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Abstract: The etiology underlying most sporadic Parkinson’s’ disease (PD) cases is unknown. En-
vironmental exposures have been suggested as putative causes of the disease. In cell models and
in animal studies, certain chemicals can destroy dopaminergic neurons. However, the mechanisms
of how these chemicals cause the death of neurons is not understood. Several of these agents are
mitochondrial toxins that inhibit the mitochondrial complex I of the electron transport chain. Familial
PD genes also encode proteins with important functions in mitochondria. Mitochondrial dysfunction
of the respiratory chain, in combination with the presence of redox active dopamine molecules in
these cells, will lead to the accumulation of reactive oxygen species (ROS) in dopaminergic neurons.
Here, I propose a mechanism regarding how ROS may lead to cell killing with a specificity for
neurons. One rarely considered hypothesis is that ROS produced by defective mitochondria will lead
to the formation of oxidative DNA damage in nuclear DNA. Many genes that encode proteins with
neuron-specific functions are extraordinary long, ranging in size from several hundred kilobases to
well over a megabase. It is predictable that such long genes will contain large numbers of damaged
DNA bases, for example in the form of 8-oxoguanine (8-oxoG), which is a major DNA damage type
produced by ROS. These DNA lesions will slow down or stall the progression of RNA polymerase II,
which is a term referred to as transcription stress. Furthermore, ROS-induced DNA damage may
cause mutations, even in postmitotic cells such as neurons. I propose that the impaired transcription
and mutagenesis of long, neuron-specific genes will lead to a loss of neuronal integrity, eventually
leading to the death of these cells during a human lifetime.
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1. Introduction

Parkinson’s disease (PD) affects about one million people in the United States and
ten million worldwide. The number of Parkinson’s disease cases has more than doubled
over the past 30 years. There is limited information about the causation of this increase.
The disease is characterized by motor symptoms and non-motor symptoms. There is
a severe loss of dopaminergic neurons in the substantia nigra pars compacta and the
ventral midbrain, and this loss of neurons is responsible for the motor symptoms. Only
5 to 10% of PD cases can be linked to autosomal inherited gene defects (familial PD)
in about a dozen or so different genes [1]. The origin of most idiopathic PD cases is
unknown, although extensive genome-wide association studies (GWAS) have revealed
combinations of variants that may increase susceptibility to the disease [2]. Aging is a
prominent risk factor, because non-inherited disease rarely occurs in individuals below
60 years of age. For these reasons, we need to contemplate what type of general or
neuron-specific decay mechanisms become more prominent in aged individuals. The
hallmarks of aging include epigenetic alterations, loss of proteostasis, disabled autophagy,
deregulated nutrient sensing, cellular senescence, altered intercellular communication,
chronic inflammation, dysbiosis, and genomic instability [3]. While there is good evidence
for a role of dysfunctional proteostasis, autophagy, and inflammation in PD [4,5], the
causative involvement of epigenetic alterations and genomic instability in the disease
are less clear and are just at the beginning of being understood. The role of epigenetic
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alterations in PD has been reviewed elsewhere [6,7]. Here, I will focus on the potential role
of genomic instability in Parkinson’s disease.

2. DNA Damage and Parkinson’s Disease—The Intriguing Case of Trichloroethylene

In addition to aging and the multigene predisposition effects as recorded by GWAS,
environmental exposures have been suggested as putative causes of PD [8,9]. However,
the evidence for that connection is not fully established, which is mainly because of the
difficulty in quantifying specific single exposures or mixed exposures over a lifetime in
sufficiently powered population cohorts. There are a few notable exceptions, where a
strong link between an exposure and PD has been made. A recent study analyzed the
health records of over 80,000 veterans stationed at Camp Lejeune in North Carolina who
were exposed to the chemical trichloroethylene (TCE) due to a contamination of the water
supply at the military base [10]. The water consumed by the military personnel contained
levels of the TCE chemical that were more than 70 times higher than the level allowed by
the U.S. Environmental Protection Agency. The authors compared the data from the North
Carolina cohort with a similar number of veterans stationed at a non-contaminated base in
California. They reported that the TCE-exposed population had a 70% increased risk of
PD, which was highly significant given the large number of individuals analyzed [10,11].
TCE has been widely used as a degreasing and cleaning agent and is found in numerous
other consumer products [12]. This volatile substance is present in indoor and outdoor
air and contaminates groundwater in many parts of the world. TCE mass production
started at the beginning of the 20th century, with millions of tons of this chemical have been
produced to date. Such epidemiological studies as this one reported recently, in addition to
the smaller cohorts examined in the past, are highlighting the fact that further research into
the contribution of this chemical to the etiology of PD is required.

