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Abstract: Agriculture in the 21st century faces many formidable challenges with the growing global
population. Increasing demands on the planet’s natural resources already tax existing agricultural
practices. Today, many farmers are using biochemical treatments to improve their yields. Commercial-
ized organic biostimulants exist in the form of pyroligneous acid generated by burning agricultural
waste products. Recently, we examined the mechanisms through which a commercial pyroligneous
acid product, Coriphol™, manufactured by Corigin Solutions, Inc., stimulates plant growth. During
the 2023 growing season, outdoor studies were conducted in soybean to examine the effects of differ-
ent Coriphol™ treatment concentrations on plant growth. Plant height, number of leaves, and leaf
size were positively impacted in a dose-dependent manner with 2 gallon/acre soil treatments being
optimal. At harvest, this level of treatment boosted crop yield by 40%. To gain an understanding of
why Coriphol™ improves plant fitness, follow-up laboratory-based studies were conducted using
radiocarbon flux analysis. Here, radioactive 11CO2 was administered to live plants and comparisons
were made between untreated soybean plants and plants treated at an equivalent Coriphol™ dose of
2 gallons/acre. Leaf metabolites were analyzed using radio-high-performance liquid chromatography
for [11C]-chlorophyll (Chl) a and b components, as well as [11C]-β-carotene (β-Car) where fractional
yields were used to calculate metabolic rates of synthesis. Altogether, Coriphol™ treatment boosted
rates of Chl a, Chl b, and β-Car biosynthesis 3-fold, 2.6-fold, and 4.7-fold, respectively, and also
increased their metabolic turnover 2.2-fold, 2.1-fold, and 3.9-fold, respectively. Also, the Chl a/b ratio
increased from 3.1 to 3.4 with treatment. Altogether, these effects contributed to a 13.8% increase in
leaf carbon capture.

Keywords: pyroligneous acid; Coriphol™; chlorophyll; beta-carotene; radiocarbon flux analysis;
carbon-11

1. Introduction

Agriculture in the 21st century faces many formidable challenges, with the grow-
ing and economically empowered global population placing increasing demands on the
planet’s natural resources and energy supplies. The increased demand for food and energy
to feed this growing population and to heat and provide electricity for their homes is
already taxing existing agricultural practices and natural resources. Projections indicate
that feeding a world population of 9.77 billion people by 2050 [1], coupled with an im-
proved diet, will require further increases in food production of more than 60 percent [2].
Production in developing countries will need to almost double. Furthermore, as we attempt
to increase reliance on a bioenergy-based market, agriculture will need to increase outputs
of biomass and chemical feedstocks to keep future energy and industrial resources in
balance. These efforts will likely increase agricultural waste products that are presently
under-utilized.
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Pyroligneous acid, wood vinegar, and liquid smoke are all names synonymous with
products that are made from the condensation of vapors produced during the high-
temperature oxygen-free pyrolysis of agricultural and forestry biomass [3–6]. These prod-
ucts typically are a reddish-brown aqueous liquid with a distinctive smokey smell which
can vary in terms of phenols, carboxylic acids, and other light water-soluble oxygenated
compounds of different solubilities depending on the biomass feedstock used in the pro-
cess [7].

In recent years, aspects of this technology have become commercialized and are sold
as biostimulants for promoting plant growth. For example, Corigin Solutions, Inc. (Merced,
CA, USA) manufactures Coriphol™ and markets the product as a liquid organic plant
growth enhancer for improving crop yields and crop quality when applied to the field.
Their product contains more than 150 chemical components (Supplementary Table S1),
including organic acids, phenols, alcohols, aldehydes, esters, ethers, and ketones. The
overall organic content of Coriphol™ reaches 15% by weight, with the rest being water.
Such organic content is high with respect to typical wood vinegar/liquid smoke products.
Moreover, phenols, suspected to be the main active agents for the biostimulant effect,
represent a large fraction of the organic content on an acid-free basis.

