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Abstract: Circulating cell-free DNA (ccfDNA) of mitochondrial origin (ccf-mtDNA) consists of a minor
fraction of total ccfDNA in blood or in other biological fluids. Aberrant levels of ccf-mtDNA have
been observed in many pathologies. Here, we introduce a simple and effective standardized Taqman
probe-based dual-qPCR assay for the simultaneous detection and relative quantification of nuclear
and mitochondrial fragments of ccfDNA. Three pathologies of major burden, one malignancy (Breast
Cancer, BrCa), one inflammatory (Osteoarthritis, OA) and one metabolic (Type 2 Diabetes, T2D),
were studied. Higher levels of ccf-mtDNA were detected both in BrCa and T2D in relation to health,
but not in OA. In BrCa, hormonal receptor status was associated with ccf-mtDNA levels. Machine
learning analysis of ccf-mtDNA datasets was used to build biosignatures of clinical relevance. (A) a
three-feature biosignature discriminating between health and BrCa (AUC: 0.887) and a five-feature
biosignature for predicting the overall survival of BrCa patients (Concordance Index: 0.756). (B) a
five-feature biosignature stratifying among T2D, prediabetes and health (AUC: 0.772); a five-feature
biosignature discriminating between T2D and health (AUC: 0.797); and a four-feature biosignature
identifying prediabetes from health (AUC: 0.795). (C) a biosignature including total plasma ccfDNA
with very high performance in discriminating OA from health (AUC: 0.934). Aberrant ccf-mtDNA levels
could have diagnostic/prognostic potential in BrCa and Diabetes, while the developed multiparameter
biosignatures can add value to their clinical management.

Keywords: mitochondrial; ccfDNA; prediabetes; breast cancer; diabetes; osteoarthritis; machine learning

1. Introduction

Circulating-cell-free DNA (ccfDNA) is DNA liberated from cells into biological fluids,
e.g., blood, lymph, bile and urine [1]. It is double- or single-stranded and can be released
during apoptosis, necrosis, or even by active mechanisms. In health, ccfDNA mainly derives
from tissues and cells like hematopoietic, whereas in some diseases, it is highly enriched
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from pathological tissues. In cancer, ccfDNA is liberated from tumor cells, metastatic sites
and CTCs. In general, ccfDNA has been proven to reflect dynamically the genetic and
epigenetic events taking place in a tissue or tumor [2,3].

ccfDNA is mainly considered to be of nuclear origin. However, mitochondria can also
contribute their own circular double-stranded genome to the circulation. Mitochondrial
DNA (mtDNA) contains 13 protein-encoding genes that are essential for the electron trans-
port chain and ATP synthase [4]. It has been reported that ccfDNA of mitochondrial origin
(ccf-mtDNA) consists of shorter DNA fragments different than those of the nuclear ccfDNA
(ccf-nDNA) [5,6]. Furthermore, ccf-mtDNA may be found in low abundance due to its
higher susceptibility to degradation lacking histone protection [7]. Still, evidence suggests
that the quantity of ccf-mtDNA or its other features could have a diagnostic or prognostic
potential in several diseases. For example, levels of ccf-mtDNA were quantified to be ele-
vated in different cancer types [8–11], including Breast Cancer (BrCa) [12,13], where higher
levels were correlated to unfavorable clinicopathological characteristics [13,14]. Aberrant
ccf-mtDNA levels have also been reported in other diseases, such as Alzheimer’s [15]. In
type 2 Diabetes (T2D), ccf-mtDNA levels were elevated as compared to health [15,16], being
even higher for those patients also suffering from Coronary Heart Disease. In addition,
modified levels of ccf-mtDNA were observed in patients with Cardiovascular diseases [17].

Here, we introduce a simple and effective standardized Taqman probe-based dual-
qPCR assay for the simultaneous detection and relative quantification of nuclear and
mitochondrial fragments of ccfDNA. Three pathological entities of major burden, i.e.,
one malignancy (BrCa), one inflammatory (osteoarthritis, OA) and one metabolic (T2D),
were selected as use cases to validate the diagnostic application of ccf-mtDNA quantity
in human pathology. Upon assay measurements of patient blood samples, automated
Machine Learning was then used to analyze our experimental data in order to build
diagnostic biosignatures of increased performance. The experimental workflow is depicted
in Figure 1.
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Figure 1. Experimental pipeline of the study.