TCE is a liquid that easily crosses biological membranes and penetrates the blood–
brain barrier [13]. In cell models and in animal experiments, TCE can destroy dopaminergic
neurons [13–16]. TCE is a mitochondrial toxin that inhibits the mitochondrial complex I,
and three of its metabolites have also been linked to mitochondrial dysfunction [16–18].
These compounds have all been shown to cause a loss of dopaminergic neurons from the
nigrostriatal tract in rodents.

3. Mitochondrial Dysfunction, Mitochondrial Toxins, and Parkinson’s Disease

In addition to TCE, a number of other chemicals are known to inhibit mitochondrial
complex I function and are toxic to dopamine neurons, including rotenone, paraquat,
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA)
(Table 1) [19,20]. Mitochondrial dysfunction leads to a reduction in oxidative phosphoryla-
tion and ATP production associated with the overproduction of reactive oxygen species
(ROS) by enhanced electron leakage from the defective electron transport chains [21,22].

Rotenone and paraquat have been used as pesticides in the agricultural industry.
Rotenone, an isoflavone compound, is found in some plants of the legume family and
has historically been used for killing fish and insects. This substance is now banned
in the US and most other countries for use in agriculture but still is being applied for
killing invasive species of fish. By inhibiting the electron transport chain in mitochondria,
rotenone leads to a backup of electrons and reduction in cellular oxygen, which creates
oxygen radicals and other reactive oxygen species. Rotenone is only moderately toxic to
mammals including humans because it is not easily absorbed. However, the injection of
rotenone into rats produces Parkinson-like symptoms [23]. A study of farm workers who
had used rotenone-containing pesticides indicated an increased risk (odds ratio = 2.5) of
developing PD compared to controls [24]. In cultured neurons, concentrations of rotenone
in the nanomolar range will lead to cell killing [25].
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Table 1. Environmental toxins linked to Parkinson’s disease.

Chemical Use Mode of Action Structure

MPTP Synthetic chemical

Converted to neurotoxic
MPP+ in the brain.
Inhibits mitochondrial
complex 1.
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Paraquat is one of the most commonly used herbicides in the agricultural industry, still
today, even though this substance has been linked to PD since 1987 [26]. A meta-analysis
of 13 case-control studies with 3231 PD patients and 4901 controls revealed an association
between PD and paraquat exposure at an odds ratio of 1.64 [27]. A more recent study
considering residential and workplace proximity to commercial agricultural paraquat
application sites in California confirmed this association with an odds ratio of about 2 when
over 800 PD patients or about 800 controls were analyzed [28]. Like rotenone, paraquat
is a mitochondrial toxin with weak complex I inhibiting activity, although it may have
other toxic effects, and it causes the death of dopaminergic neurons in vitro and in animal
models [29]. Paraquat is a redox-active compound and may produce ROS during its own
redox cycling. This chemical induces senescence and a pro-inflammatory state in vitro
and in vivo [30]. Low-dose paraquat animal models can recapitulate many features of the
human disease including alpha-synuclein pathology [31].

