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Abstract: Solute carrier family 26 member 4 (SLC26A4) is a member of the SLC26A transporter family
and is expressed in various tissues, including the airway epithelium, kidney, thyroid, and tumors.
It transports various ions, including bicarbonate, chloride, iodine, and oxalate. As a multiple-ion
transporter, SLC26A4 is involved in the maintenance of hearing function, renal function, blood
pressure, and hormone and pH regulation. In this review, we have summarized the various functions
of SLC26A4 in multiple tissues and organs. Moreover, the relationships between SLC26A4 and other
channels, such as cystic fibrosis transmembrane conductance regulator, epithelial sodium channel,
and sodium chloride cotransporter, are highlighted. Although the modulation of SLC26A4 is critical
for recovery from malfunctions of various organs, development of specific inducers or agonists of
SLC26A4 remains challenging. This review contributes to providing a better understanding of the
role of SLC26A4 and development of therapeutic approaches for the SLC26A4-associated hearing
loss and SLC26A4-related dysfunction of various organs.

Keywords: SLC26A transporters; SLC26A4; anion exchanger; bicarbonate transporters

1. Introduction

Transporters encoded by the SLC26 gene are anionic transporters [1]. SLC26 trans-
porters contain various subfamilies, including SLC26A1 and SLC26A11 [1]. SLC26 trans-
porters contain 12 transmembrane domains and a sulfate transporter and an anti-sigma
factor antagonist (STAS) domain in the C-terminal cytoplasmic region [1]. Each trans-
porter has a predominant substrate [1]. SLC26A1, also known as Sat-1, transports SO4

2−,
oxalate, and glyoxylate and is mainly expressed in hepatocytes, renal proximal tubules,
and intestines [2,3]. SLC26A2, also known as diastrophic dysplasia sulfate transporter
(DTDST), transports SO4

2−, oxalate, and Cl− and is mainly expressed in chondrocytes,
renal proximal tubules, intestines, and pancreatic ducts [4]. SLC26A3 is downregulated in
adenoma (DRA) and chloride-losing diarrhea (CLD), transports Cl−, HCO3

−, and oxalate,
and is mainly expressed in enterocytes, sperm, and epididymis [5,6]. SLC26A4 (pendrin)
transports I−, Cl−, HCO3

−, and SCN− and is broadly expressed in cochlear cells, vestibu-
lar epithelial cells, thyrocytes, type B intercalated cells, and airway epithelial cells [7,8].
SLC26A5, also known as prestin, transports Cl−, formate, oxalate, and SO4

2− and is mainly
expressed in cochlear hair cells [9,10]. SLC26A6, also known as Pat-1 and Cl−/formate
exchanger (CFEX), transports Cl−, HCO3

−, oxalate, OH−, and formate and is broadly
expressed in enterocytes, pancreatic ducts, renal proximal tubules, cardiac myocytes, and
sperm [3,11,12]. SLC26A7, also known as SUT2, transports Cl−, HCO3

−, and OH− and
is broadly expressed in gastric parietal, type A intercalated, and endothelial cells [13,14].
SLC26A8, also known as TAT1, transports Cl− and SO4

2− and is mainly expressed in male
germ cells and sperm [15,16]. SLC26A9 transports Cl− and HCO3

− and is mainly expressed
in airway epithelial cells and gastric parietal cells [17]. SLC26A10 is a pseudogene that is
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not included in the human open reading frame [1]. SLC26A11, also known as SUT1 and
KBAT, transports Cl−, HCO3

−, SO4
2−, and oxalate and is broadly expressed in renal inter-

calated cells, pancreatic ducts, endothelial cells, and the brain [18,19]. The representative
characteristics of SLC26A transporters are summarized in Table 1.

Table 1. List of SLC26A transporter family members.

Gene Name Protein Name Transporting Ions Expression Refs.

