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Abstract: Meningiomas are tumors of the central nervous system that vary in their presentation,
ranging from benign and slow-growing to highly aggressive. The standard method for diagnosing
and classifying meningiomas involves invasive surgery and can fail to provide accurate prognostic
information. Liquid biopsy methods, which exploit circulating tumor biomarkers such as DNA,
extracellular vesicles, micro-RNA, proteins, and more, offer a non-invasive and dynamic approach
for tumor classification, prognostication, and evaluating treatment response. Currently, a clinically
approved liquid biopsy test for meningiomas does not exist. This review provides a discussion
of current research and the challenges of implementing liquid biopsy techniques for advancing
meningioma patient care.
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1. Introduction

Meningiomas are frequently encountered brain tumors, comprising approximately
39.7% of all central nervous system (CNS) tumors and 55.4% of all non-malignant CNS
tumors [1]. Meningioma tumors originate from meningothelial arachnoid cap cells within
the brain or spinal cord [2].

The World Health Organization (WHO) classifies meningiomas into three grades
based on their histological features: grade I (benign), grade II (atypical), and grade III
(anaplastic) [3], with the majority presenting as benign (80.1%) [1]. Considering their
classifications, the prognosis for meningiomas remains relatively favorable, with the 5-
year progression-free survival being 95.7%, 81.8%, and 46.7% for grades I, II, and III,
respectively [4]. However, meningioma patient outcomes can be variable and are not
reliably predicted using traditional WHO grading, particularly among WHO grade I and II
meningiomas [5]. A new meningioma grading algorithm combines multiple classification
approaches including copy number alterations, mutations, methylation patterns, and WHO
grade to return an integrated risk score that predicts recurrence risk more accurately
and offers a precise risk assessment [5]. This score classifies meningiomas into three risk
categories: low, intermediate, and high.

Low-risk meningiomas are often characterized by their slow growth and prolonged
latency period of 20–30 years [6,7]. This slow progression can lead patients to present as
asymptomatic or be diagnosed incidentally. As a result, patients are frequently placed
under observation without immediate treatment, contingent on their symptoms and the
tumor growth rate [8,9]. Conversely, high-risk meningiomas can be aggressive and require
immediate attention. Therefore, this group of tumors can be quite heterogeneous in their
natural history, which can make their initial management challenging. This presents an
unmet clinical need for alternative ways other than traditional imaging to predict tumor
aggressiveness, clinical course, and treatment response.

Traditional diagnostic and monitoring approaches for meningiomas rely on magnetic
resonance imaging (MRI), computer tomography (CT), and tissue biopsy [2,8], but these
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methods have several limitations. Imaging, such as MRI, can occasionally misinterpret other
intracranial lesions as meningiomas [8,10,11]. Dural-based tumors that mimic meningiomas
on MRI include solid cancers or hematopoietic malignancies [12]. In cases such as those
mentioned above, it is important to have a rapid diagnostic method to distinguish them
from meningiomas, as a “watch and wait” strategy in malignant tumors is harmful for the
patients. In addition, traditional imaging lacks sensitivity or specificity for detecting small
tumors or residual disease [13] and provides limited prognostic information [13,14].

When treatment is opted for, it typically involves surgical resection, followed by radia-
tion as necessary [15]. Prior to treatment, pathological assessment and molecular diagnosis
are essential to guide these decisions, with tissue biopsies offering reliable histopathologic
analysis, subtyping, and grading [8]. There are many obvious disadvantages to intracranial
biopsies, as they carry inherent risk, contribute to patient anxiety, and are occasionally
infeasible due to their location near essential brain regions [10]. Additionally, they may
not fully capture tumor heterogeneity [16], and repeated biopsies for tumor monitoring
are challenging. Given these limitations and the demand for non-invasive diagnostic or
surveillance methods for CNS tumors, liquid biopsy techniques have gained prominence
as potential non-invasive solutions.

