoma tumors. When assessing the levels of
Fe(DETC)2NO complexes, their highest levels can be seen in poorly vascularized Ehrlich
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carcinoma tumors and in well-vascularized L5178Y lymphoma tumors in the allogeneic
Swiss host. Lower levels of Fe(DETC)2NO complexes are found in well-vascularized
L5178Y tumors in the DBA/2 syngeneic host, and levels of Fe(DETC)2NO complexes
present in very well-vascularized S91 melanoma tumors were hardly detected.
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plet signal in the tumors of Cloudman S91 melanoma. EPR parameters—see Section 4. 

Figure 1. Gross and histochemical differences in vascularization and blood supply in various tumors.
From top to bottom: Ehrlich carcinoma, L5178Y lymphoma, S91 Cloudman melanoma. Gross
appearance during the autopsy (A); CD31 expression as a marker of endothelium marked by thin
black arrows. Scale bar 0.2 mm (B). In S91 melanoma, a large area of hemorrhagic necrosis was
seen (H&E staining; thick black arrowheads, HN), in addition to the alive cortical tissue (thick white
arrowheads, CT). The differences in blood supply may be noted when comparing the color of the
frozen EPR samples (C). Records of EPR spectra of NO complexes in tumors without (D), or with
exogenous diethyldithiocarbamate (DETC) (E). Various proportions of HbNO and Fe(DETC)2NO
complexes, and in Cloudman S91 melanoma, a strong dependence on the region of solid tumor
(cortical tissue or central hemorrhagic necrosis) were seen. Note the presence of Cu(DETC)2 tetraplet
signal in the tumors of Cloudman S91 melanoma. EPR parameters—see Section 4.

Histologic slides were prepared from subcutaneous solid tumors of L5178Y lym-
phoma, Ehrlich carcinoma, S91 melanoma, and the spleen as the positive control, in which
blood vascularization was assessed using immunohistochemical staining for the surface
protein CD31, characteristic of the vascular endothelium. Figure 1 shows photographs
of stained histological preparations along with gross photographs of the entire tumors
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and spectra of the representative EPR signals of Fe–NO complexes for a given type of
tumor. Table 1 summarizes the quantitative assessment of vascularization parameters in
the examined tumors.
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Figure 2. The influence of tumor type on the amplitudes of EPR signals of HbNO and Fe(DETC)2NO
complexes in subcutaneous solid tumors in mice with administered DETC. L5178Y lymphoma tumors
(LY) on day 8, Ehrlich carcinoma tumors (EC) on days 13–18, and Cloudman melanoma tumors
(S91) on day 27 in DBA/2 or Swiss mice. Note the strong dependence of the intensity of HbNO
signal on the region of Cloudman S91 melanoma tumors and the lack of Fe(DETC)2NO complexes
in these tumors. Means of N independent tumors (indicated over each bar) ± SD. Parameters of
measurement—see Section 4.

MVD and TVA in L5178Y lymphoma tumors depended on the time point of growth:
in DBA/2 on day 8 they were about twice as high as on day 5, while the mean size of
microvessels was comparable. On day 5, MVD and TVA were slightly higher in Swiss than
in DBA/2 mice, but MAM of tumor microvessels was, again, the same. MVD and TVA
of EC tumor in Swiss mice were about 10-fold lower than the ones of L5178Y lymphoma;
however, the MAM was still similar. In Cloudman S91 melanoma, the mean values of MVD
and TVA were about 10-fold higher than in EC. Importantly, MAM values in S91 tumors
were about 2–3 times higher than in the other tumors.
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Table 1. Parameters of solid tumor vascularization in L5178Y, EC, and S91 tumors. MVD = microvessel
density (number of vessels/mm2); TVA = total vascular area (percentage of area occupied by vessels);
MAM = mean area of microvessels (vessels size (µm2) calculated as TVA/MVD). The means were
obtained from 3 histological sections (L5178Y lymphoma, Ehrlich carcinoma, spleen) and 9 histological
sections (Cloudman S91 melanoma). All the results are expressed as mean ± SD.