Despite the positive feedback for crop performance with improvements in yield and
quality reported for tomato, rapeseed, cotton, lettuce, and onion [8–14], producers of
pyroligneous acid products that are marketed as biostimulants for plant growth know very
little about the how their products work. The objectives of the present work were two-fold.
The first objective was to examine the performance of one commercial product, Coriphol™,
at different applied doses to the soil to determine the optimal dose needed for growth
stimulation in a single crop model: soybean. Soybean was selected as the model because the
product had not yet been tested for its performance on this crop and because soybean is a
major crop with approximately 87.5 million acres planted annually in the United States. The
second objective of this work was to identify key metabolic features underpinning plant
growth using radiocarbon flux analysis to understand how this product stimulates growth
at an optimal dose. In the long term, we feel that such information will help to broaden the
use of such products in future farming practices in the fight against global hunger.

2. Results
2.1. Outdoor Plant Growth Performance

In week 5, a representative sampling of plants (N = 3 from each treatment cohort) was
lined up and photographed (Figure 1) representing untreated control plants and plants
treated at germination with doses of Coriphol™ equivalent to 0.5, 1.0, and 2.0 gallons per
acre (gal./acre). Leaf photos were taken of fully expanded leaves from the second trifoliate.
Growth performance metrics, including plant height, leaf number, and leaf size, were also
acquired using a tape measure and ruler. Measurements were taken in week 5 and again in
week 10 (Figure 2).

Results in week 5 showed a clear dose dependency with treatment where plant height
increased from 23.05 ± 0.91 to 32.55 ± 1.25 cm for untreated and 2.0 gal./acre treatment,
respectively. Leaf count increased from 18.18 ± 1.24 to 35.18 ± 2.81 for untreated and
2.0 gal./acre treatment, respectively. Leaf length measured from the tip to the petiole
connection increased from 8.17 ± 0.40 to 9.97 ± 0.36 cm for untreated and 2.0 gal./acre
treatment, respectively, and leaf width increased from 5.83 ± 0.25 to 7.23 ± 0.28 for un-
treated and 2.0 gal./acre treatment, respectively. Results in week 10 showed a similar
pattern of behavior, although plants treated with 1.0 gal./acre Coriphol™ seemed to out-
perform those treated at the higher dose.
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Figure 1. Digital photos of a random sampling of soybean plants taken in week 5 for untreated 
control plants and plants treated at germination with doses of Coriphol™ equivalent to 0.5, 1.0, and 
2.0 gal./acre. Leaf photos were taken of fully expanded leaves from the 2nd trifoliate. Each leaf photo 
frame was scaled to 11 cm. 

 
Figure 2. Plant growth metrics, including plant height (Panels (A,E)), number of leaves (Panels 
(B,F)), leaf length (Panels (C,G)), and leaf width (Panels (D,H)) were acquired in week 5 (Panels (A–
D)) and again in week 10 (Panels (E–H)). Data points from individual plants (N = 9–10) are shown 
for untreated control plants and plants treated with 0.5, 1.0, and 2.0 gal./acre Coriphol™. Dashed 
lines in each panel reflect the mean values of the control plant. Solid bars in each panel reflect mean 
values for Coriphol™-treated plants. Levels of significance are depicted as follows: * p < 0.05; ** p < 
0.01; *** p < 0.001. 

Figure 1. Digital photos of a random sampling of soybean plants taken in week 5 for untreated
control plants and plants treated at germination with doses of Coriphol™ equivalent to 0.5, 1.0, and
2.0 gal./acre. Leaf photos were taken of fully expanded leaves from the 2nd trifoliate. Each leaf photo
frame was scaled to 11 cm.
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Figure 2. Plant growth metrics, including plant height (Panels (A,E)), number of leaves (Panels (B,F)),
leaf length (Panels (C,G)), and leaf width (Panels (D,H)) were acquired in week 5 (Panels (A–D))
and again in week 10 (Panels (E–H)). Data points from individual plants (N = 9–10) are shown for
untreated control plants and plants treated with 0.5, 1.0, and 2.0 gal./acre Coriphol™. Dashed lines
in each panel reflect the mean values of the control plant. Solid bars in each panel reflect mean values
for Coriphol™-treated plants. Levels of significance are depicted as follows: * p < 0.05; ** p < 0.01;
*** p < 0.001.
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2.2. Outdoor Harvest Data