Liquid biopsy involves analyzing circulating tumor biomarkers in bodily fluids, such
as blood (plasma and serum), cerebrospinal fluid (CSF), urine, and saliva, as a minimally
invasive approach for monitoring disease [17,18]. Common tumor biomarkers that can be
exploited for liquid biopsy include circulating tumor cells (CTCs), circulating tumor DNA
(ctDNA), microRNA (miRNA), extracellular vesicles (EVs), proteins, epigenetic signatures,
and more. In recent years, there have been major advances in utilizing liquid biopsy
techniques to detect, characterize, and prognosticate various cancers, such as lung [19],
breast [20], and colorectal malignancies [21]. Liquid biopsy can supplement traditional
imaging and biopsy methods to provide more robust and detailed diagnostics (Figure 1).
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Unfortunately, applying liquid biopsy methods to intracranial tumors has posed
unique obstacles, primarily due to a scarcity of measurable tumor biomarkers. One pre-
vailing hypothesis suggests that the blood-brain barrier may hinder the shedding of tumor
cells and biomarkers into bodily fluids [16,22–24], which contributes to the relative lack
of success in intracranial tumor liquid biopsy research. Furthermore, biomarkers shed
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by other non-cancer tissues add background noise and further dilute the tumor-specific
signals. Despite these obstacles, the exploration of liquid biopsy methods across all clinical
stages of intracranial tumors, from early identification to surveying recurrence, remains
highly significant and timely.

There are currently no clinically validated liquid biopsy prognostic or diagnostic
biomarkers specific for meningiomas. As meningiomas can vary significantly in their
natural history and biological behavior and the decision to treat these tumors early on at
their presentation is crucial to maximize oncological control and quality of life, an accurate
non-invasive biomarker of disease activity could provide an avenue for improved risk
stratification and outcomes. Specifically, clinical uses for liquid biopsy methods would
allow for distinction between meningiomas and brain metastases, discriminating aggressive
from benign meningiomas, and monitoring disease progression. This review examines
the current state of research on meningioma liquid biopsy, including a range of various
biomarkers that have been studied and the ongoing challenges to be addressed.

2. Methods

Five markers or liquid biopsy approaches, including “cfDNA”, “miRNA”, “EV’s”,
“seroreactivity”, and “spectroscopy”, were chosen for analysis based on reviews and
research papers about liquid biopsy in brain tumors [16–18,25–28]. The marker or liquid
biopsy approach was searched in Google Scholar and PubMed according to the search
strategies outlined in Supplementary Table S1 (Table S1) between 21 September 2023 and
20 March 2024. A total of 2040 articles were initially collected; 1419 articles underwent
screening, and 25 were selected for analysis in this review (Figure 2) [29]. Eligible studies
were selected based on the following criteria:

1. The studies were full essays written in English.
2. The patient cohort contained at least five meningioma patients.
3. The study used one of the five liquid biopsy methods.
4. At least one significant biomarker was observed.
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3. Circulating Tumor DNA

Cell-free DNA (cfDNA) has proved to be a promising biomarker across several cancer
types, including liver [30], lung [31], and breast cancer [32]. cfDNA represents the fraction
of DNA circulating within biofluids upon apoptosis, necrosis, or active secretion and is pri-
marily nucleosomal [33]. While the majority of cfDNA originates from natural white blood
cell turnover [33,34], in individuals with cancer, cfDNA is also comprised of circulating
tumor DNA (ctDNA) that has been released by tumor cells. Tumor-specific characteristics
of ctDNA such as mutations, methylation, fragmentation patterns, nucleosome positioning,
and histone modifications offer valuable insights into disease activity and aggressiveness
and are sensitive enough to detect minimal residual disease (MRD) after curative-intent
treatment [35–38]. Moreover, the short 2-h half-life of plasma cfDNA, coupled with its
capacity to capture tumor heterogeneity, positions it as a reliable and dynamic marker for
assessing tumor progression over time. The challenge with ctDNA as a biomarker arises
from its low abundance in circulation, which is thought to constitute a fraction ranging
from 0.01% to 10% of all cfDNA [39,40], although ctDNA concentration is variable among
patients and its biological signal can be diluted further with the release of high quantities
of non-tumor cfDNA dependent on clinical context.