Tumor Growth Parameters Tumor Vascularization Parameters

Solid Tumors Host Time [Days] TVA MVD MAM

Ehrlich carcinoma Swiss 18 0.6 ± 0.7 23 ± 29 230 ± 121

L5178Y
lymphoma

DBA/2 5 3.3 ± 0.6 185 ± 25 176 ± 71
Swiss 5 4.9 ± 0.6 265 ± 11 190 ± 112

DBA/2 8 5.4 ± 0.6 354 ± 26 150 ± 97

S91 melanoma DBA/2 27 8.0 ± 2.6 199 ± 73 490 ± 143

Spleen (control) DBA/2 - 2.8 ± 0.1 841 ± 120 40 ± 18

Figure 3 reveals that the observed signal of HbNO complexes in various tumor groups
is significantly statistically correlated with the total vascular area. The higher the percentage
share of blood vessels in the tumor volume, the stronger are the observed HbNO signals in
these tumors.
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and TVA in subcutaneous solid tumors growing in mice. Ehrlich carcinoma (EC) tumors on day 18 
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Figure 3. Correlation of EPR signals of HbNO complexes with total vascular area (TVA) in different
tumor groups examined for vascular parameters. Amplitudes of EPR signals of HbNO complexes
and TVA in subcutaneous solid tumors growing in mice. Ehrlich carcinoma (EC) tumors on day 18
in Swiss mice; L5178Y lymphoma (LY) tumors on days 5 and 8 in DBA/2 or Swiss mice; Cloudman
melanoma (S91) tumors on day 27 in DBA/2 mice (mean HbNO signal from both necrotic and
non-necrotic S91 tumor areas). Data presented as means ± SE. Linear correlation coefficient r and
statistical significance p of the correlation were calculated.

We assessed the correlation of the signal amplitudes between Fe(DETC)2NO and
HbNO complexes from tumors (Figure 4). This way we were able to obtain information on
the amount and availability of NO, which had not been trapped by Hb and, indirectly, on
the availability of NO for Hb. In L5178Y lymphoma (observations on day 8 in Swiss host),
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the signal of HbNO was increasing together with a gradual increase of the Fe(DETC)2NO
signal up to considerably high levels of NO adducts, whereupon the amplitude of HbNO
signals remained constant (about 150 a.u.), although the signal of Fe(DETC)2NO adducts
could still substantially increase (Figure 4A). A similar shape of the correlation curve be-
tween Fe(DETC)2NO and HbNO complexes signal in L5178Y tumors was also revealed in
the DBA/2 host (observations on day 8), however, the achieved constant level of HbNO
signals was lower (about 125 a.u., Figure 4B). A complete absence of correlation between
Fe(DETC)2NO and HbNO complexes signal amplitudes was observed for EC and Cloud-
man S91 melanoma tumors. In EC tumors, the signal of HbNO complexes was low (about
30 a.u.) independently of Fe(DETC)2NO adducts, their level achieving very high values
(Figure 4C). Interestingly, Cloudman S91 melanoma tumors revealed very variable HbNO
signals, from very weak in the cortical parts to very strong in the area of central hemorrhagic
necrosis, whereas Fe(DETC)2NO complexes remained undetectable (Figure 4D).
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Figure 4. Correlation between EPR signal amplitudes of Fe(DETC)2NO (amplitude of 3rd hyper-
fine line), and HbNO complexes (amplitude of 3rd hyperfine line) in solid tumors. Parameters of
measurement—see Section 4. The data were pooled from all the experiments with the use of exoge-
nous DETC for L5178Y lymphoma in Swiss host (A), L5178Y lymphoma in DBA/2 host (B), Ehrlich
carcinoma in Swiss host (C), and Cloudman S91 melanoma (cortical layer [■] and hemorrhagic
necrosis [#]), growing in DBA/2 host (D).