2. Results
2.1. Development of Dual PCR Assay for Detecting ccf-mtDNA and Reference Measurements

The sensitivity of the dual PCR assay was assessed by serial dilutions of a commercial
genomic DNA mix containing both nuclear and mitochondrial DNA (100 ng, 10 ng, 1 ng,
0.1 ng, 0.01 ng). Both nuclear GAPDH and mitochondrial MTATP8 gene targets were
detected in down to 0.01 ng of genomic DNA. The efficiency of GAPDH and MTATP8
was 96% and 100%, respectively. In Figure 2, the standard and amplification curves of the
GAPDH and MTATP8 assays are presented. Results were expressed as RQsample (Relative
Quantification) of the mtDNA fraction in relation to nuclear. There was no correlation to
sex or age in the reference values measured in the healthy individuals’ group.
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Figure 2. Standard and amplification curves of (A) mitochondrial MTATP8 and (B) nuclear GAPDH
using serial dilutions of mixed genomic DNA (100 ng, 10 ng, 1 ng, 0.1 ng, 0.01 ng).

2.2. ccf-mtDNA Fraction in Diseases
2.2.1. BrCa

Total plasma ccfDNA levels and their relative content in ccf-mtDNA were measured
in 119 BrCa patients and in 77 healthy female individuals and are presented in Table 1.
Confirming previous results [18], levels of total ccfDNA were significantly elevated in all
BrCa patients as compared to health (p = 0.005, Mann–Whitney U = 564). Interestingly, those
increased ccfDNA levels in BrCa were also more abundant in their ccf-mtDNA content, as
the later was found to be higher in the BrCa patients as compared to healthy individuals
(p < 0.001, Mann–Whitney U = 2181) (Table 1 and Figure 3A). In particular, in the Adjuvant
and Metastatic BrCa groups, ccf-mtDNA content was statistically significantly higher
(p < 0.001, Mann–Whitney U = 1282 and p = 0.044, Mann–Whitney U = 429, respectively)
(Figure 3B) as compared to health, with the group of the Adjuvant presenting the highest
levels among the three groups. A positive correlation was observed between the ccf-
mtDNA fraction and plasma total ccfDNA in the BrCa patients (p = 0.047, r = 0.186), but
not in the healthy individuals. Next, ccf-mtDNA content was correlated to the patients’
clinicopathological features. In the Adjuvant group, the absence of HER-2/neu expression
was correlated with a higher ccf-mtDNA fraction (p = 0.05, Mann–Whitney U = 364)
(Figure 3C). Similarly, in the Metastatic group, elevated ccf-mtDNA content was correlated
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to the absence of HER-2/neu expression (p = 0.006, Mann–Whitney U = 5) (Figure 3D)
and to the presence of ER receptor (p = 0.028, Mann–Whitney U = 7) (Figure 3E). No other
correlations were observed between ccf-mtDNA quantity and age, menopause, receptor
status, grade, stage or nodal status.
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Table 1. Total plasma ccfDNA and ccf-mtDNA fraction in BrCa patients and Healthy individuals.

All BrCa
(n = 119)

Adjuvant
(n = 81)

Metastatic
(n = 21)

Neo-Adjuvant
(n = 17)

Healthy
(n = 77)

Total plasma
ccfDNA (ng/µL) 1035 (565–2270) 1045 (565–1800) 1030 (573–1260) 951 (667–2270) 733 (261–3720)

RQ of
ccf-mtDNA 3.84 (0.01–982.00) 6.02 (0.01–982.00) 2.78 (0.01–398.00) 2.23 (0.01–962.00) 0.63 (0.01–24.77)

Abbreviations: RQ = Relative Quantity.