SLC26A1 Sat-1 SO4
2−, oxalate, glyoxylate

Hepatocyte, renal proximal
tubule, intestine [2,3]

SLC26A2 DTDST SO4
2−, oxalate, Cl−

Chondrocyte, renal proximal
tubule, intestine,
pancreatic duct

[4]

SLC26A3 DRA, CLD Cl−, HCO3
−, oxalate Enterocyte, sperm, epididymis [5,6]

SLC26A4 Pendrin I−, Cl−, HCO3
−, SCN−

Cochlear, vestibular epithelial
cell, thyrocyte, type B

intercalated cell, airway
epithelial cell

[7,8]

SLC26A5 Prestin Cl−, formate, oxalate, SO4
2− Cochlear hair cell [9,10]

SLC26A6 Pat-1, CFEX Cl−, HCO3
−, oxalate,

OH−, formate

Enterocyte, pancreatic duct,
renal proximal tubule, cardiac

myocyte, sperm
[3,11,12]

SLC26A7 SUT2 Cl−, HCO3
−, OH−

Gastric parietal cell, type A
intercalated cell,
endothelial cell

[13,14]

SLC26A8 TAT1 Cl−, SO4
2− Male germ cell, sperm [15,16]

SLC26A9 - Cl−, HCO3
− Airway epithelial cell,

gastric parietal cell [17]

SLC26A11 SUT1, KBAT Cl−, HCO3
−, SO4

2−, oxalate
Renal intercalated cell,

pancreatic duct,
endothelial cell, brain

[18,19]

Abbreviations: DTDST, diastrophic dysplasia sulfate transporter; DRA, downregulated in adenoma; CLD, Cl−-
losing diarrhea; CFEX, Cl−/formate exchanger.

SLC26A4 transports different anions, including I−, Cl−, HCO3
−, and SCN−, depend-

ing on the organ type [20]. SLC26A4 exchanges Cl− and HCO3
− in endolymphatic sac

epithelial cells, such as the inner ear and type B intercalated cells, and transports I− in
follicular cells, such as thyroid cells [20]. Furthermore, cryo-EM shows the symmetric
homodimer of SLC26A4 in the presence of Cl− in immortalized human embryonic kidney
(HEK293E) cells [20]. SLC26A4-mediated ion transportation is modulated by the STAS
domain, which forms a long loop region [20]. STAS promoters induce SLC26A4 dimeriza-
tion [21]. Additionally, the misfolded SLC26A4 through mutation is recovered by the STAS
domain [22]. SLC26A4 is a well-known cause of inherited diseases, including autosomal re-
cessive non-syndromic deafness, DFNB4, and Pendred syndrome [23]. Thus, the symptoms,
especially hearing loss, are presented at a young age. In this respect, treatment of SLC26A4
has been attempted for patients during childhood with cochlear implantation [24,25]. Muta-
tions in SLC26A4 have been identified in patients with autosomal recessive non-syndromic
deafness (DFNB)4 and Pendred syndrome with hearing loss [26]. The mutation of SLC26A4
induces loss of ion transportation such as Cl−, HCO3

−, and I− in SLC26A4-mutated or-
gans, including the cochlea and inner ear [27]. Most studies on SLC26A4 have focused on
the relationship between hearing loss and SLC26A4 mutations and have been extensively
reviewed elsewhere. Additionally, most studies on SLC26A4 in ear tissues have focused
on gene mutations. Therefore, to understand the pathophysiological roles of SLC26A4,
we discussed the overall roles of the SLC26A family. In this review, we demonstrated the
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physiological and pathological mechanisms of SLC26A4, including other SLC26A family
members, with a view toward immune and systemic regulation in various organs other
than the ear. In Section 5, although we summarized the physiological role of other organs
than the ear, we suggest therapeutic approaches to recover expression of SLC26A4, which
is mutated in SLC26A4-related hearing loss. This is because recent studies on SLC26A4-
related diseases have mostly focused on hearing loss. The understanding presented by
these recent studies regarding hearing loss suggests the potential to treat physiological
SLC26A4-mediated dysfunction in other organs.

2. Multiple Physiological Functions of SLC26A4
2.1. Protection of SLC26A4 in Airway Epithelium

The airway epithelium encounters antigens that enter the airway through respira-
tion [28]. The airway epithelium removes and neutralizes harmful external substances [28].
Thus, the functional maintenance of airway epithelial cells is critical for protecting the
body. In this section, we summarize the relationship between SLC26A4 and the airway
epithelium, which contributes to respiratory inflammation (Figure 1).
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Figure 1. Role of SLC26A4 in airway epithelial cells. Schematic illustration of the physiological roles
of SLC26A4 in airway epithelial cells. The transportation of HCO3

− through SLC26A4 maintains ASL
thickness, and abnormal activation of SLC26A4 induces chronic inflammation, which is inhibited
by RhoA.