2.2. Fe–NO Complexes in the Areas of Hemorrhagic Necrosis in the Tumors

In the central part of large (above 1 g), very well-vascularized Cloudman S91 melanoma
tumors, a distinct core of hemorrhagic necrosis with a variable amount of extravasated
blood (as judged by the color of the lesion) was usually observed (see Figure 1), in addition
to the cortical layer containing alive cells (fragments of this cortex initiated growth of new
tumors after SC inoculation into other animals). In L5178Y tumors, such hemorrhagic
necrotic foci were very rare, while in poorly vascularized EC, they were absent, even in
advanced tumors.
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The EPR signals of the regions of hemorrhagic necrosis were compared with alive
cortical layer of murine S91 melanoma and L5178Y lymphoma tumors, and with the
peripheral blood of the host tumor. The central hemorrhagic necrosis of advanced S91 and
L5178Y tumors revealed strong EPR signals of HbNO, up to 3–4-fold more intense than
those of the alive cortical parts of the tumors, while in the peripheral blood they were at the
limit of detection (Figure 5A,B). It shows that extensive formation of HbNO takes place after
extravasation of blood into the areas of necrosis, but not in blood vessels. Simultaneous
diffusion of NO from tumor tissue into blood vessels and the circulating blood is hardly
noticeable. S91 tumors did not reveal Fe(DETC)2NO signals—they only showed Cu(DETC)2
signals confirming the penetration of DETC into the S91 tumor tissue, therefore only HbNO
complexes of NO were analyzed here. L5178Y tumors revealed both types of NO complexes,
so we showed that in hemorrhagic necrosis, HbNO signals predominated, but in cortical
alive tissue, the equilibrium was directed toward Fe(DETC)2NO signals, as confirmed by
the spectra shown in Figure 5B. In the circulating blood of the tumor host, both HbNO and
Fe(DETC)2NO signals were hardly detected, despite strong signals in the tumors.
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Figure 5. The influence of hemorrhagic necrosis development in tumor tissue on the signals of
HbNO complexes in the tumor and in the peripheral blood of the host. Representative EPR spectra
of NO complexes (left side) and amplitude quantification of HbNO signals (right side, mean ± SE,
*** p < 0.001) in tumor and in circulating blood of their host. (A) Melanoma S91 growing in DBA/2
host (without DETC injection; N = 15). (B) Lymphoma L5178Y growing in Swiss host (injected with
DETC; a rare single case of L5178Y tumor with central hemorrhagic necrosis). (I) Circulating blood of
the tumor host, (II) cortical layer of the tumor, (III) hemorrhagic necrosis of the tumor.
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2.3. HbNO Complexes in Tumors with Blood Extravasation

Mechanical homogenization of the cortical layer of the tumor tissue results in blood
extravasation. This procedure was used because we wanted to check whether blood
extravasation in the tumor affected the complexation of NO by Hb. In various experimental
tumors, homogenization led to a significant increase of HbNO levels, and for Cloudman
S91 melanoma (Figure 6), homogenization always increased HbNO signal amplitude.
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Figure 6. The influence of blood extravasation into tumor tissue caused by mechanical destruction
of vessels on the formation of HbNO complexes. HbNO signal in solid tumors of Cloudman S91
melanoma growing SC in DBA/2 hosts; increase of the 2nd hyperfine line of HbNO signal due to
tumor tissue homogenization. 1–5: values obtained for 5 independent tumors, mean: comparison of
the means obtained for tumors 1–5 ± SE. EPR measurements according to Section 4 (* p < 0.05 by
paired Student’s-t test).

3. Discussion

In the present paper we analyzed the formation of various Fe–NO complexes in several
animal tumors differing in their kinetics of growth, but also in the parameters of blood
supply and vascularization. We revealed that the main factors determining the appearance
of HbNO signals, in addition to genetic compatibility of tumors and their hosts, are blood
supply and the condition of the tissue, its necrosis, and the quality of necrosis.

We showed that the tumors differ in growth. This depends not only on the type of
tumor, but also on the type of host, which was reported previously [17,18,30,35,73,74]. The
EPR signals of nitrosyl–iron complexes may be associated with the degree of incompatibility
between the tumor and the host. The strongest signals are produced in the tumors growing
in allogeneic hosts (e.g., L5178Y lymphoma—in Swiss mice) where they grow slowly and
reach a small size. Also, the signals of Fe(RS)2(NO)2 complexes, which become detectable at
higher concentrations of NO in the tissue than HbNO [28,30], appear more frequent in such
tumors, than when growing in the syngeneic host. Therefore, the described dependence is
not only quantitative, but also qualitative.

For the Fe(RS)2(NO)2 signals, they become detectable only after saturation of heme
targets in the tissue [26,28–30]. The presence of complexes in the same tissue sample, in
addition to HbNO with a strong hyperfine structure, which originates from 5-coordinate
signals from α-chains of hemoglobin only partially saturated with NO [12,13], suggests
that the local concentration, thus the generation of NO in the tissue, and consequently the
efficiency of spin trapping by various kinds of iron, must be heterogeneous [75]. Therefore,
there must be local foci of strong NO generation—perhaps associated with local foci of in-
flammation [28,30,35,60,76]. This is exactly the way some animal tumors grow and undergo
necrosis, where local foci of hemorrhagic necrosis appear as a result of strong local antitu-
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mor reaction, usually connected with the activity of tumor-infiltrating macrophages [55,77],
lymphocytes [76], or granulocytes [54], often in response to therapy [57,76,78].

