
1

Supplementary Information for research article “The perineuronal net

microscopy: from brain pathology to artificial intelligence”

Table of Contents
Methods for determining cell boundaries of PNN cells using the Pix2Pix GAN model.......... 2

Method of translating an image into an image with a plotted cell outline 2

The idea behind the method .. 2

Neural network architecture Pix2Pix .. 3

Training Dataset .. 7

Model training ... 7

Comparative analysis of semi-automatic and automatic methods for encircling cells 10

Method for translating an image into a cell outline .. 13

Conclusion ... 16

References ... 16

2

Methods for determining the PNN mesh contours using the Pix2Pix GAN model

Method of translating an image into an image with a plotted mesh outline
The idea behind the method

Let us present the problem of identifying the boundaries of the PNN meshes as a
problem of image-to-image translation, in which it is required to build an algorithm for
converting the original images into images, on which the PNN cell boundary is drawn. One
of the most common architectures for this problem is the Pix2Pix [207] GAN [208] model.
To train it, one needs a paired data set, i.e. pairs of original+annotated images.

Fig.S1. Extracting the PNN mesh contours as image-to-image translation

3

Neural network architecture Pix2Pix

Pix2Pix is a deep convolutional architecture designed for image translations. Examples
of the Pix2Pix operations can be found in [207].

The generator in Pix2Pix is a convolutional neural network with U-Net-like [214]
architecture. In fact, it is an autoencoder, in which the left half acts as an encoder, which
translates input image of size 256 256 3 to the latent vector of size 512, while the right
one is a decoder, that transforms the latent vector to the output image of size 256 256 3.
Firstly, 8 convolutional layers with 4 4 kernels eventually produce the latent space vector
of 512 size. The convolution layer is the mathematical operation of convolving the input
tensor with a kernel (filter), see Eq.S1

𝐵 𝑋 ∗ 𝐾 ∑ ∑ 𝑋 , 𝐾 , 0 𝑖, 𝑗 𝑥 𝑘 1 (S1)

where X is an input tensor; K is a kernel of size k by k; B is the result of convolution of
the X with the kernel K [209]. LeakyReLU activation function is applied to the output of the
convolutional layers to add nonlinearity to the model. Unlike sigmoid and hyperbolic
functions, the ReLU (Rectified Linear Unit, see Eq.S2) and LeakyReLU (see Eq.S3)
activation functions are widely used in modern neural networks, and it is much easier to
calculate them [211, p.107]. In our implementation, the encoder nonlinearity is specified
using LeakyReLU, and the decoder nonlinearity using ReLU.

𝑅𝑒𝐿𝑈 𝑥
0, 𝑥 0,
𝑥, 𝑥 0 (S2)

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 𝑥
𝛼𝑥, 𝑥 0,
𝑥, 𝑥 0 S3

 After the nonlinear activation function, batch normalization is used to average the
output tensor values to 0 and bring the standard deviation to 1. Batch normalization or mini-
batch data normalization was proposed in [210]. The essence of the method is to normalize
mini-batches (tensors) at the outputs of the neural network layers, which helps suppress
outliers that arise during the learning process.

The encoder operation result is compression, i.e. reduction of the number of features
of the original image. It translates input image with dimensions 256 256 3 to latent
space vector of size 512. In addition, the generator has an important feature: it contains so-
called skip connections between layers 𝑖 and 𝑛 𝑖, where 𝑛 is the total number of layers, in
our case the skip connections connect 7th layer of encoder with 1st layer of decoder, 6th layer
of encoder with 2nd layer of decoder, and so on. The effect of skip connections is carrying
information that might have been heavily compressed or disappeared altogether to later
layers of the network. After obtaining a layer of minimal dimensions using an encoder,
expansion or in other words increase in the number of features using a decoder occurs.

4

By its structure, the decoder is similar to the encoder, but unlike the latter, instead of
convolution, it uses the inverse operation, deconvolution [213], which increases data size.
Decoder gets the latent vector of size 512 and then sequentially passes it through
deconvolutional layers, producing 256 256 3 at the end.