Isolating ctDNA in patients with brain tumors presents a distinctive challenge, given
that the abundance of ctDNA is especially scarce. In one pan-cancer study, only 10%
of patients with gliomas exhibited detectable ctDNA in plasma, in stark contrast to the
82% detection rate among patients with non-brain tumors [39]. The low concentration of
circulating ctDNA is thought to be related to tumor burden, location, and metabolism [33],
the permeability of the blood-brain barrier [24], and the release of non-tumor DNA from
immune cell death [33,34]. Additionally, the type of biofluid used for analysis impacts
sensitivity, with CSF presenting higher concentrations of ctDNA on average compared to
plasma in patients with brain tumors [41,42].

Given the numerous difficulties associated with discerning ctDNA in brain tumors,
limited studies have examined its efficacy, with most of the research concentrating on
glioblastoma. Nevertheless, cfDNA remains an advantageous biomarker for meningiomas
for its various genetic and epigenetic attributes that can be analyzed.

3.1. ctDNA Mutations

Mutations found in tumor tissue biopsies are also reflected in ctDNA [43]. Therefore,
an obvious application of liquid biopsy is genomic profiling for the presence of tumor-
specific aberrations, including single nucleotide polymorphisms (SNPs), insertions, or
deletions. Piccioni et al. [44] aimed to discern cfDNA genomic changes, specifically SNPs
and gene amplifications, in a variety of patients with primary brain tumors, including
meningiomas. A recognizable somatic alteration occurred in half of the cohort and 59% of
the meningioma patients upon gene panel analysis. However, the study lacked concordant
analysis with tumor tissue genetic analysis and the exclusion of mutations related to clonal
hematopoiesis of indeterminate potential (CHIP).

Graillon et al. [45] endeavored to bridge the gap between tumor and liquid biopsy
mutational analysis by validating mutations present in plasma or CSF liquid biopsy with
known mutations in tumor tissue in 18 meningioma patients. However, a liquid biopsy
of CSF or plasma did not indicate any mutations in 11 benign cases, and only confirmed
three of seven mutations in aggressive cases [45]. These results are poor but suggest greater
ctDNA circulation in more aggressive meningiomas. Confirmation of these results in a
larger study is needed.

While these studies are an improvement compared to earlier findings [39], the ap-
proach of genotyping a limited number of genes for non-invasive diagnosis and molecular
characterization of meningiomas provides limited sensitivity. Given the vast number of
genomic and epigenomic aberrations that can be present in each tumor, the assay must be
inclusive of a wide panel of possible tumor-specific molecular alterations to be sensitive in
the setting of low amounts of ctDNA. Thus, liquid biopsy techniques for examining ctDNA
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mutations, although with obvious translational value, will have a more limited scope than
anticipated in the landscape of liquid biopsy technology development.

3.2. Epigenomic Signatures

A liquid biopsy platform that can more thoroughly analyze the patterns and origin of
cfDNA in circulation is cfDNA methylation. DNA methylation profiling in meningiomas
has high clinical utility, as it has recently been exemplified to molecularly classify and risk
stratify meningiomas [46,47]. Assessing meningioma methylation markers can predict
recurrence risk with more precision than traditional WHO-grade risk [48]. In addition,
DNA methylation plays a crucial role in regulating gene expression and chromosomal
stability; thus, changes in methylation can also contribute to carcinogenesis [49]. For
example, TRAF7 and KLF4 promoter methylation in meningiomas is linked to a higher
tumor grade and risk of recurrence [50].

Methylation signatures in cfDNA provide genome-wide epigenetic information that
can be used to discern cancer-associated immune responses and are informative regarding
gene expression and meningioma classification. Nassiri et al. [51] successfully utilized
cfDNA methylation profiles from plasma to differentiate various intracranial tumors with
high accuracy. Upon establishment of the top 300 differently methylated regions in menin-
gioma versus five other brain tumor types, a classification machine learning model was
developed in which the area under the curve (AUC) was 0.89 [51].

Similarly, Herrgott et al. [52] identified congruent and specific methylation probes in
meningioma tissue, serum, and plasma that could distinguish meningioma from other CNS
tumors. Liquid biopsy diagnostic and prognostic models were subsequently developed
using machine learning approaches that could predict the presence of meningioma and
the risk of recurrence with an accuracy of 85% and 87.7%, respectively. Despite the limited
number of patients and the retrospective nature of these studies, these results are optimistic,
and enhancing the sensitivity and specificity of these models could pave the way for
clinical implementation.