We found such local regions of Cloudman S91 melanoma tumor tissue with particularly
strong HbNO signals to be the necrotic core of the tumor, revealing particularly strong
macro blood extravasation, thus of a hemorrhagic type. Also, the alive cortical part revealed
strong heterogeneity in the intensity of HbNO EPR signals, indicating at the same time
heterogeneity in the NO synthesis. The spots revealing particularly high HbNO signals
might represent the initial stages of inflammatory foci which could later on transform
into foci of hemorrhagic necrosis (appreciable by routine histology, Figures 1 and 5). In
other types of tumors (L5178Y), when foci of hemorrhagic necrosis were found, they also
revealed strong HbNO signals. This indicates that not only the amount of NO, which may
correspond to the strength of the antitumor reaction of the host [17,18,60,74], is important
in observing strong HbNO EPR signals, but also the process of active destruction of the
tissue. To confirm this hypothesis we showed that, indeed, such active destruction of
alive, vascularized tumor tissue—by homogenization—increased the EPR signal of HbNO
(Figure 6). The quantitative aspect of this effect varied between the tumors, but it was
impossible to induce the signals by homogenization of normal tissues or tumor tissues
which do not reveal HbNO signals while being intact (e.g., Mongolian gerbil melanoma
Zeman UJ90, [17,79,80]). Moreover, other methods of inducing NO synthesis, namely
ischemia followed by homogenization of heart muscle, resulted in a similar effect [81].
Finally, the reaction of isolated lung to LPS based on the blockage of lung blood circulation
and local blood extravasation also lead to the induction of HbNO in the tissue [16].

Interestingly, in the isolated lung setup [16], no HbNO signal could be detected in
the blood flowing out from the organ, even after reducing the whole material with excess
sodium dithionite. HbNO complexes were formed and detected only locally, at the site
of the most severe tissue injury. A similar situation was observed with our findings: only
very weak HbNO signals (if any) could be detected in the circulating peripheral blood of
the tumor-carrying animals, with the absence of other types of signals, while both HbNO
and Fe(DETC)2NO could easily be detected in endotoxic shock in the blood [15,70]. It
indicates that the tumor tissue signals are produced locally in the tumors [31,32], mostly in
the extravascular space.

All these findings equivocally demonstrate that a crucial factor that determines the
detection of EPR HbNO signals in the tissue is cancellation of barriers between the sites
where NO is formed (cytoplasm of cells responsible for inflammation, mainly macrophages,
perhaps also endothelium and neutrophils) and where it is trapped by Hb (initially in-
side of erythrocytes in tumor capillaries). One mechanism involves local inflammation
leading to hemorrhagic necrosis, while another one is tissue homogenization. Perhaps,
however, the actual mechanism is uniform: the recently described special type of cell
death—the “non-apoptotic” caspase-1-driven pyroptosis—leads to physical perforation of
cell membranes [82–84]. This phenomenon mainly (but not solely, [82]) signifies activated
macrophages, causing discontinuity of their plasma membrane [84] and intensifying the
progress of inflammation in the tissue [82–84].

One more factor, however, should be considered here, namely, the quality and intensity
of tumor blood supply. If the supply is not satisfactory, the HbNO complexes will be
formed with difficulty even in the situation of strong antitumor reaction of the host. We
showed that the type of Fe–NO complexes detectable in L5178Y lymphoma depends on
the color of the tissue (in pale tissues with poor vascularization non-heme-iron complexes
predominated, and in red parts with good blood supply mainly HbNO was detectable, [35]),
which was further confirmed in detail [30,60]. Here, we show that, indeed, the origin of
particular EPR samples can be easily determined with the naked eye just by the macroscopic
coloration of the icicles (Figure 1C). And, more importantly, while tumor vascularization
and blood supply differ in various parameters, their extreme values are associated with the
appearance of extreme values of HbNO-type complexes, namely Cloudman S91 melanoma
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(in particular hemorrhagic necrosis) and Ehrlich cancer (the poorest vascularization and
blood supply).

The values obtained for L5178Y lymphoma are additionally interfered with, not only
by the type of the host, but also by the relative duration of growth of particular tumors, and
the type of necrosis. An additional independent parameter determining NO generation
in the tissue would, therefore, be necessary to interpret properly quantitative changes
in HbNO EPR signals during tumor growth. This was the reason why we additionally
checked the formation of nitrosyl–iron complexes in the presence of excess exogenous
chelator DETC, and exogenous iron. It was convenient because the analytical features of
HbNO and Fe(DETC)2NO EPR signals do not overlap (see Section 4.7). Initially we checked
the effects of exogenous iron, which turned out to improve partially the detectability of
Fe(DETC)2NO complexes in EC, but not in L5178Y tumors. This is consistent with previous
observations made by us and other authors about the ability to accumulate iron by L5178Y
lymphoma [60,85]. Consequently, it is logical to expect that the levels of endogenous non-
heme iron–dinitrosyl complexes Fe(RS)2(NO)2 must be lower in EC tumors than in L5178Y
lymphoma, which has been confirmed here. In the case of Cloudman S91 melanoma
in DBA/2, we were unable to detect any Fe(DETC)2NO signals even in the excess of
exogenous iron, both in the alive cortex and in the necrotic core of the tumors. Only some
tumors growing very slowly in allogeneic hosts (“pseudo-DBA/2” mice—DBA/2 mice
crossed for more than 30 generations in an outbred system in our animal facility) revealed
considerable Fe(RS)2(NO)2 signals.

