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Methods for determining the PNN mesh contours using the Pix2Pix GAN model 

Method of translating an image into an image with a plotted mesh outline 
The idea behind the method 

 

Let us present the problem of identifying the boundaries of the PNN meshes as a 
problem of image-to-image translation, in which it is required to build an algorithm for 
converting the original images into images, on which the PNN cell boundary is drawn. One 
of the most common architectures for this problem is the Pix2Pix [207] GAN [208] model. 
To train it, one needs a paired data set, i.e. pairs of original+annotated images.  

 
Fig.S1. Extracting the PNN mesh contours as image-to-image translation 
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Neural network architecture Pix2Pix 

Pix2Pix is a deep convolutional architecture designed for image translations. Examples 
of the Pix2Pix operations can be found in [207]. 

The generator in Pix2Pix is a convolutional neural network with U-Net-like [214] 
architecture. In fact, it is an autoencoder, in which the left half acts as an encoder, which 
translates input image of size 256 256 3 to the latent vector of size 512, while the right 
one is a decoder, that transforms the latent vector to the output image of size 256 256 3. 
Firstly, 8 convolutional layers with 4 4 kernels eventually produce the latent space vector 
of 512 size. The convolution layer is the mathematical operation of convolving the input 
tensor with a kernel (filter), see Eq.S1 

𝐵 𝑋 ∗ 𝐾 ∑ ∑ 𝑋 , 𝐾 , 0 𝑖, 𝑗 𝑥 𝑘 1    (S1) 

where X is an input tensor; K is a kernel of size k by k; B is the result of convolution of 
the X with the kernel K [209]. LeakyReLU activation function is applied to the output of the 
convolutional layers to add nonlinearity to the model. Unlike sigmoid and hyperbolic 
functions, the ReLU (Rectified Linear Unit, see Eq.S2) and LeakyReLU (see Eq.S3) 
activation functions are widely used in modern neural networks, and it is much easier to 
calculate them [211, p.107]. In our implementation, the encoder nonlinearity is specified 
using LeakyReLU, and the decoder nonlinearity using ReLU. 

𝑅𝑒𝐿𝑈 𝑥  
0, 𝑥 0,
𝑥, 𝑥 0      (S2) 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 𝑥  
𝛼𝑥, 𝑥 0,
𝑥, 𝑥 0    S3  

 After the nonlinear activation function, batch normalization is used to average the 
output tensor values to 0 and bring the standard deviation to 1. Batch normalization or mini-
batch data normalization was proposed in [210]. The essence of the method is to normalize 
mini-batches (tensors) at the outputs of the neural network layers, which helps suppress 
outliers that arise during the learning process. 

The encoder operation result is compression, i.e. reduction of the number of features 
of the original image. It translates input image with dimensions 256 256 3 to latent 
space vector of size 512. In addition, the generator has an important feature: it contains so-
called skip connections between layers 𝑖 and 𝑛 𝑖, where 𝑛 is the total number of layers, in 
our case the skip connections connect 7th layer of encoder with 1st layer of decoder, 6th layer 
of encoder with 2nd layer of decoder, and so on. The effect of skip connections is carrying 
information that might have been heavily compressed or disappeared altogether to later 
layers of the network. After obtaining a layer of minimal dimensions using an encoder, 
expansion or in other words increase in the number of features using a decoder occurs.  
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By its structure, the decoder is similar to the encoder, but unlike the latter, instead of 
convolution, it uses the inverse operation, deconvolution [213], which increases data size. 
Decoder gets the latent vector of size 512 and then sequentially passes it through 
deconvolutional layers, producing 256 256 3 at the end. 

Unlike classic GANs, a noise vector is not transmitted to the Pix2Pix generator; all 
randomness is achieved by receiving Dropout [212] in the generator decoder, which is used 
not only during training, but also during network operation. In general, Dropout is one of the 
methods for regularizing models, i.e. combating excessive complexity of models and 
overtraining. Overtraining is a phenomenon in which a machine learning model overfits the 
training data and loses its generalizing ability. The idea of Dropout is quite simple: for each 
neuron in the layer (except for the very last one, i.e. output layer), a certain probability 𝑝
0.5 is set with which it will be thrown out of the network (i.e. it will not participate in the 
calculations) [211, p. 140-141]. 