3.3. Multi-Omic Approaches

In addition to the various cfDNA characteristics discussed here, many other attributes
of cfDNA can be exploited, including fragmentation patterns and nucleosome positioning.
Yet, few have been studied in meningiomas.

Multi-omic feature analysis has recently gained prominence for its ability to evaluate
several characteristics of cfDNA at once [53]. This strategy can combine multiple fields of
study, including genomics, methylomics, fragmentomics, and nucleosomics, to provide
more complete prediction models that can mitigate low ctDNA concentrations. Multi-
modal feature selection combined with dimensionality reduction and machine learning can
improve the sensitivity and specificity issues of single-omic approaches while mitigating
the risk of overfitting. While this methodology has yet to be applied to meningiomas,
multi-omic cfDNA strategies appear to be the next frontier in liquid biopsy research.

4. Extracellular Vesicles

Extracellular vesicles (EVs) engage in cell-to-cell communication and contain proteins,
DNA, RNA, and lipids. EVs are secreted by normal and cancer cells into the bloodstream,
and, due to the protective nature of the EV membrane, the contained biomolecules are
promising tumor biomarkers. In addition, there is evidence that suggests EVs can pass
through the blood-brain barrier via transcytosis [54], making them an excellent marker
for CNS tumors. However, a significant challenge arises from the fact that tumor-derived
EVs cannot be differentiated in the bloodstream from EVs originating from other cell
types. Recent work has identified meningioma-specific EV proteins that have potential
for distinguishing meningioma-originating EVs in circulation [55–57]. Nevertheless, there
are currently no clinically applicable methods for using EVs in biofluids for discerning
CNS tumors.
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Due to their diversity of contained biological molecules, many components of EVs can
be used for analysis. For example, Negroni et al. [58] and Abdelrahman et al. [59] examined
the miRNA molecule miR-497 in circulating exosomes for its differential expression in
meningioma patients and among meningioma WHO grades. In addition to discriminating
between meningioma and healthy patients [59], miR-497 expression was shown to be
significantly downregulated in WHO grade III meningiomas versus grades I and II, as
shown by a receiver operating characteristic analysis (ROC) (AUC = 0.894) [58]. Another
group of researchers, Ricklefs et al. [55], explored EV-DNA methylation patterns, EV
proteomics, and EV-DNA mutations specific to meningioma tissue that could be applied
to liquid biopsy. It was revealed that EV-DNA secreted by meningioma cells can provide
successful tumor classification by reflecting tumor-specific methylation profiles, mutations,
and copy number variations. The EV proteome, on the other hand, did not allow for
successful tumor classification but has potential for probing meningioma-originating EVs.
Additionally, it was noted that the concentration of EVs in plasma is elevated in patients
with meningioma, and this increase correlates with the malignancy grade and extent of
edema, a pattern also consistent in studies involving glioblastoma patients [60]. As these
findings were characterized in meningioma tumor tissue, not through a liquid biopsy, the
next step is to assess whether these findings are consistent with meningioma EV isolation
from biofluids.

It has been shown that meningioma tumors exhibit increased expression of proteins
such as EGFR, NEK9, EPS812, CKAP4, SET, and STAT2 [56]. Differential protein expression
of meningioma-originating EVs, therefore, has the potential to distinguish meningiomas.
Dobra et al. [61] (2020) aimed to establish a unique protein fingerprint of CNS tumors,
including meningiomas, from serum-derived sEVs (small extracellular vesicles) [61]. Liquid
chromatography and mass spectrometry were performed on pooled serum samples from
four patient groups, including glioblastoma, benign meningioma, brain metastasis from
non-small-cell lung cancer, and non-cancer controls. Upon further statistical analysis,
Dobra et al. [61] (2020) successfully determined 17 sEV proteins that, when considered
together, could discriminate between the patient groups. [61]. Liquid chromatography and
mass spectrometry were performed on pooled serum samples from four patient groups,
including glioblastoma, benign meningioma, brain metastasis from non-small-cell lung
cancer, and non-cancer controls. Upon further statistical analysis, Dobra et al. [61] (2020)
successfully determined 17 sEV proteins that, when considered together, could discriminate
between the patient groups.