Our attempts to correlate the intensities of HbNO with Fe(DETC)2NO signals gave a
clear picture of the dynamics of the formation of various types of nitrosyl iron complexes
in animal tumors. In the tumors with the highest amount of hemorrhagic necrosis and the
highest parameters of blood supply (Cloudman S91 melanoma), HbNO did not correlate
with Fe(DETC)2NO. Even the addition of DETC and iron(II) did not result in the formation
of these complexes, nor did it affect the intensity of HbNO complexes, as though the whole
accessible NO had been trapped beforehand by the abundant Hb, in the close vicinity of
the sites of NO synthesis. The presence of Cu(DETC)2 complexes [31,86,87], both in the
cortical layer and even in the central necrosis, provides evidence that DETC could even
diffuse into large tumors.

The Ehrlich carcinoma tumors [88] revealed low intensity of HbNO and Fe(RS)2(NO)2
complexes, and poor blood supply. The addition of DETC and iron resulted here in the
formation of relatively strong Fe(DETC)2NO complexes, however, without any influence on
HbNO signals, which remained low, as though there was a pool of NO formed in the tissue
that was not accessible for trapping by Hb. Meanwhile in L5178Y lymphoma, a correlation
between HbNO and Fe(DETC)2NO complexes could be observed (Figure 4), and a plateau
was created at extremely high intensities of HbNO signals, while Fe(DETC)2NO signals
still increased, as if the non-heme iron centers were not saturated (like the curve for EC,
but moved upward). The value of the plateau was higher in allogeneic (Swiss) mice and
was expected to react stronger to the presence of the tumor than in syngeneic (DBA/2)
hosts. The parameters describing blood supply were here only indirectly correlated with
signal intensities, depending also on the day of tumor growth (for young tumors the tumor
vascularization is expected to be poorer than in old tumors), and on the type of the host.

Melanoma [89] and its metastases [90,91] often (more often than carcinomas, however
less often than leukemias) undergo spontaneous regression [92,93] with the involvement
of immune mechanisms [94–99], in which hemorrhagic necrosis has been found to be
typically responsible for this regression [94–99]. Even the primary tumors which were
the source of transplantable lines of Cloudman S91 [100,101] and B16 melanoma [102,103]
were described as hemorrhagic. This is consistent with our results, and also explains some
underlying mechanisms—the most prominent development of hemorrhagic necrosis in the
Cloudman S91 tissue with particularly large diameters of blood vessels.

Thomsen et al. (1992) [55] suggested that it is the inflammatory effector factors released
by activated macrophages that actually cause hemorrhagic necrosis. Moreover, since the
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late 1920s it has been known [104–110] that hemorrhagic necrosis can be induced in normal
tissues or in tumors by non-specific activation of the immune system. Therefore, it is
not hemorrhagic necrosis that is the actual primary cause of a high HbNO level, but NO
itself. It is one of the important inducers of hemorrhagic necrosis, which itself thereafter
increases the possibility to be trapped by Hb, and in the positive feedback (as every
necrosis stimulating inflammation [48]), it intensifies the generation of NO even more.
Indeed, unlike apoptosis, pyroptosis aims at facilitating inflammation by the release of
proinflammatory intracellular contents [83,84], including IL-1 and IL-6 [82], in response to
various pathological stimuli, mainly microbes [83,84] but also cancer [82,83]. For this reason,
strongly necrotizing tumors not always undergo regression, on the contrary, inflammation
and necrotization are sometimes poor prognostic factors [54], which may be to some
extent be explained by the toxicity of extravasated hemoglobin, and paradoxically, by the
anti-heme activity of NO itself [111].