The airway epithelium contributes to immune response by blocking external com-
ponents such as particles and inactivating infectious materials through airway surface
liquid (ASL) [29–31]. ASL is a thin layer or fluid with an acidic pH, and a defect in the
pH modulation of ASL causes respiratory diseases [32]. The regulation of pH is a key
factor in protecting the airway epithelium. In this respect, HCO3

− transportation through
SLC26A4 plays a critical role in protecting the airway epithelium and its immune response.
ASL is thickened by allergic cytokine interleukin-4/13 (IL-4/13), and the efflux of HCO3

−

from epithelial cells through SLC26A4 decreases the ASL thickness [33,34]. The secreted
HCO3

− is transformed into H2CO3 and then converted to H2O and CO2 by the regulation
of carbonic anhydrase in ASL [34]. Increased H2O decreases osmotic pressure and then
lowers ASL thickness [34]. The nasal epithelium of patients with non-syndromic hearing
loss (DFNB4) is thicker than that of healthy individuals [35]. IL-13 treatment induces
additional ASL thickness in the DFNB4 nasal epithelium compared with that in the normal
nasal epithelium [35]. The IL-13-induced HCO3

− transportation by SLC26A4 in DFNB4
nasal epithelial cells is lower than that in the normal nasal epithelium [35]. In addition,
inhibition of SCN− transportation induces ASL thickness in primary human bronchial ep-
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ithelial cells [36]. Treatment of PDSinh-A01, an SLC26A4 inhibitor, enhances IL-13-induced
thickness of ASL in primary cultured human bronchial epithelial cells [36]. These results
suggest that SLC26A4 activity is involved in the modulation of ASL thickness. To protect
the airway by inducing an immune response, the expression of SLC26A4 is increased
and SLC26A4 is localized to the plasma membrane through IL-4 and IL-13 stimulation in
human bronchial epithelial cells [37,38]. Continuous activation of SLC26A4 induces chronic
respiratory inflammation, such as asthma, by producing inflammatory factors including
NF-kB, IL-33, and thymic stromal lymphopoietin [39,40]. To modulate this exaggerated
inflammatory response, airway epithelial cells induce the Ras homolog family member A
(RhoA) inhibitory pathway [40]. The activation of RhoA inhibits Slc26a4 expression and
induces TGF-β1 expression, which inhibits Slc26a4-induced inflammation in mouse type 2
alveolar epithelial cells [40]. Deletion of RhoA increases inflammatory cytokine levels in
asthma mouse models [40]. In addition, SLC26A4 is associated with lipopolysaccharide
(LPS)-induced lung injury [41,42]. LPS injection increases the expression of inflammatory
cytokines and Slc26a4 in C57BL/6 mice [41]. Deletion of Slc26a4 attenuates LPS-induced
NF-kB activation and lung injury in mice [42].

2.2. Regulation of Blood Pressure

The kidneys are key organs that regulate fluid volume and blood pressure [43]. The kid-
neys transport ions, including sodium, potassium, and chloride, with aldosterone-induced
hormonal reactions initiated by renin and angiotensin II [44,45]. Among the various ion
channels and transporters in the kidney, SLC26A4 plays a prominent role [45–47] (Figure 2).
SLC26A4 is expressed in aldosterone-sensitive regions, including the distal convoluted
tubule, connecting tubule, and cortical collecting duct [48–50]. For instance, in the col-
lecting duct, SLC26A4 is involved in Cl−/HCO3

− exchange in the apical membrane of
intercalated cells [48–50]. Slc26a4 is upregulated by aldosterone stimulation in mouse
type B intercalated cells and increases blood pressure [51,52]. Aldosterone increases the
apical expression of Slc26s4 in the cortical collecting duct, whereas the deletion of Slc26a4
attenuates aldosterone-induced Cl−/HCO3

− exchange activity in the lumen of type B
intercalated cells [51]. Additionally, aldosterone induces Cl− absorption, whereas deletion
of Slc26a4 inhibits Cl− absorption and HCO3

− secretion in the cortical collecting ducts of
mice with lower blood pressure [52]. In a clinical report, the blood pressure of patients
with SLC26A4 mutations was lower than that of the normal group [53]. The patients with
SLC26A4 mutations showed increased excretion of urinary Na+ and Cl−, and the levels
of serum renin and angiotensin II in these patients were higher than those in the normal
group [53]. In addition, lower blood pressure was observed with the deletion of the Slc26a4
gene in a mouse model than in wild-type mice [54]. The deletion of Slc26a4 increases
concentration of HCO3