In week 20, soybean pods were picked, tallied, and weighed for a determination of
crop yield (Figure 3). Pods were selected for harvest if they showed signs of developing
beans inside (some pods were not fully developed at the time while most pods were
mature). The number of pods per plant increased from 260.83 ± 11.64 pods in untreated
plants to 300.69 ± 15.42 pods with 0.5 gal./acre Coriphol™ treatments, 366.33 ± 17.85 pods
with 1.0 gal./acre treatments, and 347.22 ± 16.02 pods with 2.0 gal/acre treatments. Like
growth performance traits in week 10, plants treated at 1.0 gal./acre slightly outperformed
those treated at 2.0 gal/acre in the number of pods harvested, although this difference was
not statistically significant. Total pod mass also increased from 207.25 ± 16.12 gFW for
untreated plants to 271.50 ± 38.33 gFW with 0.5 gal./acre treatments, 355.17 ± 21.71 gFW
with 1.0 gal./acre treatments, and 350.05 ± 27.81 gFW with 2.0 gal./acre treatments.
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After harvest and during the deconstruction of the outdoor growth project, we ob-
served that there was a higher root density at the bottom layer with a greater number of 
root nodules in the Coriphol™-treated plants than in the untreated plants. The extent of 
nodulation was surprising since non-inoculated seed was used during sowing. Digital 
photographs were taken of the bottom portion of the root mass (Figure 4) for n = 6 un-
treated plants and an equivalent number of plants treated with 2.0 gal./acre Coriphol™. 

Figure 3. Soybean crop yield data at week 20 harvest presented by the number of pods picked per
plant (Panel (A)) and the total mass of pods per plant (Panel (B)) in grams fresh weight (gFW). Blue
data points reflect untreated control plants, yellow data points reflect plants treated with 0.5 gal./acre
Coriphol™, grey data points reflect plants treated with 1.0 gal./acre Coriphol™, and red data points
reflect plants treated with 2.0 gal./acre Coriphol™. Level of significance is depicted by ***, which
represents p < 0.001.

After harvest and during the deconstruction of the outdoor growth project, we ob-
served that there was a higher root density at the bottom layer with a greater number of
root nodules in the Coriphol™-treated plants than in the untreated plants. The extent of
nodulation was surprising since non-inoculated seed was used during sowing. Digital
photographs were taken of the bottom portion of the root mass (Figure 4) for n = 6 un-
treated plants and an equivalent number of plants treated with 2.0 gal./acre Coriphol™.
The number of root nodules was tallied from each photograph and averaged. When tallied,
the root nodule count was observed to rise from 17.25 ± 3.35 nodules in untreated plants
to 92.0 ± 27.14 nodules in plants treated at 2.0 gal./acre with Coriphol™.
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Figure 4. The left-side pictures show a representative set of photographs taken of the roots along
the bottom of the planting pot for an untreated control plant and a plant treated at 2 gal./acre with
Coriphol™. Mean values ± SE for number of nodules tallied across a sample of n = 6 plants in each
cohort are shown by the bars in the adjacent graph. Level of significance is depicted by ***, which
represents p < 0.001.

2.3. Laboratory Radiocarbon Flux Measurements

After the 2023 growing season, studies were moved back into the laboratory to examine
mechanisms for enhanced plant growth with Coriphol™ treatment. Here, plants were
grown in smaller 6-inch pots under controlled environmental conditions (see Section 4)
and subjected to radiocarbon flux analysis using 11CO2 at the V4 stage of development.

A positive aspect to administering the 11CO2 tracer as a discrete pulse in air is that
we were able to measure leaf carbon fixation. Data shown in Figure 5 reflect the relative
11CO2 fixation based on the amount of radioactivity delivered in each pulse. All data
were normalized to a fixed mass of leaf tissue affixed within the leaf cell. All pulses
were conducted at a fixed cell illumination of 450 µmol m−2 s−1 in red-blue light (equal
intensity). Results showed that 11CO2 fixation significantly increased from 50.76 ± 3.39%
to 64.57 ± 5.76% with 2.0 gal./acre Coriphol™ treatment resulting in a net 13.8% increase
in leaf carbon capture.
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Figure 5. Relative percent 11CO2 fixation based on radioactivity delivered in the pulse. Data were
normalized to a fixed leaf tissue mass affixed within the leaf cell. Data bars reflect mean values ± SE
for n = 6 replicates in each treatment type. Level of significance is depicted by *, which represents
p < 0.05.