All these results can be interpreted in the following way: DETC, always administered
shortly before the EPR measurement, easily penetrates cellular membranes and forms
insoluble complexes with Fe(II) in situ, trapping all or almost all the available NO (as was
the case with EC). But the affinity of the heme iron for NO is much higher than that of the
nonheme iron(II), and initially, all the available heme traps—mainly the ones originating
from the extravasated blood—become saturated with NO (Cloudman S91). This is a long
process, but HbNO complexes are quite stable and accumulate in the tissue. The excess of
DETC and iron traps the NO not otherwise accessible for Hb (L5178Y). If the blood supply
is satisfactory and extravasation (formation of foci of hemorrhagic necrosis) intensive,
almost all the NO is trapped by Hb (Cloudman S91 melanoma) beforehand. The amount of
the necrotic “core” in these tumors is so big that the distribution of insoluble Fe(DETC)2 is
probably limited compared to the cortex.

The absence of any of the signals in the peripheral blood, but its increase in homoge-
nized tissue, additionally supports the hypothesis of the local formation and local trapping
of NO by hemoglobin stored in the extravascular space of the tissue rather than circulating
in the blood. While this supports the notion of strong heterogeneity of NO activity within
the tumor [75], the tumor HbNO signal may still be treated as the signal of a vascularized
tissue undergoing destruction, with Fe(DETC)2NO as the estimator of the formation of NO
in a non-necrotizing tumor. The signal of Fe(RS)2(NO)2 partially reflects the availability
of iron(II) in the tumor tissue. It may also represent the reducible character of the local
environment (as in oxidative environments, Fe(II) easily undergoes oxidation to Fe(III)),
and the extreme NO generation, as the affinity of low-molecular weight endogenous Fe(II)
complexes for NO is low compared to Hb.

4. Materials and Methods
4.1. Chemicals

Phosphate-buffered saline (PBS) was obtained from BIOMED Wytwornia Surowic
i Szczepionek (Lublin, Poland) and ICN Biomedicals Inc. (Aurora, OH, USA); ferrous
sulfate (FeSO4·7H2O), sodium citrate and sodium diethyldithiocarbamate (DETC) were
obtained from Sigma-Aldrich (St. Louis, MO, USA); acetone, eosin, and formalin were
manufactured by Polskie Odczynniki Chemiczne (Gliwice, Poland); paraffin for embedding
came from Histoplast, Thermo Shandon (Runcorn, UK). Protein block serum-free, Biotin
Blocking System, Avidin Solution and Biotin Solution were from Dako North America Inc
(Carpinteria, CA, USA); hematoxylin (Mayer hematoxylin) was from Stamar (Dąbrowa
Górnicza, Poland), and 1o anti-mouse CD31 (PECAM-1) from Pharmingen, Becton Dick-
inson Bioscences (Warsaw, Poland). Biotinylated anti-rat IgG (H+L), Vectastein ABC and
DAB substrate kit for peroxidase were from Vector Laboratories Inc (Burlingame, CA, USA),
pentobarbital, xylazine and ketamine from Biowet (Puławy, Poland).
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4.2. Animals and Tumor Cell Lines

The experimental animals (male and female 8–10 weeks old mice) were purchased
from the Animal Breeding Facility of the Institute of Pediatric, Collegium Medicum,
Jagiellonian University, Krakow, Poland. They were kept with permanent access to stan-
dard rodent chow and water under standard conditions, in community cages and a 12-h
day/night regime.

Murine lymphoma L5178Y (L5178Y-R sub-line, [112–114]) was maintained in vivo in
inbred DBA/2—the natural syngeneic host [114] for this tumor line and outbred Swiss
mice as the allogeneic host [17,30,35,60,73]. Solid L5178Y tumors were inoculated SC using
2 × 107 ascitic cells or 30 mg of very small solid tumor fragments. Solid tumors of murine
Ehrlich carcinoma (EC) were inoculated SC in outbred Swiss mice (the natural host [115])
using 2 × 107 ascitic cells. Murine Cloudman S91 melanoma (amelanotic form [100])
was inoculated SC in the natural syngeneic DBA/2 host [17,68,90] using 30 mg of very
small solid tumor fragments or 1 × 106 cells cultured in vitro. As the SC growth of the
tumors used is anisotropic, particularly in the case of EC, the mean diameter d of the
tumor growing in vivo was calculated as the geometrical mean, according to Schreck [116]:
d = (a × b × c)1/3, where a, b and c are the perpendicular tumor diameters. At scheduled
time points, the animals were euthanized (overdose of ketamine and xylazine) and the
tumors were extracted. The selection of the tumor growth day on which they were to be
evaluated for the levels of NO complexes and vascularization parameters was based on
their growth kinetics and the predetermined time point of attainment of a diameter of
about 1 cm. L5178Y lymphoma tumors were the fastest growing and reached a diameter
of about 1 cm on day 8. Ehrlich carcinoma tumors grew slower and attained a diameter
of 1 cm around day 18. The slowest are Cloudman S91 tumors and these were examined
on day 27, when they had reached a diameter of more than 1 cm and revealed central
hemorrhagic necrosis. Authorizations to carry out the experiments were granted by the 1st
Local Committee for Animal Research in Kraków (opinions No. 15/OP/2002, 18/OP/2003,
25/2009 and 14/2015).