2.2.2. Diabetes and Prediabetes

The quantity of total plasma ccfDNA and its relative content in ccf-mtDNA were
measured in 158 T2D patients, in 78 Prediabetic individuals and in 100 Healthy individuals,
as shown in Table 2. Levels of total ccfDNA were significantly higher in both patient groups
as compared to the healthy individuals (p < 0.001, Kruskal–Wallis df = 2), and they did
not significantly differ between diabetes and prediabetes. Following the same pattern, ccf-
mtDNA content was also higher in Diabetes and Prediabetes in relation to Health (p = 0.008,
Mann–Whitney U = 1591 and p < 0.001, Mann–Whitney U = 821, respectively) (Figure 4) and
did not differ between the two patient groups. A weak positive correlation was observed
between the fraction of ccf-mtDNA and total plasma ccf-DNA in the Diabetes group
(p = 0.04, r = 0.252). Also, an inverse correlation was observed between age and ccf-mtDNA
content, but only in the Prediabetes group (p < 0.001, r = −0.385). No other significant
correlations were observed between ccf-mtDNA content and sex, HbA1c, glucose or BMI.

Table 2. Total plasma ccfDNA and ccf-mtDNA fraction in Diabetes, Prediabetes and respective
Healthy groups.

Diabetes Group
(n = 158)

Prediabetes Group
(n = 78)

Healthy Group
(n = 100)

Total plasma ccfDNA (ng/µL) 989 (507–1840) 938 (439–1698) 886 (261–2800)

RQ of ccf-mtDNA 28.00 (0.01–504.90) 31.90 (0.01–494.60) 12.30 (0.01–161.10)

Abbreviations: RQ = Relative Quantity.
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2.2.3. Osteoarthritis

The quantity of total plasma ccfDNA and its relative content in ccf-mtDNA were
measured in 17 female OA patients and in 17 Healthy women, and the results are presented
in Table 3. Levels of total ccfDNA were significantly higher in OA as compared to the
Healthy group (p < 0.001, t-test df = 29). Ccf-mtDNA content did not differ between OA
and Health (p = 0.852, t-test df = 29) (Figure 5). Similarly, no other significant correlation
was observed between ccf-mtDNA content and age or BMI.

Table 3. Total plasma ccfDNA and ccf-mtDNA fraction in Osteoarthritis and Healthy groups.

Osteoarthritis Group
(n = 17)

Healthy Group
(n = 17)

Total plasma ccfDNA (ng/µL) 1591 (1100–2440) 906 (319–2580)

RQ of ccf-mtDNA 6.96 (0.01–29.40) 6.34 (0.01–24.80)
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2.3. AutoML Multivariate Analysis
2.3.1. BrCa

Demographical and experimental data from 119 BrCa patients and 77 Healthy in-
dividuals were uploaded to JADBio in order to build a biosignature for discriminating
between Adjuvant, Neoadjuvant, Metastatic and Healthy groups. AutoML classifica-
tion analysis resulted in a biosignature of five features, including plasma ccf-DNA, ex-
tracted ccf-DNA, age and RQ of ccf-mtDNA via a support vector machines (SVM) algo-
rithm (https://app.jadbio.com/share/1e48c72b-dd55-4151-a1e6-6382f678c9c0, accessed
on 9 April 2023). In discriminating groups, this signature reached an area under the curve
(AUC) of 0.698 (0.634, 0.732) and an average precision of 0.789 (0.754, 0.819) (Figure 6A,B).
Next, another classification analysis was performed in order to build a biosignature for
classifying between BrCa and Health. A three-feature biosignature emerged, including
plasma ccf-DNA, extracted ccf-DNA and RQ of ccf-mtDNA via a SVM algorithm (https://
app.jadbio.com/share/04ffa028-dbde-4476-b1bc-8a55348e8c60, accessed on 9 April 2023).
The signature showed an AUC of 0.887 (0.841, 0.930) and an average precision of 0.902
(0.864, 0.938) (Figure 6C,D). From the Feature Importance plots, it becomes apparent that
the total amount of ccfDNA is the decisive discriminative feature, with the rest contributing

https://app.jadbio.com/share/1e48c72b-dd55-4151-a1e6-6382f678c9c0
https://app.jadbio.com/share/04ffa028-dbde-4476-b1bc-8a55348e8c60
https://app.jadbio.com/share/04ffa028-dbde-4476-b1bc-8a55348e8c60
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minimally to the models’ performance. Finally, survival analysis was conducted in the Ad-
juvant group. A biosignature of five features emerged, containing the Disease Free Interval
(DFI), grade, extracted ccf-DNA, age and RQ of ccf-mtDNA via a Survival Random Forest
(SRF) algorithm (https://app.jadbio.com/share/ce99f9ad-c4dc-426f-b4ca-92b1ae431840,
accessed on 9 April 2023) for predicting overall survival in the Adjuvant group of patients.
The Concordance Index of the signature was 0.756 (0.691, 0.819) (Figure 6E,F).
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2.3.2. Diabetes and Prediabetes