Unlike classic GANs, a noise vector is not transmitted to the Pix2Pix generator; all
randomness is achieved by receiving Dropout [212] in the generator decoder, which is used
not only during training, but also during network operation. In general, Dropout is one of the
methods for regularizing models, i.e. combating excessive complexity of models and
overtraining. Overtraining is a phenomenon in which a machine learning model overfits the
training data and loses its generalizing ability. The idea of Dropout is quite simple: for each
neuron in the layer (except for the very last one, i.e. output layer), a certain probability 𝑝
0.5 is set with which it will be thrown out of the network (i.e. it will not participate in the
calculations) [211, p. 140-141].

Fig.S2. U-Net architecture used as a generator

The Pix2Pix model uses the PatchGAN [207, p.3] convolutional classifier as a
discriminator, which evaluates the reliability of high-frequency information in the image.

5

The discriminator serves as a complement to the 𝐿 loss function, which is limited to low
frequencies. Below is the formula for the 𝐿 loss function, where is the result of the model
operation and is the true value.

𝐿 𝑦 𝑦

This discriminator works with image fragments, classifying each fragment as real or
fake. PatchGAN acts as a style/texture loss function, assuming independence between pixels
separated from each other by more than a fragment diameter.

The discriminator is applied to the original-translated image pair, not just to the
translated image. To do this, these two images are first combined in depth, i.e. the
corresponding image pixels are concatenated. Thus, a tensor with “thick” pixels from 6
channels is obtained and then the discriminator works with this tensor, sequentially applying
5 convolutional layers, 4 of them have batch normalization. LeakyReLU was used as
activation function, except for the last layer that uses sigmoid activation. And ultimately
obtaining the so-called label map, according to which, using the sigmoidal activation
function, a decision is made on whether the image is real or fake.

6

Fig.S3. PatchGAN discriminator architecture

 As to the loss functions, the loss functions for the discriminator and generator are
calculated using binary cross-entropy, which is calculated as follows:

𝐵𝐶𝐸𝐿𝑜𝑠𝑠 𝑦, 𝑦
1
𝑁

𝑦 log 𝑦 1 𝑦 log 1 𝑦

where N is the number of elements in the tensors; 𝑦 is the target value for element 𝑖; 𝑦 is
the predicted value for element 𝑖.

First, a real pair of images (i.e. before and after marking) is fed into the discriminator,
and then an image from the generator is fed into it (producing 𝐷 ,), after that

discriminator losses are calculated. The real loss measures how well the discriminator can

7

distinguish real images, while the fake loss measures its ability to identify fake images.
Averaging these two losses helps in training the discriminator to effectively differentiate
between real and fake images during the adversarial training process.

L B𝐶𝐸𝐿𝑜𝑠𝑠 𝐷 ,, 1

L B𝐶𝐸𝐿𝑜𝑠𝑠 𝐷 ,, 0

𝐿 𝐿 𝐿

Then generator loss is calculated, it consists of two parts. First part measures how well
the model can distinguish real images

𝐿 B𝐶𝐸𝐿𝑜𝑠𝑠 𝐷 ,, 1

𝐿 𝐺,𝐷 𝜆ℒ 𝐺

the second component is the already mentioned L1, weighted by a coefficient 𝜆 100.

Training Dataset

A new paired dataset containing 7897 images before and after annotation is used. The
outline of a PNN mesh is highlighted in red, making it both visually more noticeable and
easily distinguishable from a black and white image. In the dataset, approximately 83% were
examples obtained by the semi-automatic algorithm, while the remaining ones were
annotated manually (both data sets from [35]).

8

Fig. S4. Example of an image from the dataset

Model training

 The Pix2Pix model was implemented on the PyTorch framework and the model was
trained on this dataset. Before training, the original dataset was randomly split into two
subsets: 80% of the data for training and 20% for testing. The neural network was trained for
155 epochs, with a batch size of 64. Training took about 5 hours on NVIDIA Tesla P100
GPU in Kaggle cloud platform. In Fig. S5 there are the results of the model running for five
random test cases during training. One can see how, throughout training, the model learns
better and better to determine the cell boundaries.