Initially discovered after the self-administration of an illicit drug, N-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) (Table 1) is a potent agent to induce Parkinsonian-like
syndromes in humans and in animal models [32–34]. MTPT is converted in the brain to its
active metabolite, the MPP+ ion. Various MPTP animal models are now widely used in
PD research. MPTP exposure leads to the degeneration of dopaminergic neurons in vivo
and in vitro. This effect is believed to be a consequence of the inhibition of mitochondrial
complex I by this compound.
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6-hydroxydopamine is a synthetic compound that has been used in animal models of
PD in which it causes the loss of dopaminergic neurons. Its exact mechanism of action is
unclear, but it has been linked to the production of oxidative stress and to mitochondrial
dysfunction [35–37]. Like dopamine itself (Figure 1), several of the chemicals that induce
PD-like symptoms are redox-cycling compounds that through their oxidation–reduction
cycles can produce reactive oxygen species. This fact leads to a speculation that the presence
of these types of chemicals in dopaminergic neurons may overwhelm the antioxidant
defense systems of these cells, leading to macromolecular damage including damage
to DNA.
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Figure 1. Production of reactive oxygen species (ROS) in dysfunctional mitochondria and by
dopamine redox cycling. (A). ROS produced in dysfunctional mitochondria can diffuse into the
nucleus to cause DNA damage. (B). Dopamine oxidation generates reactive oxygen species (ROS).

From these studies, it has become clear that the dysregulation of mitochondrial home-
ostasis is an important process that occurs during pathogenesis, leading to neuronal loss in
PD [38,39]. Mitochondrial dysfunction of the respiratory chain leads to the accumulation
of ROS, such as hydrogen peroxide, superoxide anion and peroxyl radicals (Figure 1). Hy-
drogen peroxide and superoxide anion can be subsequently converted to the very reactive
hydroxyl radical in the presence of iron via the Haber–Weiss and Fenton reactions and can
damage nucleobases when this reaction occurs in proximity to DNA. A role of iron in the
pathogenesis of PD has been discussed previously [40].

As for environmental exposures, heavy metals, such as iron, mercury, manganese,
copper, and lead, have all been linked to PD [41]. These metals have the potential to disrupt
redox homeostasis of the cell, can generate ROS, and may diminish antioxidant defense
systems in dopaminergic neurons.
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4. Defects of Mitochondrial Pathways in Familial and Sporadic PD

Several chemical agents known to induce Parkinson’s-like syndrome have in common
that they cause mitochondrial dysfunction through inhibiting the electron transport chain
by affecting mitochondrial complex I. However, the exposure of human populations to
such chemicals is still relatively uncommon, except perhaps in the case of TCE, which is a
ubiquitous environmental pollutant. This brings us to a discussion of how mitochondrial
function may be defective in genetically inherited, early onset PD and in sporadic disease
as a function of aging.

Familial PD-associated genes are often involved in a limited set of defined biological
pathways. These pathways include lysosome function, autophagy, membrane trafficking
and endocytosis, and the immune response. Another prominent pathway is mitochondrial
function. For example, the protein PARKIN, an E3 ubiquitin ligase, and PINK1, a mitochon-
drial kinase, are clearly in the same biochemical pathway to support mitochondrial quality
control [42]. Inherited mutations that lead to autosomal recessive PD have been found in
the genes PINK1 (PARK6), PARK2 (PARKIN), PARK7 (DJ-1), CHCHD2, PARK13 (HTRA2),
PARK14 (PLA2G6), PARK15 (FBOX7), and VPS13C, which all have functional roles in mito-
chondria [43] (Table 2). For late-onset PD, 14 mitochondrial function-associated genes have
been identified in GWAS data sets [44]. Interestingly, one gene linked to familial PD is DJ-1
(PARK7), which is a gene that encodes a protein with ROS-scavenging properties [45].

Table 2. Familial PD genes with a functional role in mitochondrial homeostasis.

Gene Mutation Type Mode of Action Effect on Mitochondria Reference

SNCA Missense, amplification
Unknown.
Disordered protein prone
to aggregation

Deposition of aggregates inhibits
mitochondrial function and
produces ROS.