Demographical and experimental data from 178 Diabetic patients, 58 Prediabetic individ-
uals and 100 Healthy individuals were uploaded to JADBio in order to build a biosignature
for discriminating among the three groups. AutoML classification analysis resulted in a
biosignature of five features, including plasma ccf-DNA, extracted ccf-DNA, sex, age and
RQ of ccf-mtDNA via a Classification Random Forest (CRF) algorithm (https://app.jadbio.
com/share/f735cc79-d31d-4e3e-abf7-7aceb9d3bb1d, accessed on 9 April 2023). Signature’s
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performance showed an AUC of 0.772 (0.726, 0.815) and an average precision of 0.808 (0.770,
0.844) (Figure 7A,B). Furthermore, a signature for discriminating between Diabetic patients
and Healthy individuals was constructed containing the same five features as above via a CRF
algorithm (https://app.jadbio.com/share/32882c69-b4bb-4d7c-bf6c-86822e3a7cab, accessed
on 9 April 2023). The AUC of biosignature was 0.797 (0.745, 0.843), and the average precision
was 0.820 (0.781, 0.857) (Figure 7C,D). Next, a four-feature signature for identifying Predia-
betes from Health was built, including plasma ccf-DNA, extracted ccf-DNA, age and RQ of
ccf-mtDNA, again via the CRF algorithm (https://app.jadbio.com/share/31fe2b21-3fa9-4a46-
ade5-61f8aa1ea2d7, accessed on 9 April 2023). Signature’s performance reached an AUC of
0.795 (0.743, 0.848) and average precision of 0.836 (0.798, 0.875) (Figure 7E,F). Interestingly,
in comparison to the BrCa results, ccf-mtDNA revealed a higher contribution to the models’
performance along with the total ccfDNA quantity, especially in the case of prediabetes.
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2.3.3. Osteoarthritis

Regarding OA, the demographic and experimental data of 17 female patients and
17 healthy women were uploaded to JADBio, and this classification analysis resulted in
a one-feature biosignature including plasma ccfDNA via the SVM algorithm (https://app.
jadbio.com/share/9db37c36-8f6e-4aff-9685-4cc71cf6e6cb, accessed on 9 April 2023). Signature
reached an AUC of 0.934 (0.771, 1.000) and an average precision of 0.963 (0.877, 1.000) in
discriminating OA.

3. Discussion

CcfDNA has been proven to be a valuable biomaterial for clinical applications. Simi-
larly to cellular DNA, mitochondrial DNA represents only a small fraction of total ccfDNA,
still attracting interest due to its potential as a clinical circulating biomarker [16,19]. In the
present study, we compared the mitochondrial ccfDNA fraction in three different patho-
logical entities: one malignancy (BrCa), one metabolic (T2D) and one inflammatory (OA),
in relation to health and other clinical parameters. A dual PCR-based assay was devel-
oped, targeting both nuclear and mitochondrial genes in the same reaction. Following this,
AutoML technology was applied to our experimental data in combination with patients’
demographic and clinical data to build specific diagnostic and prognostic biosignatures for
each medical condition and highlight their potential clinical significance.

In BrCa, the fraction of ccf-mtDNA was found to be higher in relation to health. Pasha
et al., had shown that ccf-mtDNA was elevated in BrCa patients in relation to healthy
individuals [20]. Another study proved that ccf-mtDNA was elevated in BrCa and that
ccf-mtDNA levels were correlated with unfavorable clinical parameters such as grade,
stage, lymph node and hormonal receptor status [12]. In accordance with that, data from
investigating the mtDNA fraction in whole blood showed that early-stage BrCa patients
had a lower content of mtDNA than patients with more advanced disease [14]. Here, we
confirm these results, in particular in adjuvant and metastatic patients, also demonstrating
correlations to the absence of HER-2/neu and to the presence of ER, findings worthy of
further clinical evaluation to demonstrate value as a biomarker in BrCa. In addition, total
ccfDNA levels were found to be elevated in our BrCa patient cohort, confirming previous
results [18,21]. Interestingly, the higher the levels of total ccfDNA in BrCa, the more
abundant its mtDNA fraction. One can speculate that the pathological mechanism resulting
in the elevated release of tumor DNA in the circulation favors the mtDNA component.