After 20 min of incubation with a radiotracer, leaf tissue was collected and radiometabo-
lites were extracted and analyzed by radio–UV high-performance liquid chromatography
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(see Section 4). Fractional 11C-yields for Chl a, Chl b, and β-Car were converted to rates of
biosynthesis in nanograms of metabolite per minute (ng min−1) as described in Section 4.
Mean values ± SE were shown in the data bars of Figure 6, as well as Panels A, D, and G
for Chl a, Chl b, and β-Car, respectively. Results showed that the rate for Chl a biosynthesis
increased from 349.53 ± 73.72 ng min−1 to 1044.51 ± 150.46 ng min−1 with treatment
culminating in a 3-fold increase in the rate. The rate for Chl b biosynthesis increased
from 87.20 ± 13.71 ng min−1 to 224.22 ± 40.73 ng min−1 with treatment culminating
in a 2.6-fold increase in the rate. Finally, the rate for β-Car biosynthesis increased from
1097.38 ± 129.22 ng min−1 to 5143.23 ± 633.44 ng min−1 with treatment culminating in a
4.7-fold increase in the rate.
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Panels B, E, and H in Figure 6 reflect the amounts of endogenous Chl a, Chl b, and
β-Car that were measured by UV absorption in each extracted tissue sample analyzed.
Results here showed that the content of Chl a increased from 0.84 ± 0.02 mg g−1FW to
1.16 ± 0.05 mg g−1FW with treatment. The content of Chl b increased from
0.28 ± 0.01 mg g−1FW to 0.34 ± 0.01 mg g−1FW with treatment. Finally, the content of
β-Car increased from 0.69 ± 0.04 mg g−1FW to 0.84 ± 0.05 mg g−1FW with treatment.

Panels C, F, and I in Figure 6 reflect the amounts of endogenous Chl a, Chl b, and
β-Car that were calculated based on the measured rates of biosynthesis integrated over
the lifetime of the leaf. Results here showed that the calculated content of Chl a increased
from 3.52 ± 0.74 mg g−1FW to 10.53 ± 1.52 mg g−1FW with treatment. The calculated
content of Chl b increased from 0.88 ± 0.14 mg g−1FW to 2.26 ± 0.41 mg g−1FW with
treatment. Finally, the calculated content of β-Car increased from 11.06 ± 1.33 mg g−1FW
to 51.84 ± 6.39 mg g−1FW with treatment.

Using data on actual measured amounts of Chl a, Chl b, and β-Car and their calculated
amounts based on their respective rates of formation, we were able to examine the influence
of Coriphol™ treatment on individual pigment metabolism. Table 1 summarizes the results
from these calculations.

Table 1. Effect of Coriphol™ treatment on metabolic turnover of leaf pigments.

Mean
Actual

Amount a

Standard
Error

Mean
Calculated
Amount b

Standard
Error

Ratio
Calc./Actual

Propagated
Error

Fold Change
in Metabolic
Turnover c

Propagated
Error

Chl a
Untreated 0.84 0.02 3.52 0.74 4.19 0.89

2.17 0.57Treated 1.16 0.05 10.53 1.52 9.08 1.37

Chl b
Untreated 0.28 0.01 0.88 0.14 3.14 0.51

2.11 0.52Treated 0.34 0.01 2.26 0.41 6.65 1.22

β-Car
Untreated 0.69 0.04 11.06 1.33 16.03 2.14

3.85 0.74Treated 0.84 0.05 51.84 6.39 61.71 8.45
a Mean actual amounts (in mg g−1FW) were measured using the HPLC UV detector response. b Mean calculated
amounts (in mg g−1FW) were calculated using the biosynthetic rates times the lifetime of the leaf. c Fold change
in metabolic turnover calculated from the change in the Calc./Actual Ratio between untreated and treated plants.