Dobra et al. [57] (2023) furthered their analysis and attempted to uncover a single sEV
protein marker from the established group of 17 that could be indicative of prognosis. The
matrix metalloproteinase-9 (MMP-9) protein was theorized as a potential single-protein
marker, as it is known to have functional roles in cancer cell survival and metastases [62,63].
Upon analyzing blood serum from four patient groups, including meningioma, the group
confirmed increased sEV MMP-9 concentration is associated with decreased patient sur-
vival. It was validated that MMP-9 concentration in circulation is related to tumor aggres-
siveness and showed variation among tumor type and stage; however, it was not successful
in distinguishing between control and meningioma patient groups [57].

While these findings are promising, the use of EVs as liquid biopsy biomarkers is a
new technique that has not been validated thoroughly. The limited number of studies in
this area and the ongoing dilemma of delineating tumor originating EVs in biofluids are
significant obstacles that need to be addressed.

5. miRNA

MicroRNAs (miRNA) participate in controlling the stability and translation of mRNA [22,64].
As such, miRNAs are involved in tumor development by acting as oncogenes or tumor
suppressers [65–68] and miRNA expression profiles can distinguish human cancers [66]. In
biofluids, miRNAs can be encapsulated in EVs or presented as free miRNAs.
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Several studies have explored their role in meningiomas and have attempted to reveal
specific miRNAs that are up- or downregulated in the blood of meningioma patients with
real-time quantitative PCR. For example, Zhi et al. [69] uncovered six serum miRNAs with
two-fold differences in expression in meningioma patients versus healthy controls and
constructed a diagnostic model. Similarly, Kopkova et al. [70] observed nine differentially
expressed miRNAs in CSF across various CNS tumors. Abdelrahman et al. [59] and
Carneiro et al. [71] found that differential expression of even one to two miRNA molecules
in plasma or serum has the potential to differentiate meningiomas and distinguish low-
and high-grade meningiomas. However, utilizing only one or two miRNA biomarkers is
unlikely to have practical use in the clinic, and these studies face many limitations, as the
detected miRNAs are not necessarily tumor-derived, and the specificity and sensitivity of
the models are low in comparison to other liquid biopsy approaches.

As up to 20% of surgically resected meningiomas recur [47], another application of
utilizing miRNAs in liquid biopsy is to assess prognosis and recurrence risk. Urbschat
et al. [72] examined the expression of four miRNAs in solid tumors and blood plasma
in meningioma patients as potential prognostic markers. Their results suggest that miR-
200a-3p could be a useful marker to predict meningioma recurrence, as its expression
was significantly downregulated in the tumor tissue of recurrent meningiomas compared
to new diagnoses [72]. However, the application of miR-200a-3p expression for liquid
biopsy is limited since this differential expression between recurrent and non-recurrent
meningioma tissue is discordant in plasma.

Another group of researchers developed a nanowire-based device that could be used
to extract EV-encapsulated and free miRNAs from urine samples [73]. Upon microarray
analysis, 23 differentially expressed miRNAs were discovered to characterize many CNS
cancers, including meningioma, against individuals without cancer [73]. While this liquid
biopsy technique is not meningioma-specific, the nanowire device has clinical potential
for broad CNS cancer discovery. To evaluate robustness, continued research should assess
this method’s ability to distinguish CNS cancers from other cancer types and apply this
technique to larger patient cohorts.

Like other biomarkers, miRNAs have advantages and disadvantages for liquid biopsy
applications. Another factor that complicates the use of miRNA expression as a biomarker
of disease activity is establishing thresholds of differential expression above which dif-
ferences are considered biologically relevant. In some cases, changes between 10 and
20-fold are considered relevant, while in others, a less than two-fold change has significant
biological effects [66]. Altogether, there are many hurdles to overcome before miRNA can
be considered a reliable, specific, and applicable biomarker.