Additionally, in our study, the absence of HER-2/neu expression in BrCa patients was
correlated with higher ccf-mtDNA quantity in the Adjuvant and Metastatic groups, and the
presence of the ER receptor was associated with higher ccf-mtDNA levels in the Metastatic
group. This is in accordance with previous studies in BrCa, showing that the status of
hormonal receptors is associated with ccf-mtDNA levels. Safi et al., showed a negative
correlation between the ccf-mtDNA ratio and PR receptor status [19]. Similarly, Mahmoud
et al., found that aberrant levels of ccf-mtDNA were correlated to hormonal receptor status
in BrCa patients [12]. Functional studies could shed light on the mechanism by which
mtDNA affects hormonal receptors and vice versa. Moreover, it would be interesting to
explore the respective correlations in other hormone-dependent malignancies.

In the Diabetes cohort, we also found that the ccf-mtDNA fraction was higher in T2D
and Prediabetes in relation to healthy individuals. In agreement with our findings, Liu et al.,
found that ccf-mtDNA levels were elevated in T2D. In parallel, the consistent increase of
ccf-mtDNA in T2D was associated with the presence of coronary heart disease [20] as well
as Alzheimer’s [15]. Yuzefovych et al., showed that ccf-mtDNA fragments were elevated in
obese T2D patients in relation to healthy individuals, and there was also a positive correla-
tion between insulin resistance and the abundance of ccf-mtDNA fragments [22]. Rosa et al.,
found that increased ccf-mtDNA levels in diabetes were correlated with elevated cellular
mtDNA levels [23]. Another study suggested that ccf-mtDNA could be evaluated as a
biomarker of heart failure in patients with T2D [24]. Given these promising results, ccf-
mtDNA could have clinical value in the management of diabetes. Our results reinforce this

https://app.jadbio.com/share/9db37c36-8f6e-4aff-9685-4cc71cf6e6cb
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view, also adding the observation in the prediabetic group, supporting that the molecular
events leading to the increased mtDNA fraction in the circulation are related to the initiation
of the pathology.

Although ccfDNA has been reported in the synovial fluid of OA patients [25], accord-
ing to our knowledge, its presence in the blood has not been previously studied. Here,
we show that the levels of total ccfDNA were higher in patients as compared to Healthy
controls. Regarding its mitochondrial fraction, we found similar ccf-mtDNA levels be-
tween patients and healthy individuals in our small pilot cohort of female patients. We
suggest further study of ccf-mtDNA levels in OA enrolling more patients, as our small
number of samples is an obvious limitation that may restrict statistical power. Levels of
ccf-mtDNA had been previously shown to be elevated in patients with Rheumatoid Arthri-
tis [26,27]. Corroborating our findings, an interesting study in Posttraumatic Osteoarthritis
showed elevated levels of ccf-mtDNA in synovial fluid after injury, originating, according
to the authors, from cell death but also from active release by chondrocytes [28]. More-
over, they proved that joints with naturally occurring intra-articular fractures presented
increased synovial fluid ccf-mtDNA levels and suggested its exploitation as a biomarker of
cartilage degeneration [28]. We show here that these differences have also been reflected in
the blood mtDNA fraction.

According to the bibliography, the ccf-mtDNA fraction has been shown to be ele-
vated in multiple pathologies. For instance, levels of ccf-mtDNA are increased in car-
diovascular diseases and are found to be correlated to hypercholesterolemia and arterial
hypertension [29]. Furthermore, in urological malignancies such as bladder cancer, renal
cell carcinoma, and prostate cancer, ccf-mtDNA was also elevated in relation to healthy
individuals [9]. Besides plasma or serum, ccf-mtDNA can also be detected in Cerebrospinal
Fluid (CSF), and ccf-mtDNA is decreased in the CSF of patients with neurological disorders
such as Alzheimer, Parkinson and Multiple Sclerosis [30]. Overall, these and our data
show that ccf-mtDNA presents aberrant levels in several pathologies and could serve as a
potential biomarker alone or in combination with other markers in the clinical setting.