−, whereas it decreases the concentrations of Na+ and Cl− in mouse
blood, suggesting that slc26a4 modulates blood pressure-associated electrolyte levels [54].
In addition to aldosterone, angiotensin II increases SLC26A4 activity through aldosterone
coactivation in the kidneys [55]. Slc26a4 is stimulated by the activation of mineralocorticoid
receptor (MR), which binds aldosterone and is activated by angiotensin II treatment in
mouse intercalated cells [56,57]. Aldosterone and angiotensin II induce Slc26a4 expres-
sion, whereas MR deletion decreases Slc26a4 expression in the apical membrane of type
B intercalated cells [56,57]. Co-administration of aldosterone and angiotensin II increases
Slc26a4 expression and Na+/Cl− reabsorption in adrenalectomized mouse kidneys, which
are adrenal glands removed from a mouse model [58]. Angiotensin II increases Cl− re-
absorption through Slc26a4 and induces sodium chloride cotransporter (NCC) activation
to increase Na+ reabsorption in adrenalectomized mouse kidneys [58]. In addition, the
E3 ubiquitin ligase, Nedd4-2, which is inhibited by the aldosterone-induced MR pathway,
downregulates epithelial sodium channel (ENaC) and pendrin activity [59]. Deletion of
Nedd4-2 increases the Cl−/HCO3

− exchange activity and pendrin expression in the apical
membrane of mouse type B intercalated cells [59]. SLC26A4 expression is associated with
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the movement of ions, such as Na+ and Cl− reabsorption. Thus, SLC26A4 is a critical
component of blood pressure regulation in the kidneys.
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2.3. Involvement in Hormone Regulation

The thyroid gland regulates various metabolic processes in the body, including
bone formation, mitochondrial biogenesis, and nutrient (protein, carbohydrate, and lipid)
metabolism through hormones [60,61]. Thyroid hormones stimulate various target tissues,
including the heart, brain, bones, and muscles [62]. I− is considered as a major component
of thyroid hormones, and I− transportation through SLC26A4 is essential for the thyroid
gland [63]. SLC26A4-mediated ion transportation is focused on I−/HCO3

− transportation
in the thyroid [64–66]. The thyroid-stimulating hormone (TSH) stimulates I− efflux via
Slc26a4 in rat thyroid PCCL-3 cells [67]. In addition, TSH stimulates translocation of Slc26a4
to the plasma membrane [67]. Malfunction of the thyroid gland induces overproduction of
thyroid hormones, known as hyperthyroidism, or lower production of thyroid hormones,
known as hypothyroidism. A recent study showed that dual oxidases are the major compo-
nents of hydrogen peroxide generation, which induces hormone synthesis in the thyroid
gland [68]. Dual oxidase expression is stimulated by IL-4 and the Janus kinase1/signal
transducer and activator of transcription 6 pathway [68]. Overexpression of IL-4 induces
hyperthyroidism and increases SLC26A4 expression [69,70]. In overexpressed-Il-4 trans-
genic mice, mRNA expression of Duox1, which is a marker of thyroid hormonal function,
and protein expression of Slc26a4 are increased [69]. The serum concentration of TSH is
increased in Il-4 transgenic mice, and goiter development is enhanced in low iodine-fed
mice [70]. Deletion of Slc26a4 enhanced the increase in TSH and goiter development in
mice [70]. Additionally, patients with a goiter with accompanying hypothyroidism have
a swollen thyroid and SLC26A4 gene mutations [71]. Mutation-induced deficiency of
SLC26A4 induces hypothyroidism [72]. Excessive iodine intake induces overactivation of
the thyroid gland and causes thyroid diseases, including hyperthyroidism [73]. Overcon-
sumption of I− in mice triggers a negative feedback-like signal that inhibits the activity of
Slc26a4 to regulate the hyperactivation of the thyroid gland [74].