6. Seroreactivity to Autoantibodies

Neoplasias such as meningiomas express tumor-associated antigens (TAAs), which
can trigger the patients’ immune system to produce autoantibodies in defense [74,75]. In
addition to targeting TAAs, these autoantibodies can be found in blood serum, which
makes them a promising liquid biopsy biomarker. Following immunogenic antigen identifi-
cation methods such as serologic identification of recombinantly expressed clones (SEREX),
meningioma and control sera can be screened against antigen sets for reactive antibod-
ies [75,76]. A panel of meningioma-associated antigens exhibiting reactivity specific to
meningioma patient serum can then be applied as a non-invasive diagnostic tool.

Comtesse et al. [76] were the first researchers to analyze multi-antigen panels as a
potential diagnostic method for meningiomas. They established a panel of 62 meningioma-
associated antigens and evaluated the seroreactivity of meningioma and healthy sera. Their
results showed that twice as many antigens were reactive to meningioma sera compared to
healthy sera on average, and 17 antigens exhibited seroreactivity exclusive to meningioma,
suggesting that an antigen panel could be used for distinguishing meningiomas.

Keller et al. [77] endeavored to produce a diagnostic model for meningiomas by
applying statistical learning methods to the seroreactivity patterns of meningiomas and
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healthy sera. They used a 57 meningioma-associated antigen panel and returned a model
with a sensitivity and specificity of 84.5% and 96.2%, respectively. In continuation of these
results, Ludwig et al. [78] sought to determine if increasing the number of antigens could
further improve classification. Seroreactivity was measured against a larger array of nearly
two thousand antigen-expressing clones, and sensitivity and specificity were minimally
improved to 91.8% and 95.6%, respectively.

Thioredoxin domain containing 16 (TXNDC16) is a known meningioma-associated
antigen. In previous studies, seroreactivity has been exclusively reported in the sera of
meningioma patients [79]. As such, Harz et al. [79] evaluated the ability of TXNDC16
antigens as meningioma specific biomarkers by assessing 163 TXDNC16 peptide arrays to
identify specific TXNDC16 epitopes exclusively recognized by meningioma autoantibodies.
While a single epitope was not recognized by all meningioma serum samples, a set of five
immunogenic epitopes as determined by feature selection could successfully discriminate
between meningioma and healthy serum with a sensitivity and specificity of 90% and
83.7% [79].

These results are promising; however, there are several disadvantages to using au-
toantibodies as a liquid biopsy marker. Many TAAs can be immunogenic across several
cancer types, resulting in the same autoantibodies being produced in response to different
neoplasias and limiting the specificity for differentiating cancer types [75]. In addition,
TAAs can be immunogenic in other diseases, such as autoimmune conditions, and even be
present in healthy individuals [75]. Therefore, to develop a robust diagnostic or prognostic
method with high sensitivity and specificity, multi-antigen panels are required, as single
antigen markers are limited.

7. Multi-Marker Spectroscopic Approach

Spectroscopic liquid biopsy techniques are notable for their breadth, encompass-
ing a wide range of biological features and overcoming the limitations of single-marker
methodologies. Instead of analyzing a single biomarker, a machine learning algorithm
can interpret the complete biochemical spectra for classification. By default, spectroscopic
liquid biopsy does not provide tumor genetic information and, therefore, cannot guide
treatment decisions in its present application.

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy di-
rects infrared light through biofluids, such as blood serum, to generate a specific biochem-
ical spectrum, or fingerprint, which trained machine learning algorithms can discern to
predict patients’ disease status [80,81]. ATR-FTIR has been investigated in colorectal [82],
lung [83], ovarian [84], and breast cancer [85], and recently, has been applied to a variety of
brain tumors, producing results with high sensitivity and specificity [86,87].

One of the early ATR-FTIR studies exemplified that such a technique could be applied
for diagnostic purposes at a variety of levels, including cancer versus non-cancer, metastatic
versus primary tumors, glioma versus meningioma, severity of the tumor, and more [88].
Since then, improvements in computational strategies, machine learning, and cheaper
instrumentations have greatly increased the capabilities of ATR-FTIR. It has been further
validated that serum ATR-FTIR is a valuable method for diagnosing and discriminating
brain tumors from symptomatic and asymptomatic populations [80,81]. Cameron et al. [89]
developed a model with a sensitivity and specificity of 94.7% and 98.4% for distinguishing
meningiomas from a study involving 111 meningioma patients and 87 healthy patients.
The group has even shown its potential for intracranial tumor differentiation. For exam-
ple, lower-grade gliomas, glioblastomas, and brain metastases were discriminated from
meningiomas with a sensitivity and specificity range of 70.9–94.4% and 81.8–86.1% [89].