To further exploit these insights, we conducted a multiparameter analysis incorpo-
rating not only experimental measurements but also clinical and demographic data using
automated machine learning. In BrCa, two biosignatures were produced, presenting effi-
ciency in discriminating between health and BrCa and predicting the overall survival of
patients undergoing adjuvant therapy. The ccf-mtDNA fraction had a minimal contribution
to their performance, with the levels of total ccfDNA being the decisive feature, as also
shown previously [18]. On the other hand, in the diabetes cohort, three biosignatures were
built showing high performance to stratify among Diabetic, Prediabetic and healthy sub-
jects. Here, the ccf-mtDNA content had a stronger contribution to the performance of the
model, especially in the case of prediabetes. Finally, although ccf-mtDNA was not selected
as a feature, using ad hoc autoML in our small dataset, we were able to build a biosignature
of impressive performance in discriminating OA from health based on ccfDNA levels, and
this could have translational clinical value.

4. Materials and Methods
4.1. Clinical Samples

The study was approved by the Scientific Board of the University General Hospital
of Alexnadroupoli (PGNA), following an assessment by the Ethics Committee, and was
conducted according to the ethical principles of the 1964 Declaration of Helsinki and its
later amendments. All patients participated after signing a voluntary informed consent. In
the present study, we enrolled BrCa patients, T2D patients, pre-Diabetes individuals, OA
patients and healthy individuals.

4.1.1. BrCa

Plasma samples were collected from 119 BrCa women who visited the Department
of Medical Oncology of PGNA and were allocated to three groups: (a) 81 patients having
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recently (within the previous month) undergone surgery for primary BrCa, exactly before
the initiation of adjuvant therapy (Adjuvant group); (b) 17 patients upon diagnosis for BrCa,
having no previous surgery, before the initiation of neo-adjuvant therapy (Neo-adjuvant
group); (c) 21 patients upon diagnosis for metastatic disease before the initiation of first-line
chemotherapy (a combination of Taxane/Anthracyclines) (Metastatic group). The BrCa
type was invasive ductal carcinoma for all patients enrolled in the study. The available
clinicopathological features are presented in Table 4.

Table 4. Demographic and clinicopathological characteristics of BrCa and respective Healthy
women groups.

Adjuvant Group
(n = 81)

Metastatic Group
(n = 21)

Neo-Adjuvant Group
(n = 17)

Healthy Group
(n = 77)

Age (years) 59 (±12) 66 (±14) 55 (±19) 56 (±13)

Menopause 44 15 6

Stage *
I 16
II 32
III 26
IV 21

Not available 7

Grade
1 5
2 34 4 8
3 37 13 5

Not available 5 4 4

Lymph node
status *

Negative 33
- -Positive 40

Not available 8

ER status
Positive 52 13 13

Negative 29 8 4

PR status
Positive 48 13 11

Negative 33 8 6

Her2 status
Positive 30 9 7

Negative 51 12 10
Abbreviations: ER = estrogen receptor; PR = progesterone receptor; Her2 = Human epidermal growth factor 2
receptor. * Data for lymph node status and stage are not available for the Neo-adjuvant group, as initial tumor
size evaluation at the time of blood sampling was performed before surgery and chemotherapy by CT scan and
pathological evaluation were performed after surgery following chemotherapy.

4.1.2. Diabetes and Pre-Diabetes

Plasma samples were obtained from 158 T2D patients and 78 individuals with impaired
glucose tolerance (pre-Diabetes) diagnosed according to 2006 WHO recommendations for
the diagnostic criteria for diabetes and intermediate hyperglycemia. T2D patients and pre-
Diabetes individuals were recruited in the Department of Pathology at PGNA. Available
clinicopathological and demographical data are presented in Table 5.

Table 5. Clinical and demographical data of Diabetes, Prediabetes and respective Healthy individuals
used as control group.

Diabetes Group
(n = 158)

Prediabetes Group
(n = 78)

Healthy Group
(n = 100)

Age (years) 54 ± 8 51 ± 9 53 ± 10

Sex (male) 92 43 52
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Table 5. Cont.

Diabetes Group
(n = 158)

Prediabetes Group
(n = 78)

Healthy Group
(n = 100)

HbA1c (%) 6.9 (5.9–7.4) 6.1 (5.7–6.3) 5.5 (5.4–5.7)

Fasting glucose (mg/dL) 131 ± 7 117 ± 9 86 ± 11

BMI (kg/m2) 32.5 ± 6.2 31.8 ± 5.4 32.1 ± 6.0

Treatment All patients receive oral or insulin medication - -

Abbreviations: BMI = Body Mass Index.