We note that calculated pigment content based on biosynthetic rates was always
higher than the actual measured values (Ratio Calc./Act.) for each pigment examined
suggesting that all these substrates undergo some level of metabolism. Interestingly, the
ratio Calc./Act. for β-Car was significantly higher than that of the chlorophylls, suggesting
that its metabolic turnover is much higher than that of the chlorophylls. The comparison
of pigment metabolic turnover between untreated control plants and Coriphol™-treated
plants (depicted as the fold change in metabolic turnover Table 1) showed that both Chl
a and Chl b exhibited nearly identical behavior with 2.17 ± 0.57-fold and 2.11 ± 0.52-fold
increases in metabolic turnover, respectively, with treatment. However, β-Car exhibited a
significantly higher response to treatment with a 3.85 ± 0.74-fold increase.

Because Chl a/b can be an important metric for assessing leaf nitrogen content, we
plotted this ratio (Figure 7) for untreated control plants and plants treated with Coriphol™
at an equivalent dose of 2.0 gal./acre. Results show that Chl a/b increased from 3.06 ± 0.06
in untreated plants to 3.40 ± 0.09 in treated plants.
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3. Discussion

Green algae, terrestrial plants, and some cyanobacteria utilize two types of chlorophyll
(Chl a and Chl b) for their photosynthesis [15]. The structure for Chl a possesses a methyl
group in the C7 position (Figure 8), while that for Chl b has a formyl group in the same
position. Chl a and Chl b have distinct absorption spectra in the blue and red regions, which
enable this combination of pigments to absorb wider ranges of light spectra [16].
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Years ago, several biosynthetic pathways for Chl b synthesis were proposed [17] prior
to the actual identification of the pathway. Now, it is accepted that Chl b is synthesized
from Chl a by the oxidation of the methyl group in the C7 position. This process proceeds
through 7-hydroxymethyl chlorophyll a by the action of the chlorophyllide a oxygenase
(CAO) enzyme [18].

Solar energy is mostly captured by a light-harvesting chlorophyll protein complex
(LHC) of the photosynthetic apparatus. In higher plants, both Chl a and Chl b are bound to
the LHC complex [19,20]. However, Chl b is essential for the complexe’s functionality [21,22]
because its binding stabilizes protein in the thylakoid membranes [23,24], allowing for the
efficient transfer of light energy to Chl a [25].

In a past study [26], over 800 soybean genotypes were screened for their chlorophyll
a/b ratio where 93% had Chl a/b ratios greater than 3.05. It is well established that the
irradiance of plants will modulate leaf anatomy and leaf physiology [27–29]. In high-
irradiance environments, leaves become thicker and possess an increased mesophyll-to-
surface area. Typically, in high light conditions, the total chlorophyll content per unit leaf
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area will decrease while the chlorophyll a/b ratio will increase compared to that of low light
conditions [27–30]. Due to its predictable response to irradiance, Chl a/b has been proposed
as a bioassay to assess the irradiance of a plant or its ability to tolerate high light stress [31].

Additionally, the synthesis of the photosynthetic apparatus requires large amounts of
N where the proportion of leaf N allocated to the chloroplast is approximately 75% [32]. Sig-
nificant correlations between leaf photosynthesis and leaf N content have been documented
for many species, including soybean [33–38], and a positive correlation between leaf N and
chlorophyll content is also well documented [38–46]. Past studies have also shown that the
Chl a/b ratio can serve as an indicator of the protein makeup within a chloroplast and hence
N partitioning within the leaf [47–49] based on the positive relationship of Chl a/b with the
ratio of the PSII cores to the LHC.

In the present work, we note that the Chl a/b ratio of untreated control plants matched
that of past published work [26]. Our observation that this ratio rose to 3.4 with Coriphol™
treatment suggests that leaf nitrogen content was higher than that of untreated plants,
although we did not measure this level. However, we also noted that the roots of treated
plants had a significantly higher amount of root nodules suggesting that biological ni-
trogen fixation from the rhizobia would be higher, providing an enhancement to plant
nitrogen uptake.