Solid tumors in vivo, and NO spin trapping with DETC: Some of the tumors were
used to spin-trap NO using exogenous DETC. The tumor-carrying animals were injected IP
with the exogenous spin trap: sodium diethyldithiocarbamate (500 mg/kg), 30 min before
tumor extraction [86]. Some of the DETC-treated animals were also co-treated with excess
exogenous iron (SC, FeSO4·7H2O, 50 mg/kg, in 250 mg/kg sodium citrate in the tumor
region) in parallel to IP DETC injection [117]. To remove oxygen, all the reagents were
dissolved in PBS bubbled with gaseous nitrogen for at least 30 min before use.

4.3. EPR Sample Preparation

After excision, tumor tissue was weighed, photographed, the fraction of cortical
alive tissue was separated from the central necrotic core (if present), and cut into smaller
fragments, so as to be subsequently packed in standard glass tubes and immediately frozen
in liquid nitrogen. The samples (icicles, ca., 4 mm in diameter and 2 cm in length) were
stored at −80 ◦C until EPR measurement (no longer than 3 months).

4.4. Analysis of Tumor Necrosis

For the purposes of this paper, it was enough to distinguish between the type of
necrosis: hemorrhagic versus ischemic, the former being a type of liquefactive, and the
latter of coagulative necrosis. The necrosis was classified as red, hemorrhagic if it possessed
a liquid consistency and red coloration, otherwise classified as “non-hemorrhagic”. The
common method of quantification of red (hemorrhagic) necrosis [55,77,118] is also based
on the arbitrary estimation of some fragments of histological sections, but a tumor used
for histology cannot be measured by EPR in search of NO complexes, and consequently,
the “yes or no” differentiation between the two types of necrosis [57] seemed justified in
our case. Additionally, the degree of necrotization of selected tumors and EPR samples
was documented photographically, while other parts of the tumors were fixed in 5%
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buffered formalin (pH 7.4) and checked using routine histology (hematoxylin and eosin
staining, H&E [119]).

4.5. Tumor Homogenization

Some parts of the alive cortical fraction of solid tumors were placed in a glass Potter
homogenizer, and homogenized manually, whereupon standard EPR homogenate samples
were prepared and stored just like solid tumor samples. The EPR signals were subse-
quently compared with the signals of the non-homogenized parts of the corresponding
intact tumors.

4.6. Blood EPR Analysis

Whole blood of tumor-carrying or control untreated animals was taken from the left
ventricle of the heart with a plastic disposable syringe, placed in the EPR tube (0.5 mL)
used to prepare tumor samples, and immediately frozen in liquid nitrogen [16,70].

4.7. EPR Measurement

The icicles were pushed into a quartz Dewar flask and measured at 77 K, using a Varian
E-3 spectrometer with a rectangular TE 102 cavity. EPR spectra were recorded at X-band
(9.15 GHz), at 3280 ± 250 Gs field center and sweep, 4 mW microwave power, 0.3 s time
constant, 240 s acquisition time, 10 Gs modulation amplitude, and 20,000–400,000 receiver
gain. The spectra were recorded in a digital form in triplicate and averaged. In all cases, the
EPR signal amplitudes were normalized according to the constant receiver gain (200,000),
and the constant mass of tissue (400 mg), on the basis of a calibration curve prepared for the
particular resonant cavity and the applied sample geometry. The intensity of Fe(DETC)2NO
signals was expressed as the amplitude of the signal at g⊥ = 2.035, and that of HbNO as the
amplitude of the first, or (measurements of HbNO subsequent to Fe(DETC)2NO in the same
sample) the third constituent of the hyperfine splitting. Intensity of Fe(DETC)2NO signals in
tumors was estimated as the amplitude of the third (high-field [28,70–72,86,87]) constituent
of the hyperfine structure. Particular examples of quantification of the spectra [25,34] are
depicted in Figure 7. Simulations of EPR spectra of various types of HbNO complexes are
presented in the cited paper: Dutka et al., 2019 (a chapter) [25].
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t3 amplitude of the 3rd (high field) component of the Fe(DETC)2NO hyperfine (g⊥ = 2.035, gII = 2.02, AN = 
1.3 mT [31,33,86]) could be used, and the 3rd (high-field) component of the HbNO triplet. t1, t2 = ampli-
tudes of 1st and 2nd component of Fe(DETC)2NO. For parameters of measurement—see Section 4. 
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Figure 7. Typical EPR signals of iron–nitrosyl complexes detectable in the investigated animal tumors.
(A) Native melanoma S91. HbNO signal (g = 2.012, AN = 1.7 mT [1,2,13,14]) of 5-coordinate alpha1 ni-
trosylated chains revealing hyperfine splitting, and their first (T1), and second (T2) amplitude. The 3rd
component (T3) overlaps with the free radical signal (DPPH, g = 2.0037 [120]). (B) Native lymphoma
L5178Y. Quantitation of the non-heme iron–nitrosyl complex signal (g⊥ = 2.035, gII = 2.02 [26,27])
in the presence of HbNO signals. The amplitude of the feature at g⊥ (A1) was used, as at gII,