2.4. Other Tissues and Potential Negative Regulators of Tumors

In addition, as in the ear, as referred to in Section 1, SLC26A4 is associated with the
nasal system [75]. SLC26A4 is mainly expressed in the epithelial membrane of turbinate
mucosa and nasal polyps [75]. In clinical studies, patients with nasal polyps show increased
SLC26A4 expression in eosinophilic chronic rhinosinusitis [76,77]. SLC26A4 plays a role
not only in non-tumor cells but also in tumor cells. In MCF-7 breast cancer cells, SLC26A4
is expressed and transports I− [78]. Additionally, treatment of carcinogen, N-methyl-N-
nitrosourea, with I2 increases Slc26a4 expression in rat mammary glands [79]. These results
suggest that the tumorigenic circumstance of breast cancer increases Slc26a4 expression.
However, the mRNA and protein expression of SLC26A4 were lower in tumoral regions
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than in peri-tumoral regions in patients with breast cancer [80]. In addition, analysis of
gene expression patterns showed that SLC26A4 expression was downregulated in patients
with prostate and thyroid cancers [81,82]. Thus, the expression patterns and location of
SLC26A4 along with cancer types show potential for diagnosis of cancers. Moreover, it was
shown that cell-free DNA, which has been suggested for cancer diagnosis and progression,
of SLC26A4 is hypermethylated in blood of thyroid cancer patients [83]. It is well-known
that DNA hypermethylation inhibits methylated gene expression [84,85]. Interaction of
SLC26A4 and methylation should be determined in future study. Although decreased
SLC26A4 expression is a common pattern in prostate, thyroid, and breast cancers, the
relationship between SLC26A4 and tumors has not been fully demonstrated.

3. Relationship between SLC26A4 and Other Ion Transporters

In particular, the ion transport of SLC26A4 is different from that of cystic fibrosis (CF)
transmembrane conductance regulator (CFTR) in various organs and tissues, including the
lung, kidney, thyroid, inner ear, parotid duct, and liver [86]. SLC26A4 reabsorbs Cl− and
secretes HCO3

−, whereas CFTR transports both Cl− and HCO3
− outside the plasma mem-

brane [86]. A correlation between SLC26A4 and CFTR has been demonstrated in several
experimental systems. Thus, we described the relationship between SLC26A4 and CFTR.
In addition to CFTR, relationships between SLC26A4 and other ion channels/transporters
are discussed in this section.

IL-4 and IL-13 activate SLC26A4 and CFTR in CF airway epithelial cells [87]. In
addition, IL-4/IL-13-induced CFTR activation is attenuated by treatment with SLC26A4
inhibitor niflumic acid [87]. CFTR mutations have no effect on pH-related proteins such
as H+/K+ ATPase (ATP12A) and sodium bicarbonate cotransporter 1 (SLC4A4); however,
changes in pH through SLC26A4 modulation are inhibited by CFTR mutations in human
bronchial epithelial cells [88]. SLC26A4 is activated by treatment with CFTR inducer
forskolin [89]. These two proteins are closely related to CF, a hereditary disorder of human
airway epithelial cells [90,91]. In patients with CF, the 723rd histidine of SLC26A4 is
converted to arginine and the 508th phenylalanine of CFTR is deleted [90,91]. Thus, to
rescue these misfolded proteins, endoplasmic reticulum (ER) stress-mediated secretion and
the ubiquitin–proteasome system are considered useful strategies for deleting mutated
SLC26A4 and CFTR [91–94]. These therapeutic mechanisms are described in Section 5.

CFTR deficiency induces an acid–base imbalance caused by the deactivation of
SLC26A4 [86]. CFTR is localized to the Slc26a4-positive membrane of the mouse cor-
tical collecting duct [95]. Deletion of Cftr attenuates HCO3

− excretion from the mouse
kidneys [96]. The knockout of Cftr decreases urine pH levels while increasing serum pH
levels in mice [97]. Expression of Slc26a4 mRNA and Slc26a4 protein is decreased by
Cftr knockout in mouse kidneys [97]. Na+ is a major ion that regulates blood pressure
in the kidney through Na+ channels such as ENaC [98,99]. The relationship between
SLC26A4 and ENaC has been studied extensively. SLC26A4-induced increases in HCO3

−

and pH levels stimulate ENaC activity [47,100,101]. Activation of Slc26a4 increases Enac
expression, whereas knockout of Slc26a4 reduces Enac-mediated Na+ absorption [101].
Another Na+ transporter, NCC, interacts with SLC26A4 [102]. The expression of Slc26a4 is
compensatorily increased by NCC knockout in mice [102].