4.1.3. Osteoarthritis

Plasma samples were collected from 17 female patients with OA who had undergone
total knee arthroplasty at the Department of Orthopaedics at PGNA. Available clinicopatho-
logical and demographical data are shown in Table 6.

Table 6. Clinical and demographical data from Osteoarthritis and respective Healthy individuals’ groups.

Osteoarthritis Group
(n = 17)

Healthy Group
(n = 17)

Age (years) 72 ± 6 67 ± 7

Sex (female) 17 17

BMI (kg/m2) 32.5 ± 6.2 30.2 ± 5.1

Smoking (no) 17 17

Menopause (yes) 17 17

4.1.4. Healthy Individuals

Age- and sex-matched healthy individuals were recruited from the Blood Donation
Unit of PGNA. In total, plasma samples from 80 women and 82 men were collected.
Available demographic characteristics of healthy women used in BrCa analysis are shown
in Table 4, healthy men and women included in the Diabetes comparative analysis are
shown in Table 5, and demographic characteristics of healthy women used in OA analysis
are included in Table 6.

4.2. Human Samples Pre-Analytical Procedures

Plasma was isolated within 2 h from blood sampling in EDTA-coated tubes through
centrifugation at 2000× g for 10 min. An additional high-speed centrifugation step at
14,000× g for 10 min was performed to remove any cellular debris and contaminants.
Plasma samples were stored at −80 ◦C until further analysis. Following, direct quantifica-
tion of total unbounded/naked ccfDNA in 20 µL of plasma was performed utilizing the
Quant-iT dsDNA High-Sensitivity Assay kit in the Qubit v3.0 Fluorometer (Invitrogen,
Darmstadt, Germany), according to manufacturer specifications. A standard curve was
generated using the provided standards (0 and 10 ng/µL). Then, ccfDNA was extracted
automatically from 1200 µL of plasma using the MagCore Plasma DNA Extraction kit
in the MagCore system (RBRCA Bioscience, New Taipei City, Taiwan) according to the
manufacturer’s instructions, and its quantity was estimated by Qubit. Extracted ccfDNA
samples were stored at −20 ◦C until further processing.

4.3. Quantification of ccf-mtDNA

Quantities of ccf-mtDNA and ccf-nDNA fragments were measured by a Taqman probe-
based dual-qPCR assay using the nuclear Glyceraldehyd-3-phosphat-dehydrogenase (GAPDH)
and the mtDNA-encoded ATPase 8 (MTATP8) reference genes. Primers for mtDNA and nDNA
reference genes are presented in Table 7. Each qPCR was carried out in 20 µL of total reaction
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volume containing 11.3 µL H2O, 4 µL 5X Platinum II buffer, 0.8 µL Mg, 0.5 µL dNTPs mix,
0.4 µL of each GAPDH and MTATP8 primer mix (10 µM), 0.2 µL of a 10 µM FAM-labeled
MTATP 8-probe and 0.2 µL of a 10 µM CY5-labeled GAPDH-probe. For each reaction, 2 µL of
ccfDNA were added. All qPCR reactions were performed using the Rotor-Gene 6000 Series
(Qiagen, Darmstadt, Germany) under the following conditions: an initiation step for 3 min
at 95 ◦C, followed by a first denaturation for 15 s at 95 ◦C, and a further step consisting of
40 cycles of 50 s at 58 ◦C. The assay efficiency (expressed as E = 10−1/slope−1) was evalu-
ated by using serial dilutions of human genomic DNA (Promega, Madison, WI, USA) in
dH2O (100–0.01 ng). This DNA consists of both ncDNA and mtDNA in order to resemble
the composition of ccfDNA samples that also contain ncDNA and mtDNA fragments. The
results were calculated using Rotor-Gene Software 1.7 (Qiagen). The analysis was performed
according to the RQsample (Relative Quantification) = 2∆CT method. Specifically, ∆CT values
were generated using the type ∆CT= CtGAPDH − CtMTATP8 for each sample.

Table 7. Primers and probes of dual qPCR assay.