Raman spectroscopy is a similar technique that also produces a unique spectral sig-
nature dependent on the complete chemical composition [90–92]. When a sample is intro-
duced to a radiating laser, the non-elastic scattering effect can be measured and reflects
the chemical composition of the entire sample [91,92]. Like ATR-FTIR spectroscopy, this
technique utilizes the full molecular content of a sample rather than specific biomarkers.
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Raman spectroscopic analysis has been established to classify healthy and meningioma
individuals with high efficiency [91]. Mehta et al. [90] and Bukva et al. [91] used Raman
spectra of sera or serum-originating small extracellular vesicles (sEVs) to diagnose and
differentiate meningioma and glioblastoma with high specificity and sensitivity using a
classification model [91]. Even so, since the sEVs also originated from other circulating
vesicles, such as blood cells, platelets, and immune cells, the spectral differences could
be derived from other biological responses or phenotype differences, convoluting the
results [91].

A novel liquid biopsy test has further validated the success of spectroscopic ap-
proaches in cancer diagnostics. The Dxcover® Brain Cancer liquid biopsy combines infrared
spectroscopy with a robust diagnostic algorithm to predict intracranial disease [93]. The
sensitivity and specificity of this method are comparable to other commercially available
liquid biopsy techniques, and it even has the potential to discover tumors as small as 0.2
cubic centimeters [93]. The clinical utility of this test could allow for early detection and
improve patient outcomes. Overall, spectroscopic techniques are a promising diagnostic
tool that overcomes single biomarker limitations.

8. Discussion

A noninvasive liquid biopsy platform to differentiate aggressive from non-aggressive
meningiomas at the time of first presentation, as well as early detection of minimal residual
disease, would simplify and improve the diagnostic and therapeutic algorithms for this
disease. When implemented in combination with the current imaging methods, it could
allow for earlier diagnosis, improve meningioma classification, give insight into prognosis,
and accurately monitor progression and treatment response.

As meningiomas are heterogeneous in their presentation and progression, liquid
biopsy methods could offer the most value for differentiating meningiomas upon initial
diagnosis and for tumor monitoring. Other intracranial tumors, such as solid tumor
metastases or hematological malignancies, can metastasize to the brain, and the distinction
between these aggressive tumors and meningiomas is limited using traditional imaging.
Thus, a liquid biopsy method could differentiate meningioma from metastasis, allowing
for a more rapid and accurate diagnosis and treatment.

Liquid biopsies, with the potential for complete molecular tumor characterization,
could also circumvent the need for invasive tissue biopsies, particularly in cases of low-risk
meningiomas in which tissue surgical intervention may not be inherently necessary. This
would greatly decrease patient stress, mitigate the risks involved in intracranial opera-
tions, and continue to inform care decisions by identifying therapeutic targets and disease
progression. With further improvements in precision and accuracy, liquid biopsies could
replace tissue biopsies altogether, presenting all the traditional benefits of tissue biopsies
with the advantages of decreased risk, more convenience, and continual monitoring of
tumor progression.

This review explores many avenues for liquid biopsy in meningiomas. Potential
biomarkers for meningioma include ctDNA, EVs, miRNA, seroreactivity, and spectroscopic
fingerprints (Table 1). The above biomarkers have been investigated in proof-of-concept
studies, but none have been validated so far, especially in a clinical setting. It is likely
that different approaches may have orthogonal value in meningioma diagnostics. A
liquid biopsy approach to be used in a clinical setting should be inexpensive, provide
answers in an expeditious manner, and have high performance metrics to distinguish
benign meningiomas from their more aggressive counterparts. Multi-omic liquid biopsy
approaches will likely have the greatest performance metrics compared to a single marker
approach, but it remains to be seen how accessible, expeditious, and cost-effective these
approaches will be.
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Table 1. Summary of meningioma liquid biopsy studies.