In addition to Na+, K+ is a key ion that regulates blood pressure [103,104]. A K+-
free diet decreases Slc26a4 expression [105], whereas extreme restriction of K+ in the
diet increases SLC26A4 expression in mouse kidneys [106]. The activation of Slc26a4
through aldosterone stimulation induces hypokalemia in the plasma, whereas addition of
K+ recovers the concentration of plasma K+ [105].

4. Role of Other SLC26A Transporters with SLC26A4

As members of the SLC26A family contain common structures, including the cytoplas-
mic N-terminal domain followed by 12 transmembrane domains, and transport common
ions, including HCO3

−, Cl−, and I−, SLC26A transporters show potential for crosstalk
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with each other [1]. For example, SLC26A1 transports Cl− and SO4
2− in the basolateral

membrane of the proximal tubular kidney cell line (LLC-PK1), whereas Slc26a2 transports
Cl− and SO4

2− in the apical membrane of rat proximal tubules [107,108]. Similarly, Slc26a7
exchanges HCO3

− and Cl− in the basolateral membrane of rat type A intercalated cells,
whereas Slc26a11 transports HCO3

− and Cl− in the apical membrane of mouse type A
intercalated cells [13,109]. Slc26a4 transports HCO3

− and Cl− in the apical membrane of
mouse type B intercalated ducts, whereas Slc26a11 transports HCO3

− and Cl− in the baso-
lateral membrane of mouse type B intercalated ducts [49,109]. The schematic relationships
between these transporters are shown in Figure 3. Although they possess various common
characteristics, their relationships have not been fully studied. In this section, we highlight
the role of other SLC26A transporters in various tissues (Table 2).
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Table 2. The other SLC26A functions in various tissues and cells.

Transporters Expression Functions Refs.

Slc26a6
Mouse bladder Induction of calcium oxalate stones [110]

Mouse proximal tubule Decrease in Nhe3 expression [111]

SLC26A7,
Slc26a7

Mouse renal outer medulla Increased by high blood pressure [112,113]

Mouse distal renal tubule Induction of acidosis [114]

Mouse thyroid Decrease in thyroid hormone [115]

FRTL-5 Translocated by thyroid
stimulating hormone [116]

SLC26A9,
Slc26a9

Mouse airway surface liquid Induction of acidification [117]

CFBE41o Increase in CFTR current [118]

Human Asthmatic airway Overexpressed in cells [119,120]

Mouse kidney medullary collecting duct Increase in arterial pressure [121]

Abbreviations: Nhe3, sodium hydrogen exchanger 3; CFTR, cystic fibrosis transmembrane conductance regulator;
FRTL-5, rat thyroid follicular cell line; CFBE41o, human cystic fibrosis bronchial epithelial cell line.

In the SLC26A family, SLC26A9 is the most studied transporter in the airways. In
addition to SLC26A4, SLC26A9 is expressed in the apical membrane of airway epithelial
cells in humans, mice, and piglets [117,119]. Transportation of HCO3

− through Slc26a9
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induces acidification of ASL in mice [117]. Additionally, in the human lung bronchiolar and
alveolar epithelium, SLC26A9 transports Cl−, suggesting that it is a Cl− channel [122,123].
SLC26A9 performs CFTR-like functions in the airways and interacts with CFTR [124].
Inhibition of CTFR through CFTR inhibitor GlyH-101 decreases the SLC26A9 current in
CFTR or SLC26A9-overexpressed HEK293 cells and in human bronchial epithelial (HBE)
cells [122,125]. Co-overexpression of SLC26A9 and CFTR in HEK293 cells reduces forskolin
(cAMP activator)-induced CFTR currents compared with CFTR-only transfected HEK293
cells [123]. Overexpression of SLC26A9 increases the current in a CFTR-mutated (∆F508,
deletion of phenylalanine) HBE cell line (CFBE41o) [118]. Because ∆F508 CFTR represents
CF, SLC26A9 has been suggested as a therapeutic target for CF [126,127]. Additionally,
SLC26A9 is associated with asthma and lung inflammation. In the asthmatic airways
of humans, SLC26A9 is overexpressed and genetic variants of SLC26A9 increase risk of
asthma [119,120]. Although other SLC26A transporter genes, including SLC26A3, SLC26A6,
and SLC26A9, are expressed in HBE cells, and SLC26A3 transports Cl− and HCO3

− in
tracheal epithelial cells [128,129], the detailed regulatory mechanisms and physiological
roles of other SLC26A family members have not been fully studied.