 
Fig.S2. U-Net architecture used as a generator 

The Pix2Pix model uses the PatchGAN [207, p.3] convolutional classifier as a 
discriminator, which evaluates the reliability of high-frequency information in the image. 
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The discriminator serves as a complement to the 𝐿   loss function, which is limited to low 
frequencies. Below is the formula for the 𝐿  loss function, where is the result of the model 
operation and is the true value. 

𝐿 𝑦 𝑦  

This discriminator works with image fragments, classifying each fragment as real or 
fake. PatchGAN acts as a style/texture loss function, assuming independence between pixels 
separated from each other by more than a fragment diameter. 

The discriminator is applied to the original-translated image pair, not just to the 
translated image. To do this, these two images are first combined in depth, i.e. the 
corresponding image pixels are concatenated. Thus, a tensor with “thick” pixels from 6 
channels is obtained and then the discriminator works with this tensor, sequentially applying 
5 convolutional layers, 4 of them have batch normalization. LeakyReLU was used as 
activation function, except for the last layer that uses sigmoid activation. And ultimately 
obtaining the so-called label map, according to which, using the sigmoidal activation 
function, a decision is made on whether the image is real or fake. 
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Fig.S3. PatchGAN discriminator architecture 

 As to the loss functions, the loss functions for the discriminator and generator are 
calculated using binary cross-entropy, which is calculated as follows: 

𝐵𝐶𝐸𝐿𝑜𝑠𝑠 𝑦, 𝑦  
1
𝑁

𝑦 log 𝑦 1 𝑦 log 1 𝑦  

where N is the number of elements in the tensors; 𝑦  is the target value for element 𝑖; 𝑦  is 
the predicted value for element 𝑖. 

First, a real pair of images (i.e. before and after marking) is fed into the discriminator, 
and then an image from the generator is fed into it (producing 𝐷 ,), after that 

discriminator losses are calculated. The real loss measures how well the discriminator can 



7 
 

distinguish real images, while the fake loss measures its ability to identify fake images. 
Averaging these two losses helps in training the discriminator to effectively differentiate 
between real and fake images during the adversarial training process. 

L B𝐶𝐸𝐿𝑜𝑠𝑠 𝐷 ,, 1  

L B𝐶𝐸𝐿𝑜𝑠𝑠 𝐷 ,, 0  

𝐿 𝐿 𝐿  

Then generator loss is calculated, it consists of two parts. First part measures how well 
the model can distinguish real images 

𝐿  B𝐶𝐸𝐿𝑜𝑠𝑠 𝐷 ,, 1  

𝐿 𝐺,𝐷 𝜆ℒ 𝐺  

the second component is the already mentioned L1, weighted by a coefficient 𝜆 100. 

Training Dataset 

A new paired dataset containing 7897 images before and after annotation is used. The 
outline of a PNN mesh is highlighted in red, making it both visually more noticeable and 
easily distinguishable from a black and white image. In the dataset, approximately 83% were 
examples obtained by the semi-automatic algorithm, while the remaining ones were 
annotated manually (both data sets from [35]). 
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Fig. S4. Example of an image from the dataset 

Model training 

 The Pix2Pix model was implemented on the PyTorch framework and the model was 
trained on this dataset. Before training, the original dataset was randomly split into two 
subsets: 80% of the data for training and 20% for testing. The neural network was trained for 
155 epochs, with a batch size of 64. Training took about 5 hours on NVIDIA Tesla P100 
GPU in Kaggle cloud platform. In Fig. S5 there are the results of the model running for five 
random test cases during training. One can see how, throughout training, the model learns 
better and better to determine the cell boundaries.  
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Fig. S5. Results of the model during the learning process 