the signal (A2) partially overlaps with the 2nd component of the HbNO hyperfine. T1 = the 1st
hyperfine of HbNO. (C) Lymphoma L5178Y with exogenous DETC. In the presence of the DETC,
due to the Cu(DETC)2 tetraplet signal (g = 2.024, ACu = 4.9 Gs [31,86,87]; see Figure 1), only the t3

amplitude of the 3rd (high field) component of the Fe(DETC)2NO hyperfine (g⊥ = 2.035, gII = 2.02,
AN = 1.3 mT [31,33,86]) could be used, and the 3rd (high-field) component of the HbNO triplet. t1,
t2 = amplitudes of 1st and 2nd component of Fe(DETC)2NO. For parameters of measurement—see
Section 4.

4.8. Tumor Microvascularization Analysis

Tumor blood vessels were stained immunohistochemically using CD31 as the endothe-
lium marker by the avidin–biotin–peroxidase detection. Tissue sections were treated with
hematoxylin to enhance contrast between protein and the background. The negative control
was prepared accordingly, without anti-CD31 antibodies. The stained slides were scanned
using a light microscope, Nikon Eclipse TS 100, and a video camera, Sony Exwave, model
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No. SSC-DC54AP. At a magnification of 40×, three foci of dense vascular staining were
chosen. Then photographs were taken using a magnification of 100×. Images were then
digitalized, filtered, and enhanced. Non-specific staining areas of a surface of less than
40 pixels (smaller than a single cell) were removed. For the analysis, the freeware program
ImageJ (version 1.30) was used (http://rsbweb.nih.gov/ij/).

Vascular density was quantified according to Weidner [121,122] as the mean num-
ber of microvessels per mm2 (MVD) and as total microvessel area (TVA). Size of tumor
microvessels was measured as the mean area of single microvessel (MAM = TVA/MVD).

4.9. Statistics

All the results are presented as means of values ± SD or ± SE. Statistical signifi-
cance was determined by two-tailed, independent Student’s-t test. In the case of tumor
homogenates, to establish the statistical significance of the increase in the HbNO signal due
to homogenization, in relation to the original solid tumor, paired Student’s-t test was used.
The statistical significance of differences between the variances was tested by the Snedecor
F-test. A difference was accepted as significant for p < 0.05.

5. Conclusions

Various animal tumors differ in the presence and intensity of HbNO and Fe(DETC)2NO
signals. The formation of EPR-detectable HbNO complexes in tumor tissues in vivo re-
sults from three independent factors: (i) local NO concentration resulting mainly from the
strength of the host antitumor response and induction of NO synthesis in tumor in vivo,
(ii) tumor blood supply resulting from parameters of tumor vascularization, and (iii) the
accessibility of spin traps in the vicinity of NO generation sites resulting from blood ex-
travasation and tissue destruction leading to the formation of foci of hemorrhagic necrosis,
which are the main spots of HbNO accumulation in solid tumors. EPR as a method of
estimating NO complexes in tumor tissues should be performed using both exogenous
and endogenous spin traps. In this way, we obtain a complete picture of NO formation,
which may be disturbed due to the heterogeneous structure of the tumor/tumor vascula-
ture/areas of necrosis/areas of extravasation. While its detailed analysis may be difficult,
the message conveyed by the presence and intensity of the HbNO signal (and other types of
iron–nitrosyl complexes) is valuable and has biological meaning, characterizing interactions
between tumors and their hosts.
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