[46]

PRKN Missense, copy number
change, LOF Ubiquitin ligase Promotes mitochondrial

quality control. [47]

PINK1 Missense, deletion,
LOF Serin/threonine protein kinase Recruits PRKN to mitochondria.

Controls respiratory chain function. [47]

DJ-1 Missense, LOF Located at outer
mitochondrial membrane.

Promotes mitochondrial function.
Inhibits ROS formation. [48]

LRRK2 Missense, GOF Kinase and GTPase Promotes mitophagy. [49]

VPS35 Missense, D620N,
GOF (?)

Vacuolar protein
sorting

Loss of VPS35 causes mitochondrial
dysfunction and fragmentation. [50]

ATP13A2 Missense, LOF Lysosomal protein Loss of ATP13A2 increases ROS and
cell death. [51]

VPS13C Missense, LOF Vacuolar protein
sorting

Role in normal mitochondrial
biogenesis and function. [52]

CHCHD2 Missense,
T61I

CHCH domain
containing protein

Maintains mitochondrial
matrix structure. [53]

FBXO7 Missense, LOF Adapter protein for ubiquitin
E3 ligase

Recruits PRKN to
damaged mitochondria. [54]

PLA2G6 Missense, LOF Phospholipase Maintains mitochondrial function. [55]

It needs to be discussed in this context that there is also contrarian evidence that argues
against a role of complex I inhibition in PD. For example, a loss of complex I activity by
deletion of the Ndufs4 gene, encoding an accessory subunit of the mitochondrial membrane
respiratory chain NADH dehydrogenase, did not cause dopaminergic neuron death in
mice [56]. A recent review summarized the difficulties in assessing complex I levels and
enzymatic activities in postmortem PD brain tissue and in peripheral tissues [57]. The
authors emphasize that patients with rare inherited mutations in complex I subunits do
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not generally develop parkinsonian syndromes, but most of those patients do not live long
enough to develop PD.

As with many cellular processes, mitochondrial function declines with aging. This
functional decline can occur at the level of mutation accumulation with age, which is a
phenomenon that is found in all tissues [58,59]. Mitochondrial DNA may be particularly
vulnerable to the acquisition of mutations because of its rapid replication cycles, inefficient
repair of mitochondrial DNA, and generation of large amounts of reactive oxygen species
in these organelles. The mutations may affect the synthesis or function of mitochondrially
encoded proteins. The mitochondrial genome encodes 13 genes which encode essential
subunits of the oxidative phosphorylation (OXPHOS) enzymes. Because each cell contains
thousands of copies of the mitochondrial genome, extensive replication over the lifespan of
an individual will generate a mix of wild-type and mutant mitochondrial DNA molecules
(heteroplasmy). These events include point mutations or deletions. However, it has been
extremely challenging to draw reliable conclusions regarding whether somatic mtDNA
deletions and point mutations are more prevalent in PD than in normal controls. These
studies have often produced conflicting results, which is perhaps due to technical problems
in analyzing mutations or because of underpowered study designs [60].

Mitochondrial dysfunction is clearly increased during normal aging [61]. Reduced
proteostasis during aging may affect the stability and function of components of the electron
transport chain. Although not all mitochondria in a cell may be compromised by these
processes, a substantial fraction will be affected. As a result of this loss of mitochondrial
functionality of the respiratory chain complexes during aging, more ROS will be produced,
resulting in further damage to these organelles. Indeed, patients with sporadic PD have
reduced complex I activity in different brain regions [62].

5. DNA Damage in PD

One major and appreciated mechanism of mitochondrial dysfunction in PD is the
fact that the declining function of mitochondria will lead to bioenergetic defects in the
form of an energy crisis, for example the reduced formation of ATP, which in turn may be
detrimental for the viability of dopaminergic neurons.