During photosynthesis, carotenoids normally serve as antenna pigments. Carotenoids
increase the efficiency of photosynthesis by absorbing blue-green light and transferring this
energy to chlorophyll. They are bound to antenna protein complexes that channel energy
to the photosystem II (PSII) reaction centers where the first energy storing electron transfer
events take place. Thus, wherever there is chlorophyll there are carotenoids [50–52]. An
important role in the photosynthetic process has to do with the ability of certain carotenoids
to quench chlorophyll triplets, 3P680, thus preventing their production of singlet molecular
oxygen (1O2) that can be highly reactive and can be extremely toxic to the plant cell by
causing oxidative damage [53]. However, despite the presence of β-Car in the isolated
PSII reaction centers, past spectroscopy studies have shown its yield was less than 3%
while that of the triplet chlorophyll was over 30% [54,55]. Hence, the role of β-Car in the
photosynthetic process is not to quench chlorophyll triplets in the PSII reaction centers
preventing them from forming 1O2, but rather it directly quenches 1O2 preventing oxidative
damage [50,51,56].

In the past, it has been noted that at high light intensities, once the rate of photo-
synthetic electron transport reaches a maximum, there is a gradual intensity-dependent
increase in the yield of carotenoid triplets. This behavior is referred to as the valve reac-
tion [57] and reflects the fact that, once the photochemical reactions become saturated, the
yield of chlorophyll triplets increases and hence more quenching by carotenoids occurs.
We see this behavior in the present work in that while Coriphol™ treatment boosted β-Car
biosynthesis, its metabolic turnover was increased 3.85-fold with treatment as a compen-
satory action to mitigate oxidative damage promoted by the 13.8% increase in leaf carbon
capture driven by increased photosynthesis. Of course, if left unchecked, this increase in
the photosynthetic process would saturate the electron transfer reactions in the PSII cores
and eventually lead to photoinhibition and the loss of photosynthetic activity.

4. Materials and Methods
4.1. Outdoor Plant Growth

For outdoor studies, soybean seeds (MorSoy variety 4812E, MFA Inc., Columbia, MO,
USA) were sown into a 2.7-gallon pot filled with ProMix (Premier Tech Horticulture, Inc.,
Salt Lake City, UT, USA). A capful of fertilizer (~1.2 g) containing nitrogen, phosphate,
and potash (14-14-14, Osmocote, Smart-Release Plant Food Flower & Vegetable., The Scotts
Company, Marysville, OH, USA) was mixed into the ProMix before sowing. Fertilizer was
reapplied to pots 30 days after germination and again 60 days later. Pots were placed on
elevated tables outside and were connected to drip irrigation lines providing water twice
daily in for a daily total of 2 L of water per pot. Four cohorts of plants were grown in
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replicate including untreated control plants and plants were treated with 100 mL doses of
Coriphol™ equivalent to 0.5, 1.0, and 2.0 gal./acre. Treatments were applied to the ProMix
at germination and reapplied after 5- and 10-weeks of growth. Pot locations were rotated
every 3 weeks to eliminate biases in outdoor growth conditions.

Growth performance was measured in week 5 and again in week 10. Using a mea-
suring stick, plant height was measured from the soil of the pot up to the highest point of
the plant in centimeters. The number of leaves was tabulated at each session. And, finally,
the upper most fully expanded source leaf was targeted for measurements of leaf length
and width.

4.2. Plant Growth for Laboratory Radiotracer Studies

Soybean seeds (MorSoy variety 4812E, MFA Inc., Columbia, MO, USA) were germi-
nated in 6-inch pots filled with ProMix mixed with 0.5 g Osmocote™ fertilizer (ICL, Inc.,
St. Louis, MO, USA). Pots were placed in a commercial growth chamber (model PGC-15,
Percival Scientific, Inc., Perry, IA, USA) initially covered in clear plastic until seedling
germinated at which time the plastic was removed. The growth chamber was set to op-
erate under a 12 h photoperiod at 500 µmol m−2 s−1 light intensity, and temperatures of
25 ◦C/20 ◦C (light/dark) with relative humidity at 60%. Plants were studied using 11CO2
at the V4 stage.