Several SLC26A transporters contribute to the regulation of blood pressure. Regulatory
hormone vasopressin increases Slc26a7 expression in the renal outer medulla of rats for
water reabsorption and subsequent increase in blood pressure [113]. Additionally, Slc26a7
is upregulated by K+ depletion in the renal outer medulla of rats and mice [112,113].
Although direct evidence of the regulation of blood pressure through SLC26A7 has not
yet been demonstrated, SLC26A7 expression is increased by K+ depletion-induced high
blood pressure. Depletion of K+ increases blood pressure in serial steps in the basolateral
membrane of the distal convoluted tubule [130]. A low concentration of potassium increases
K+ transportation through the inwardly rectifying potassium channel (Kir) 4.1/5.1 on the
kidney basolateral membrane, and K+ transportation subsequently induces membrane
hyperpolarization [130]. The membrane hyperpolarization induces Cl− transportation to
decrease the cytosolic Cl− concentration, and NCC is activated to increase Na+ reabsorption
and subsequently enhance blood pressure [130]. SLC26A9 affects the regulation of blood
pressure. Deletion of Slc26a9 reduces Cl− transportation in the mouse kidney medullary
collecting duct and increases arterial and blood pressure in mice [121].

In the inner ear, Slc26a4 regulates oxalate transportation, and mutations in Slc26a4 gen-
erate calcium oxalate stones in the inner ear [131]. In the kidney, other SLC26A transporters
also regulate oxalate concentration. Among the SLC26A family members, SLC26A6 is a
representative transporter of oxalate. Deletion of Slc26a6 attenuates Cl−/oxalate exchange
in mouse proximal tubules and increases the concentration of mouse urine oxalate [110].
Additionally, knockout of Slc26a6 induces calcium oxalate stones in the mouse bladder [110].
Kidney stones are associated with both SLC26A6 and estrogen levels. Estrogen inhibits the
generation of kidney stones, and malfunction of SLC26A6 generates kidney stones through
systemic reviews and meta-analyses in female patients [132]. Estrogen activates SLC26A6
in the kidneys, and estrogen-deficient females show lower SLC26A6 activation, with an
increase in kidney stones [132]. SLC26A6 regulates not only oxalate transportation but also
the maintenance of renal pH. Deletion of Slc26a6 decreases pH, with a decrease in sodium
hydrogen exchanger 3 (Nhe3) in mouse proximal tubule cells [111]. Similarly, deletion
of Slc26a7 induces distal renal tubular acidosis in mice [114]. Overexpression of Slc26a7
increases pH in Madin–Darby canine kidney (MDCK) cells, and acidification of the culture
media decreases Slc26a7 expression in MDCK cells [133].

Patients with goitrous hypothyroidism harbor SLC26A4 and SLC26A7 mutations [134].
Knockout of Slc26a7 decreases the concentration of thyroid hormones and abnormally
increases the size of the mouse thyroid gland [115]. Additionally, TSH induces the translo-
cation of Slc26a7 from the cytosol to the plasma membrane in rat thyroid follicular FRTL-5
cells [116]. The thyroid hormone levels in Slc26a7-deleted mice are lower than those in
Slc26a4-deleted mice [135]. Although SLC26A7 is associated with thyroid hormone regu-
lation, the relationship between SLC26A4 and SLC26A7 in the thyroid gland has not yet
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been demonstrated. To fully understand the regulation of I− transport, the physiological
role of SLC26A7 and its interaction with SLC26A4 should be verified.