9

Fig. S5. Results of the model during the learning process

 Fig. S6 shows a graph of the training process of the Pix2Pix model. The abscissa axis
contains the numbers of training epochs (an epoch is the cycle of complete passage of all
training data through the model), whereas the ordinate axis shows the values of the model’s
loss functions on the training set. The blue line is for losses of the Pix2Pix generator on the
training set, while the yellow line shows the discriminator losses.

10

Fig. S6. Graphs depicting losses throughout model training

As can be seen from the graphs, until approximately the 25th epoch the generator
losses are dropping rapidly, which is consistent with the above intermediate results during
the training process indicating that the generated images are improving at a fast rate. Moving
further along the graph, jumps in generator losses and a slowdown in the decline in
discriminator losses are observed. Judging by subsequent intermediate results, the quality of
the generated images neither improve significantly, nor deteriorate. Fig. S7 shows the results
of the trained model operation on 4 random images from the test set.

11

Fig. S7. Results of the trained model

Comparative analysis of semi‐automatic and automatic methods for encircling cells

 Let us compare various metrics for the results of semi-automatic (the vast majority of
examples from the dataset are obtained using it) and automatic (Pix2Pix) methods for
encircling cells.

 We construct boxplot graphs of the areas and perimeters (Fig. S8) of cells (in pixels)
obtained by two methods. Separate circles on the graphs are outliers. From the graphs, one
can see that the average values of areas and perimeters obtained by the two methods are quite
close.

12

Fig. S8. Boxplot-graph of cell areas and perimeters obtained by two methods

13

The Fig. S9 shows the correlations of cell metrics obtained by the two methods. The
black straight line is linear regression; the red dotted line is a line from the origin at 45
degrees serving as a reference line; R is the Pearson correlation coefficient; Sp is the
Spearman correlation coefficient (more resistant to outliers than the Pearson correlation
coefficient).

The Pearson correlation coefficient is calculated as follows:

𝜌
∑ 𝑥 �̅� 𝑦 𝑦

∑ 𝑥 �̅� ∑ 𝑦 𝑦

 The Spearman correlation coefficient is calculated as follows:

𝑟 𝜌
𝐶𝑜𝑣 𝑅 𝑋 ,𝑅 𝑌

𝜎 𝜎

where R(x) is the rank, i.e. the ordinal number of the element in the sorted sequence.

14

Fig. S9. Correlation of the mesh metrics identified by two methods

Method for translating image‐to‐contour
The idea behind the method is to translate the source image into a separate PNN mesh

contour, rather than drawing the contour in the source image, as in the previous method.
Working with a separate cell outline would be much easier than selecting the “finished
complete” outline.

 The dataset for this method is obtained from the previous dataset as follows: in images
with encircled cells, white pixels are painted blue, whereas the remaining pixels are painted
white. The result is a set of 173 images. Fig. S10 shows an example from the dataset:
original image and the outer boundary of the cell, selected by the semi-automatic algorithm

15

Fig. S10. An example from the dataset

 Next, the same Pix2Pix model is trained for 400 epochs with a batch size of 4. The
batch size is selected empirically. For example, by setting the batch size to 16, the neural
network always produces an empty white image; therefore, for this model and dataset, a
relatively small size of the batch is needed. Fig. S11 shows the results of the neural network
operation as it progresses through training epochs: As can be seen from the figure above, the
neural network reproduces exactly the same shape every time, sometimes adding small
artifacts. This indicates that the neural network has not learned to encircle the PNN cells.
The latter means that the shape what the neural network reproduces all the time gives a
minimal loss function, but does not reflect any dependence on the shape and location of the
PNN cell.

16

 The Fig. S11 shows that the generator and discriminator losses stop falling or growing,
and they only fluctuate over more than 200 epochs. This confirms the lack of progress in
learning. Thus, undertraining occurred. Considering that the previous method with
“additional drawing” of boundaries of the PNN cells is trained quite successfully on the
existing data, we can conclude that the Pix2Pix architecture is not suitable for translating
images into individual contours of objects.

Fig. S11. Results of the model operation during training and loss function plot