4.3. Production and Administration of Radioactive 11CO2
11CO2 (t½ 20.4 min) was produced on the GE PETtrace Cyclotron (GE HealthCare,

Chicago, IL, USA) located at the University of Missouri Research Reactor Center using
high-pressure research-grade N2 gas target irradiated with a 16.4 MeV proton beam to
generate 11C via the 14N(p,α)11C nuclear transformation [58,59]. The 11CO2 was trapped
on molecular sieve 4 Å at ambient temperature, then desorbed at 350 ◦C, quickly releasing
it into an air stream at 200 mL min−1 as a discrete pulse for labeling a leaf affixed within a
5 × 10 cm lighted (500 µmol m−2 s−1) leaf cell to ensure a steady level of fixation (Figure 9).
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Figure 9. Photograph depicting the plant set up with the leaf cell affixed to an intact leaf and the
system ready to receive a pulse of 11CO2.

For continuity, tracer was administered a 2nd fully expanded trifoliate leaf. This
“load” leaf was affixed within the cell and was pulse-fed 11CO2 for 1 min, then chased
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with normal air for the duration of exposure [60]. A PIN diode radiation detector (Carroll
Ramsey Associates, Berkeley, CA, USA) attached to the bottom of the leaf cell enabled
continuous measurement of radioactivity levels within the cell during the initial pulse
and in the minutes directly following to give information on 11CO2 fixation. The “load”
leaf was incubated for 20 min after which exposed tissue was harvested for radiolabeled
pigment analysis.

4.4. Leaf Pigment Analysis

Approximately 500 mg of fresh, exposed leaf tissue, weighed to within 1 mg accuracy
was fresh-ground in 3 mL cold buffer (0.2 M Tris-HCl, pH 8.0 in acetone, v/v) using 200 mg
of 60–80 mesh silica powder (Ashland Inc., Irving, TX, USA) as an abrasive. The buffer
was removed by pipette and a 40 µL aliquot subjected to pigment assay using radio–UV
high-performance liquid chromatography (HPLC) as described below. Three additional
extractions were performed on the tissue pellet using 3 mL aqueous acetone to remove
remaining trace soluble radiolabeled metabolites. Aliquots from each of the washings
were measured on a gamma counter. The washed pellet was dried for 20 min at 80 ◦C
also measured on the gamma counter. After radioactive decay and analytical fraction
corrections were applied, the data were summed to yield a total 11C-activity fixed by the
leaf section. This value was later used to calculate fraction yields of each of the radiolabeled
leaf pigments targeted in the HPLC analysis as described below.

This analysis was carried out using HPLC (Sonntek, Inc., Upper Saddle River, NJ, USA)
using a 250 mm x 4.6 mm inner diameter Phenomenex C18 Hypersil column (Phenomenex
Corp., Torrance, CA, USA) heated to 30 ◦C and a linear-gradient-programed mobile-phase
system set at a flowrate of 1.2 mL min−1 and comprising 100% solvent A (1 M ammo-
nium acetate: methanol, 20:80, v/v), programmed to 100% solvent B, (acetone–methanol,
20:80 v/v) over 15 min, and held at 100% solvent B for an additional 10 min. The sys-
tem was interfaced with a SmartLine 2500 variable wavelength UV detector (Knauer, Inc.,
Berlin, Germany) set to 445 nm coupled with a NaI gamma radiation detector (Eckert and
Ziegler, Inc., Wilmington, MA, USA) enabling direct measurement of the 12C-unlabelled
and 11C-labelled chlorophylls and β-carotene as they eluted the column. Data for both UV
absorption and radioactivity were acquired simultaneously using PeakSimple™ chromatog-
raphy software v4.88 (SRI, Inc., Torrance, CA, USA). UV absorption data were compared
to standard calibration curves constructed for the individual chlorophylls and β-carotene
providing absolute amounts for these metabolites in units of nanogram (ng) per gram
fresh weight (g−1FW) tissue. Radioactive metabolite peaks for [11C]-chlorophyll a, [11C]-
chlorophyll b, and [11C]-β-carotene were quantified using the same software, corrected for
radioactive decay, and corrected for differences in efficiencies between the gamma counter
and the HPLC’s NaI detector to generate fraction yields of each 11C-pigment based on total
11C-radioactivity acquired by the plant.