 Fig. S6 shows a graph of the training process of the Pix2Pix model. The abscissa axis 
contains the numbers of training epochs (an epoch is the cycle of complete passage of all 
training data through the model), whereas the ordinate axis shows the values of the model’s 
loss functions on the training set. The blue line is for losses of the Pix2Pix generator on the 
training set, while the yellow line shows the discriminator losses. 
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Fig. S6. Graphs depicting losses throughout model training 

As can be seen from the graphs, until approximately the 25th epoch the generator 
losses are dropping rapidly, which is consistent with the above intermediate results during 
the training process indicating that the generated images are improving at a fast rate. Moving 
further along the graph, jumps in generator losses and a slowdown in the decline in 
discriminator losses are observed. Judging by subsequent intermediate results, the quality of 
the generated images neither improve significantly, nor deteriorate. Fig. S7 shows the results 
of the trained model operation on 4 random images from the test set. 
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Fig. S7. Results of the trained model 
 

Comparative analysis of semi‐automatic and automatic methods for encircling cells 

 Let us compare various metrics for the results of semi-automatic (the vast majority of 
examples from the dataset are obtained using it) and automatic (Pix2Pix) methods for 
encircling cells.  

 We construct boxplot graphs of the areas and perimeters (Fig. S8) of cells (in pixels) 
obtained by two methods. Separate circles on the graphs are outliers. From the graphs, one 
can see that the average values of areas and perimeters obtained by the two methods are quite 
close. 
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Fig. S8. Boxplot-graph of cell areas and perimeters obtained by two methods 
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The Fig. S9 shows the correlations of cell metrics obtained by the two methods. The 
black straight line is linear regression; the red dotted line is a line from the origin at 45 
degrees serving as a reference line; R is the Pearson correlation coefficient; Sp is the 
Spearman correlation coefficient (more resistant to outliers than the Pearson correlation 
coefficient). 

The Pearson correlation coefficient is calculated as follows: 

𝜌  
∑ 𝑥 �̅� 𝑦 𝑦

∑ 𝑥 �̅� ∑ 𝑦 𝑦
 

 The Spearman correlation coefficient is calculated as follows: 

𝑟 𝜌
𝐶𝑜𝑣 𝑅 𝑋 ,𝑅 𝑌

𝜎 𝜎
 

where R(x) is the rank, i.e. the ordinal number of the element in the sorted sequence. 
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Fig. S9. Correlation of the mesh metrics identified by two methods 

Method for translating image‐to‐contour 
The idea behind the method is to translate the source image into a separate PNN mesh 

contour, rather than drawing the contour in the source image, as in the previous method. 
Working with a separate cell outline would be much easier than selecting the “finished 
complete” outline. 

 The dataset for this method is obtained from the previous dataset as follows: in images 
with encircled cells, white pixels are painted blue, whereas the remaining pixels are painted 
white. The result is a set of 173 images. Fig. S10 shows an example from the dataset: 
original image and the outer boundary of the cell, selected by the semi-automatic algorithm 
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Fig. S10. An example from the dataset 

 Next, the same Pix2Pix model is trained for 400 epochs with a batch size of 4. The 
batch size is selected empirically. For example, by setting the batch size to 16, the neural 
network always produces an empty white image; therefore, for this model and dataset, a 
relatively small size of the batch is needed. Fig. S11 shows the results of the neural network 
operation as it progresses through training epochs: As can be seen from the figure above, the 
neural network reproduces exactly the same shape every time, sometimes adding small 
artifacts. This indicates that the neural network has not learned to encircle the PNN cells. 
The latter means that the shape what the neural network reproduces all the time gives a 
minimal loss function, but does not reflect any dependence on the shape and location of the 
PNN cell. 
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 The Fig. S11 shows that the generator and discriminator losses stop falling or growing, 
and they only fluctuate over more than 200 epochs. This confirms the lack of progress in 
learning. Thus, undertraining occurred. Considering that the previous method with 
“additional drawing” of boundaries of the PNN cells is trained quite successfully on the 
existing data, we can conclude that the Pix2Pix architecture is not suitable for translating 
images into individual contours of objects. 

 
Fig. S11. Results of the model operation during training and loss function plot 