However, here, I will discuss other possible outcomes and will focus on ROS-induced
DNA damage. If mitochondrial dysfunction is a common, though perhaps not ubiquitous
feature in familial and sporadic, age-associated PD, one can hypothesize that increased
levels of ROS, which are a by-product in dysfunctional mitochondria, could damage DNA
and cause genetic instability. Simply based on physical proximity, one would expect that
mitochondrial DNA would be the first target for such damage to occur. Whether mitochon-
drial DNA damage would have an immediate impact on the disease is questionable. This
damage may impede the transcription of mitochondrial genes or may cause mutations in
replicating mitochondrial DNA. Long-term, however, these mitochondrial mutations are
expected to further exacerbate mitochondrial dysfunction.

Furthermore, one other plausible outcome is damage to nuclear DNA. Some of the
reactive oxygen molecules produced in dysfunctional mitochondria can be long-lived
and can diffuse into the nucleus: for example, hydrogen peroxide. In addition to small
oxygen-based molecules, ROS may cause membrane lipid peroxidation, leading to the
formation of electrophilic aldehydes derived from unsaturated fatty acids. Brain tissue is
rich in polyunsaturated fatty acid as a normal component of biological membranes. For
example, 4-hydroxynonenal [63] is produced from lipids that contain polyunsaturated
omega-6 fatty acids such as arachidonic acid and linoleic acid. These reactive aldehydes
have a longer half-life than hydrogen peroxide or superoxide anion. Reactive oxygen
species and lipid peroxidation products can promote the formation of DNA damage not
only in mitochondrial DNA but also in nuclear DNA.

ROS produce modified DNA bases and DNA strand breaks. The strand breaks will
be mostly single-strand breaks, arising either directly because of damage to the sugar-
phosphate backbone of DNA or indirectly occurring as intermediates of DNA repair
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processes. Occasionally produced DNA double-strand breaks, although rare, could lead
to genome rearrangements such as translocations, deletions, insertions, or amplifications.
DNA base damage induced by oxidative stress includes 8-oxoguanine (8-oxoG) as a promi-
nent reaction product but also other modifications such as 5-hydroxycytosine, thymine
glycol, or oxidized adenines (Figure 2A). The reactive aldehydes derived from lipid peroxi-
dation can react with exocyclic amino groups of DNA bases to form, for example, DNA
etheno-adducts such as 1,N2-etheno-guanine, N2,3-etheno-guanine, 1,N6-etheno-adenine
(Figure 2A), and 3,N4-etheno-cytosine. All these modified bases are subject to DNA repair
either by base excision repair or by nucleotide excision repair, depending mostly on the size
of the base modification (Figure 2B). These DNA lesions have the potential to be mutagenic
or interfere with transcription processes.
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Figure 2. Major oxidative DNA damage products produced by ROS and DNA repair mechanisms.
(A). Damaged DNA bases induced by ROS. (B). DNA repair mechanisms. Base excision repair (BER)
is shown on the left. This pathway exists as two types of mechanisms, short-patch and long-patch BER
that require different proteins. Nucleotide excision repair (NER) is shown on the right. This pathway
is subdivided into global NER and transcription-coupled NER, which operates in transcribed genes.
Key protein factors involved in the different repair mechanisms are shown.
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The levels of 8-oxoG have been shown to be specifically elevated in the substantia nigra
of PD patients [64]. It should be mentioned in this context that the precise measurement of
oxidized DNA bases in tissues has remained a technical challenge for several decades. It is
difficult to measure these lesions when they occur at low frequencies when at the same time
one needs to be able to avoid the background inherent to most DNA isolation methods.
There is clearly a knowledge gap in assessing and understanding the extent of oxidative
DNA damage in neuronal cells of the substantia nigra.

More sensitive technology, based on genome sequencing [65], are now available to
undertake these difficult tasks, but they have not yet been applied in the PD field or in
other research related to neurodegeneration. Importantly, dopaminergic neurons appear
to be particularly vulnerable to oxidative stress [66,67]. These neurons not only require
intensive mitochondrial respiration for proper function but also have limited inherent
antioxidant capacity. This is particularly pertinent when we are also considering the
reactive nature of the dopamine molecule (Figure 1) that is present in these neurons,
making them further vulnerable to oxidative damage [66]. It is tempting to speculate
that the selective vulnerability of dopaminergic neurons is related to these properties of
the cells.