5. Therapeutic Approaches

The diseases that are related to SLC26A4 are generally induced by the dysfunction
of SLC26A4. However, the development of specific inducers or agonists of SLC26A4 re-
mains a challenging issue. As referred to in Section 2, aldosterone and angiotensin II
increase SLC26A4 activity, whereas treatments with aldosterone and angiotensin II are
restricted to inducer use for SLC26A4 because aldosterone and angiotensin II increase
blood pressure. Although development of drugs targeting ion channels/transporters has
been studied, it was limited to machine learning techniques [136]. Additionally, although a
recent study presents a clinical trial to treat Pendred syndrome with sirolimus, which is
an mTOR inhibitor, this study is still emerging [137]. A clinical trial of SLC26A4 mutation-
induced hearing loss was suggested with a cochlear implant [138], whereas the studies of
SLC26A4-related disease treatment are restricted to gene delivering therapy. In a recent
study, hearing loss in Slc26a4-deficient mice was reversed by gene therapy, by inserting
SLC26A4 cDNA into Slc26a4-deficient embryonic mice [139]. Although viral transfection
of Slc26a4 induced insufficient restoration of vestibular function, hearing loss was recov-
ered, cochlear enlargement was inhibited, and outer hair cells were rescued [139]. The
splice site mutation in SLC26A4, which commonly occurs in Asian populations, induces
Pendred syndrome with the deletion of exon 8 [140]. To rescue skipping exon 8, antisense
oligonucleotides were used to promote exon inclusion [140]. Antisense oligonucleotides of
SLC26A4 recovered the length of SLC26A4 in patients with SLC26A4 mutations regarding
the Slc26a4 site-mutated mouse model [140]. Attempts to modulate SLC26A4 have occurred;
however, an experimental approach has been proposed for hearing loss [141]. The mutation
of SLC26A4, p.H723R (His723Arg), induces misfolding of SLC26A4 and inhibits surface
expression of SLC26A4 [142]. H723R-transfected HEK293 cells did not show Cl−/HCO3

−

exchange activity compared with SLC26A4 wild-type transfected HEK293 cells [94]. The
induction of unconventional protein secretion has been suggested as a treatment approach.
Unconventional protein secretion is induced by the inhibition of ER-to-Golgi transport
to rescue the trafficking of mutated ion transporters, including CFTR [93]. The inhibi-
tion of ER-to-Golgi transport by the dominant-negative form of ADP-ribosylation factor
1 recovered SLC26A4 activity with heat shock cognate protein 70 in H723R-transfected
HEK293 cells [94]. Regulation of ion channels and transporters has been suggested for
the treatment of various ion channel diseases as drug targets [143,144]. Numerous ion
channels/transporters, including potassium, sodium, calcium, and chloride channels,
are associated with diseases in various organs, including the brain, heart, pancreas, kid-
neys, and skeletal muscles [143]. For example, neurological and cardiac channelopathies
occur due to malfunctions of various ion channels, such as voltage-gated sodium chan-
nels, voltage-gated calcium channels, GABA-gated chloride channels, glutamate-gated
cationic channels, and acetylcholine-gated cationic channels [144]. However, therapeutic
approaches for the treatment of SLC26A4-related gene mutations or defects have to be
studied further with clinical trials.

6. Conclusions and Perspectives

In this review, we summarized the relationship between SLC26A4 and its pathophysi-
ological functions in various organs. SLC26A4 is involved in the maintenance of airway pH,
which induces ASL, lung inflammation, injury, and increased blood pressure. SLC26A4 de-
ficiency is observed in hypothyroidism patients, whereas increased expression of SLC26A4
is observed in hyperthyroidism. However, despite their diverse regulatory mechanisms,
the detailed mechanisms of SLC26A4 and the relationship between SLC26A4 and other
SLC26A transporters need to be identified as potential challenging issues. In recent re-
search, Cl−/HCO3

− exchangers including SLC26A6 and SLC4A2 (although not SLC26A
transporter) were suggested as complementary to ion transportation for HCO3

− secretion
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in esophageal submucosal glands [145]. SLC26A6 secretes HCO3
− on the luminal mem-

brane of mouse esophageal submucosal glands and SLC4A2 induces influx of HCO3
− from

the basal membrane of mouse esophageal submucosal glands [145]. With regard to this
regulation, SLC26A transporters in the basal membrane should be considered with mutual
regulation of SLC26A4. In addition, therapeutic approaches for conjugated function could
be considered a new challenge for future researchers. Recent research has demonstrated
modulation of the SLC26A4 gene by CRISPR/Cas to cause congenital hearing loss [146].
Application of CRISPR/Cas techniques against mutations of SLC26A4 demonstrates the
potential to recover congenital hearing loss. The development of modulatory drugs or
genetic applications, such as CRISPR/Cas technology, and the induction of unconventional
secretion of SLC26A4 are welcomed in SLC26A4-related diseases.
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