Primer/Probe Primer/Probe Sequence (5′–3′)

MTATP8F ATCACCCAACTAAAAATATTAAACACAAACTA

MTATP8R ATTTTGGTTCTCAGGGTTTGTTA

MTATP8PROBE FAM-CTACCTCCCTCACCAAACCCATA-BHQ1

GAPDHF TCCCCACACACATGCACTTA

GAPDHR TAGTCCCAGGGCTTTGATT

GAPDHPROBE CY5-GAGCTAGGAAGGACAGGCAACTT-BHQ2

4.4. Statistical Analysis

The Kolmogorov–Smirnov test was used to check for normality in the distribution. A
one-way ANOVA test that was followed by a Bonferroni post hoc or Kruskal–Wallis test
was applied to compare continuous variables between subgroups. In the case of binary
variables, the t-test or Mann–Whitney test were also applied. Pearson (R) or Spearman
(r) correlation was used for comparison between two continuous variables. All statistical
tests employed in our analysis were two-sided. Statistical significance was placed at a
p-value < 5 × 10−2. Continuous variables are expressed as median (minimum-maximum)
or mean ± standard deviation. Categorical variables are shown as absolute frequencies.
Statistical analysis was conducted with the IBM SPSS 19.0 statistical software (IBM Corp.
2010. IBM SPSS Statistics for Windows, Version 19.0., Armonk, NY, USA).

4.5. AutoML Multivariate Analysis

For Machine Learning analyses, we employed the autoML technology of JADBio [31]. JAD-
Bio applies to low- or high-sample data, as well as to high-dimensional or low-scale omics data,
and produces accurate predictive models estimating the out-of-sample model’s performance
after bootstrap correction and cross-validation. Given a 2D matrix, JADBio preprocesses data,
including mean imputation, mode imputation, constant removal, and standardization, and
then tries several predictive algorithms such as Classification Random Forests, Support Vector
Machines, Ridge Logistic Regression, and Classification Decision Trees. Specifically, for small
sample sizes, it employs a stratified, K-fold, repeated cross-validation BBC-CV algorithm proto-
col that exhibits small estimation variance and removes estimation bias. BBC-CV’s main idea
is to bootstrap the whole process of selecting the best-performing configuration based on the
out-of-sample predictions of each configuration without additional training of models [32].

To implement autoML, 2D matrices were built for each disease and clinical end-points.
Regarding BrCa analysis, three 2D matrices were uploaded to JADBio. A 2D matrix of
81 adjuvant patients, 17 neoadjuvant, 21 metastatic and 77 healthy controls, and 5 variables
was used to classify the groups. A matrix of 119 BrCa patients and 77 healthy controls and
5 variables was applied to discriminate between BrCa and health. One last 2D matrix of
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62 adjuvant patients and 19 variables was used for survival analysis. For T2D analysis,
three 2D matrices were also uploaded. A matrix of 158 T2D patients, 78 prediabetic
individuals and 100 healthy individuals was used to classify between groups. One matrix
of 158 Diabetic patients and 100 healthy was applied to discriminate between diabetes
and health. One matrix of 78 prediabetic patients and 100 healthy controls was applied to
discriminate between prediabetes and health. All matrices had 5 variables. For OA analysis,
one 2D matrix consisting of 17 OA patients and 17 healthy individuals and 5 variables was
uploaded to the autoML platform. For all autoML analyses, we used extensive model tuning
efforts. For the classification analysis, we chose the area under the curve (AUC) metric
for optimization of model performance. For survival analysis, we chose the Concordance
Index (CI) metric. The predictive power of each biosignature was assessed using AUC, CI
and average precision (also known as area under the precision-recall curve) metrics.

5. Conclusions

In conclusion, in our study, ccfDNA in BrCa and Diabetes was found to be enriched
by mtDNA. Also, ccf-mtDNA was correlated to clinical parameters such as hormonal
receptor status on BrCa. Via an innovative machine learning tool, diagnostic and prognostic
multiparameter biosignatures were produced in BrCa, Diabetes and OA. These highly
performing biosignatures of diagnostic/prognostic power can add value to the clinical
management of these diseases.

6. Patents

A patent application entitled ‘Mitochondrial fraction of circulating cell-free DNA as an
indicator of human pathology’ was filed in the Hellenic Industrial Property Organization.
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