It has long been assumed that most mutations in human tissues are the product
of processes linked to DNA replication except perhaps for mutagenesis linked to the
hydrolytic or enzymatic deamination of DNA bases, i.e., the conversion of cytosine to uracil.
The replication events would represent errors of the DNA polymerase or proofreading
machineries, or they could be caused by the misincorporation of the wrong DNA bases
when polymerases copy a DNA template that contains a base lesion. However, this
assumption may be incorrect. Intriguingly, recent data suggest that nondividing (post-
mitotic) cells such as neurons also accumulate mutations with the increasing age of the
individual [58]. In fact, the rate of mutation accumulation with age was similar in dividing
and nondividing tissues. The mechanisms of mutation accumulation in aging neurons
are not clear at present, but they could perhaps be linked to errors introduced during
the DNA repair of certain lesions. Using advanced sequencing technologies with low
error rates, mutations can now be measured in neurons, even in single cells. Interestingly,
an accumulation of C to A (G to T) mutations has been shown in Alzheimer’s disease
brains [68]. Such mutations are theoretically the result of the mutagenic bypass of 8-
oxoguanine lesions when an adenine becomes incorporated opposite to 8-oxoG. No such
mutation studies have been reported yet for Parkinson’s disease brain.

6. Inflammation and PD

In addition to the environmental exposures discussed above, inflammation is increas-
ingly linked to neurodegeneration [69,70]. Microglia are resident brain cells that respond
to injury or toxic agents that induce their proliferation and activation to release immune
regulators, growth factors, and neurotoxic reactive chemicals (Figure 3). Chronic inflamma-
tion produces additional oxidative stress in the form of ROS released from microglia. There
has been a debate as to whether neuroinflammation is a consequence of PD or whether it
may be a primary cause of neurodegeneration. Alpha-synuclein accumulating in microglia
induced a strong reactive state of these cells with an excessive production of various ROS
and pro-inflammatory cytokines, leading to the cell death of neighboring neurons [71]. In
microglia, ROS are mainly produced by the multi-subunit enzyme NADPH oxidase (NOX).
Another reactive molecule, nitric oxide (NO), is produced by nitric oxide synthase (NOS)
in microglia [70]. Whereas acute inflammation can be neuroprotective, it is the chronic
inflammation state that is linked to neurodegenerative disease. Chronic inflammation
will add to the load of ROS and potential DNA damage that can target neurons in the
substantia nigra.
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7. DNA Repair Deficiencies and Neurodegeneration

In the context of DNA damage in neurons, it is also of interest that several mouse
models and human patients with DNA repair deficiencies, in particular with defects in
transcription-coupled repair, show phenotypes of neurodegeneration [72–75]. Neurode-
generation occurs in these mice without deliberate exposures, suggesting that a form
of endogenous DNA damage may trigger these events. These neurodegenerative mouse
models include deficiencies in global nucleotide excision repair (NER), most prominently xe-
roderma pigmentosum group A (XPA) and ERCC1 [73,76], and defects in the transcription-
coupled nucleotide excision repair genes Cockayne syndrome A and B (CSA and CSB)
(Figure 2B) [77]. In transcription-coupled NER, lesions that stall RNA polymerase when
present on the transcribed DNA strand promote the rapid recruitment of the NER complex,
resulting in preferential repair of the transcribed relative to the non-transcribed DNA strand
(Figure 2B) [78]. XPC knockout mice, which are proficient in transcription-coupled repair
but lack global genome repair, do not show neurodegeneration, and human XP-C patients
have only mild neuronal symptoms [73,79]. These data suggests that DNA damage in
transcribed regions of the genome is important in neurodegeneration. Furthermore, mice
deficient in genes of the base excision repair pathway (Figure 2B) also show neurodegener-
ation. The genes with this phenotype include OGG1, an enzyme which removes 8-oxoG
from DNA and MTH1, which hydrolyzes 8-oxodGTP found in the damaged nucleotide
pool [80,81]. The histone deacetylase HDAC1 modulates OGG1-initated 8-oxoG repair in
the brain, highlighting an important interplay between epigenetic and genetic factors in the
control of brain aging and neurodegenerative diseases [82]. Interestingly, the gene encoding
MUTYH promotes neurodegeneration [80]. MUTYH is a repair enzyme that operates on
oxidative DNA damage by excising mis-incorporated adenine bases that are found opposite
to 8-oxoguanine but leaves 8-oxoG itself unrepaired. The results from these mouse models
suggested indirectly but compellingly that 8-oxoG causes neurodegeneration [80]. Whether
this mechanism is relevant for human PD is still unknown.