4.5. Calculation of Leaf Pigment Metabolic Turnover

Each discrete pulse of 11CO2 to the plant leaf was in a stream of air containing an
ambient concentration of 12CO2 (417 ppm). Each pulse was of 1 min duration. Using the
11CO2 fixation value that was measured from the radiation detector embedded in the leaf
cell, we calculated the amount of 12C in nanograms that was fixed at the same time as
11C. Next, we multiplied the 11C-fractional yields of each pigment, as measured above,
by the mass of 12C that was fixed during the 1 min pulse to arrive at biosynthesis rates in
nanogram per minute (ng min−1).

4.6. Statistical Analysis

Data were subjected to analysis of variance (ANOVA) using SigmaPlot version 14.5.
Tukey’s HSD test was used for post hoc correction of comparisons of treatments to untreated
control plants. Significance was set at a level of p < 0.05.
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5. Conclusions

The present work clearly demonstrated that the treatment of soil with the commercial
pyroligneous acid biostimulant, Coriphol™, at optimal doses equivalent to 1 to 2 gal./acre
enhanced soybean plant growth and improved yield. Furthermore, this work showed that
such treatment increased leaf carbon capture by 13.8%. This increase in the photosynthetic
process was driven by our observed increase in the biosynthetic rates and amounts of
leaf chlorophylls, as well as that of the important pigment, β-Car where the later plays an
important role in mitigating oxidative stress, a consequence of increased photosynthesis.
What we do not know currently is whether the increase in leaf chlorophylls is a direct
action of treatment with pyroligneous acid or a consequence of other upstream actions. For
example, manganese (Mn) is an essential micronutrient for plant growth [61,62] where it is
a cofactor for the oxygen-evolving complex of the photosynthetic process. Here, Mn sparks
the process by splitting water after the PSII cores harness sunlight to initiate the conversion
of CO2 and water into sugar and molecular oxygen [63]. From our past work using
radioactive 52Mn2+, we showed that certain root-associating bacteria in maize will promote
host uptake of Mn with increased translocation to leaves, improving the photosynthetic
process as evidenced by increased 11CO2 fixation and increased leaf chlorophyll content [64].
We also showed that the same results could be achieved simply by enriching the Mn content
in the growth media.

Natural soil Mn levels range between 450 and 500 mg kg−1DW, while plant tissues
possess approximately 220 mg Mn kg−1DW of tissue [65]. Furthermore, a recent study
showed that concentrated pyroligneous acid possesses only about 4 mg Mn L−1. When
diluted for field application, this level of Mn reflects a tiny fraction of the natural Mn abun-
dance in soil, and therefore treatment will have no effect on altering that level. However,
the question remains whether certain organic substrates present within pyroligneous acid
products can facilitate the sequestering and plant uptake of soil Mn, beneficially affecting
chlorophyll biosynthesis. Our past studies have shown that certain polyphenolics present
in a pyroligneous acid product in high abundance, namely resorcinol (1,2-dihyroxybenzene)
and catechol (1,3-dihydroxybenzene) can alter vascular connectivity within live plants [66],
suggesting that these substances are actively taken up by the plant. The pyroligneous
acid product, Coriphol™, which we examined in the present study had a 10.76% relative
abundance of dihydroxybenzenes in the organic content (Supplementary Table S1). Many
of these polyphenolic compounds are capable of complexing with metals [67,68], and
especially with Mn [69], suggesting that these substrates could act as vehicles for conveying
Mn into the plant. Indeed, past studies on Azolla filiculoides treated with pyroligneous acid
showed significant increases in plant tissue Mn content, although no mechanism for this
increase was offered [70]. In future studies, we plan to use radioactive 52Mn2+ to measure
the uptake kinetics of the metal as a function of Coriphol™ treatment, which should shed
additional light on the mechanisms of action.
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