Marker Reference Biofluid Individuals with
Meningioma Biomarker (s) Identified Diagnostic Models Mean

Sensitivity/Specificity

cfDNA

[44] plasma n = 34 Upon gene-panel analyses of 54–73 genes, 59% of meningioma patients had at
least one detectable cfDNA alteration. N/A

[45] plasma and CSF n = 18 Congruent mutations were detected in tumor tissue and plasma/CSF in three
high grade meningiomas. N/A

[51] plasma n = 60 Top 300 differentially methylated regions for each primary brain tumor class. N/A

[52] serum and plasma n = 155 98 meningioma-specific differentially methylated probes for diagnosis and 70
risk-related differentially methylated probes for recurrence risk.

Diagnostic: sensitivity = 84.6%;
specificity = 85%;

Prognostic: sensitivity = 81.3%;
specificity = 85.7%

EVs

[55] plasma n = 46 EV concentration is increased in meningioma patients and is correlated with
extent of edema and histological malignancy grade. N/A

[57] serum n = 28 Matrix metalloproteinase-9 content could be a prognostic marker. Meningioma versus healthy control:
sensitivity = 64%; specificity = 61%

[58] serum n = 61 Lower levels of miR-497 expression in exosomes of WHO grade III
meningiomas compared to benign. N/A

[59] serum n = 74 Serum and exosomal expression of miR-497 could discriminate between
meningioma and healthy patients. N/A

[61] serum n = 24 A group of 17 sEV proteins could discriminate between meningioma,
glioblastoma, brain metastases, and control groups. N/A

miRNA

[59] serum n = 74 miR-497 and miR-219 expression in serum could differentiate between low
(WHO I and II) and high (WHO III) grade meningiomas. N/A

[69] serum n = 230 Six differentially expressed miRNAs: miR-106a-5p, miR-219-5p, miR-375,
miR-409-3p, miR-197, and miR-224.

Meningioma versus healthy control:
sensitivity = 72.3%; specificity = 81.7%

[70] CSF n = 55 Nine differentially expressed miRNAs in CNS: let-7a, let-7b, miR-10a, miR-10b,
miR-21-3p, miR-30e, miR-140, miR-196a, and miR-196b.

Meningioma versus healthy control:
sensitivity = 73%; specificity = 72%

[71] plasma n = 40 Increased expression of miR-181d is correlated with meningioma and tumor
progression. N/A

[72] plasma n = 51 Four differently expressed miRNAs in tumor tissue and plasma: miR-21-3p,
miR-34a-3p, miR-200a-3p, and miR-409-3p. N/A

[73] urine n = 8 23 differentially expressed miRNAs CNS tumor diagnostic:
sensitivity = 100%; specificity = 97%
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Table 1. Cont.

Marker Reference Biofluid Individuals with
Meningioma Biomarker (s) Identified Diagnostic Models Mean

Sensitivity/Specificity

Seroreactivity

[76] serum n = 24 62 antigen panel with 57 exhibiting meningioma seroreactivity N/A

[77] serum n = 93 57 meningioma-associated antigen panel Meningioma versus healthy:
sensitivity = 84.5%; specificity = 96.2%

[78] serum n = 53 1827 antigen-expressing clones Meningioma versus healthy:
sensitivity = 91.8%; specificity = 95.6%

[79] serum n = 24 Five immunogenic epitopes of TXNDC16 could discriminate meningioma and
control serum.

Meningioma versus healthy:
sensitivity = 90%; specificity = 83.7%

Spectral
Output

[80] serum n = 5 ATR-FTIR spectral output CNS tumor diagnostic model:
sensitivity = 81%; specificity = 80%

[81] serum n = 46 ATR-FTIR spectral output Intracranial tumor diagnostic:
sensitivity = 93.2%; specificity = 92.8%

[88] serum n = 47 ATR-FTIR spectral output Meningioma versus glioma:
sensitivity = 66.7%; specificity = 82.1%

[89] serum n = 111 ATR-FTIR spectral output Meningioma versus healthy control:
sensitivity = 94.7%; specificity = 98.4%

[90] serum n = 35 Raman spectral output N/A

[91] serum n = 28 Raman spectral output of serum-derived sEVs Control vs. meningioma:
sensitivity = 80%; specificity = 85%
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