Biorender.com
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8. Potential Mechanisms of How DNA Damage or Repair Deficiency May Contribute to
Parkinson’s Disease

Certain chemicals and several inherited mutations that all promote mitochondrial
defects have clearly been linked to PD in animal models and in human pedigrees and now
also in a large human epidemiological study [10]. However, the mechanisms regarding
how these compounds and gene mutations cause the disease are unknown.

A common feature in mitochondrial dysfunction is the production of reactive oxygen
species which may lead to DNA damage. One hypothesis is that ROS produced by dysfunc-
tional mitochondria will lead to the formation of oxidative DNA damage in nuclear DNA.
The unknown outcome is how such genome damage may lead to neurodegenerative diseases.

It could be proposed that ROS-induced DNA damage or lack of its repair, when
occurring in long neuron-specific genes [75,83], will lead to a reduction in transcript levels
with the consequence of neuronal dysfunction, loss of neuronal identity, and dopaminergic
cell death (Figure 4). Importantly, many genes that encode proteins with neuron-specific
function are extraordinary long and often GC-rich [84–87], ranging in size from several
hundred kilobases to well over a megabase [88]. The transcriptome of neurons is biased for
having longer transcripts relative to other brain cells and relative to other tissues [83].
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Figure 4. Hypothesis of how ROS generate detrimental oxidative DNA damage in long neuron-
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nuclear DNA, leading to the formation of transcription blocking lesions in long genes. The lesions
may also cause permanent mutations leading to neuronal dysfunction and cell death.
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These long genes (>300 kilobases) often encode proteins involved in axon and synapse
formation and neuronal cell adhesion and are often mutated in human neurodevelop-
mental disorders. Examples of such long and potentially disease-relevant genes are
NRXN3 (1700 kb) [89], OXR1 (486 kb) [90], RIT2 (376 kb) [91], DLG2 (2177 kb) [92], LSAMP
(647 kb) [93], RBFOX1 (1698 kb) [94], VPS13B (868 kb) [95], WWOX (1117 kb) [96], NFIA
(389 kb) [97], SOX5 (1036 kb) [98], and PARKIN itself (1384 kb) [47]. Table 3 summarizes
these genes and a few additional genes with very long transcription units. Genes with
non-neuronal functions rarely have this exceptional length. Axonal degeneration appears to
be an early neurodegenerative event in PD, and dopaminergic and excitatory synapses are
substantially reduced in PD [99]. I predict that such long genes will contain large numbers
of damaged DNA bases, predominantly in the form of 8-oxoguanine (8-oxoG), which is
a major DNA damage product produced by ROS. This base lesion stalls or slows down
RNA polymerase II [100,101]. Stalling is even more pronounced by the further oxidation
products of 8-oxoG, spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) as well
as by DNA single-strand break repair intermediates, cyclopurines and exocyclic etheno
base adducts produced by lipid peroxidation-derived aldehydes. Transcription blockage
by DNA damage in long genes may lead to neurological dysfunction and death [75].

Table 3. Examples of long genes with functions in axon and synapse formation, neuronal cell
adhesion, or PD.

Gene Name Length Presumed Function Human Disorders

PRKN Parkin 1379 kb Ubiquitin ligase, regulates mitochondrial
quality control Familial PD gene

NRXN3 Neurexin 3 1695 kb Cell adhesion molecule Autism

OXR1 Oxidation resistance 1 484 kb Critical for oxidative stress resistance
of neurons Cerebellar hypoplasia

RIT2 RIC-like protein 375 kb
Small GTPase
Rit2 loss is causal for SNc cell death and
motor dysfunction in mice

PD risk allele

DLG2 Disks large homolog 2 2169 kb Synaptic protein, membrane-associated
guanylate kinase

Neurodevelop-mental
disorders

LSAMP
Limbic system
associated membrane
protein

644 kb Cell adhesion molecule on axonal membranes unknown

RBFOX1 RNA binding FOX1
homologue 1692 RNA binding protein involved in splicing Neurodevelop-mental

disorders

VPS13B Vacuolar protein
sorting-associated 13B 865 kb Golgi associated protein Autism, Cohen

syndrome

WWOX
WW domain
containing
oxidoreductase

1112 kb Multifunctional protein
Spinocerebellar ataxia,
epileptic
encephalopathy

CNTNAP2 Contactin-associated
protein-like 2 2299 kb Cell adhesion molecule autism

DAB1 Disabled 1 1255 kb Reelin signaling, critical for
neurodevelopment

Neurodevelop-mental
disorders

SOX5 SRY-related box 5 1033 kb Transcription factor Neurodevelop-mental
disorder

The general DNA damage level in long genes is likely further exacerbated by physio-
logical DNA base turnover at the many intronic enhancer regions of such long neuronal
genes, which is a process that produces oxidized 5-methylcytosines subject to base exci-
sion repair [102,103]. Neurons are notorious for having high levels of 5-methylcytosine
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oxidation [104], which is strongly enhanced in gene bodies of neuron-specific genes dur-
ing neuronal differentiation [105]. It was indeed reported that very long genes show
more frequently reduced expression during aging [106–108] and in Alzheimer’s disease
brain [109]. In their study, Soheili-Nezhad et al. tried to connect this phenomenon to
increased mutations developing with age [109]; however, mutations are probably too rare
to explain a strong reduction in gene expression. Another recent study concluded that
there is a gene length-associated transcriptome imbalance with age in humans and that it
preferentially leads to a relative fold decrease in longer transcripts with the strongest effect
in brain tissue [110]. Endogenous DNA damage has also been implicated to yield a gene
length-associated decrease of the longest transcripts in a progeroid, DNA repair-deficient
mouse model of aging [111]. When the DNA damage is converted to mutations, perhaps
during erroneous repair events, mutations in protein-coding genes may permanently alter
protein function in long-lived neurons, leading to haploinsufficiency or a complete loss of
function when both copies of a gene are affected.

In addition to the loss of midbrain dopamine producing neurons, PD is characterized
by the aggregation of alpha-synuclein into Lewy bodies and Lewy neurites, which are
the major neuropathological hallmarks of the disease. As discussed extensively here, one
other important hallmark of PD is mitochondrial dysfunction [5,112]. Alpha-synuclein
aggregation and Lewy body formation also cause mitochondrial damage and dysfunction,
although the mechanisms are not entirely understood [46,113]. Going both ways, perhaps
in a vicious cycle, it has been shown that mitochondrial dysfunction and oxidative stress in
turn cause alpha-synuclein aggregation [114].

9. Conclusions

In summary, this review highlights the emerging connections between mitochondrial
dysfunction, a hallmark of PD, the formation of excess reactive oxygen species in dopamin-
ergic neurons, both because of the mitochondrial defects and as an inherent property of the
redox-active dopamine molecule, and the ensuing DNA damage. This DNA damage when
occurring in the nuclear genome will be particularly detrimental for the expression of long
neuron-specific genes and may cause the mutagenesis of long genes. A reduction in their
expression due to this damage will lead to a loss of neuronal functions and eventually will
result in the demise of dopaminergic neurons. Future studies will be needed to assess each
step of the model and its validity as a whole.
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