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Abstract: Though Isoimperatorin from Angelicae dahuricae is known to have antiviral, antidiabetic,
anti-inflammatory and antitumor effects, its underlying antitumor mechanism remains elusive so far.
Hence, the apoptotic mechanism of Isoimperatorin was explored in hepatocellular carcinomas (HCCs).
In this study, Isoimperatorin inhibited the viability of Huh7 and Hep3B HCCs and increased the
subG1 apoptotic portion and also abrogated the expression of pro-poly-ADP ribose polymerase (pro-
PARP) and pro-caspase 3 in Huh7 and Hep3B cells. Also, Isoimperatorin abrogated the expression of
cyclin D1, cyclin E1, CDK2, CDK4, CDK6 and increased p21 as G1 phase arrest-related proteins in
Huh7 and Hep3B cells. Interestingly, Isoimperatorin reduced the expression and binding of c-Myc
and Sirtuin 1 (SIRT1) by Immunoprecipitation (IP), with a binding score of 0.884 in Huh7 cells.
Furthermore, Isoimperatorin suppressed the overexpression of c-Myc by the proteasome inhibitor
MG132 and also disturbed cycloheximide-treated c-Myc stability in Huh7 cells. Overall, these
findings support the novel evidence that the pivotal role of c-Myc and SIRT1 is critically involved in
Isoimperatorin-induced apoptosis in HCCs as potent molecular targets in liver cancer therapy.
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1. Introduction

Liver cancer ranks as the fifth fatal malignancy in humans, generally due to cirrhosis
or inflammation [1,2]. Among liver cancers, hepatocellular carcinoma (HCC) is the most
common type (over 90%) of liver cancer compared to other types of liver cancer, including
intrahepatic cholangiocarcinoma and hepatoblastoma [3]. Also, secondary metastatic liver
cancer from colon, lung and breast cancers is more common than primary liver cancer
from the liver cells [4]. However, though sorafenib as a kinase inhibitor has been applied
for late-stage liver cancer, its antitumor efficacy still remains unsuccessful to date. Hence,
recently, molecular targeted therapies with natural compounds are attractive for liver
cancer therapy [5].

c-Myc, one of driver oncogenes as one of the Myc family, is most tumorigenic with
β-catenin, SmoM2, and short hairpin RNA targeting P53 (shp53), only when RAS signaling
is activated in HCCs [6]. Hence, c-Myc is regarded a pivotal target for cancer treatment [7,8].

Sirtuin 1 (SIRT 1) plays a critical role in the progression of alcoholic and nonalcoholic
fatty liver diseases by modulating hepatic lipid metabolism, hepatic oxidative stress and
inflammation among seven mammalian sirtuins [9]. Recently, SIRT 1 has also been involved
in cancer progression in concert with NFKB [9], HIF1α [10] and STAT3 [11]. Also, it is
noteworthy that SIRT1 has been considered as a target of several diseases such as aging [12],
cancer [13], autoimmune disease [14] and obstructive pulmonary disease [15].
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Isoimperatorin isolated from Angelicae dahuricae [16] is known to have antiviral [17],
antidiabetic [18,19], anti-inflammatory [19,20] and antitumor effects in colon [21], liver [22]
and stomach [22,23] cancers. Nonetheless, the underlying molecular mechanisms are not
fully understood yet. Thus, in the present study, the antitumor mechanism of Isoimper-
atorin was elucidated in Huh7 and Hep3B hepatocellular carcinomas in relation to the
c-Myc/SIRT1 signaling axis.

2. Results
2.1. Isoimperatorin Inhibits the Viability of Huh7 and Hep3B Cells

Isoimperatorin (Figure 1A) significantly suppressed the viability of Huh7 and Hep3B
cells in a concentration- and time-dependent manner without hurting L-929 cells compared
to the untreated control (Figure 1B). Also, Isoimperatorin diminished the migratory effect
in Huh7 and Hep3B cells by wound-healing assay.
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Figure 1. Effect of Isoimperatorin on the viability and migration of Huh7 and Hep3B cells.
(A) Structure and molecular weight of Isoimperatorin; (B) effect of Isoimperatorin on the viability of
Huh7, Hep3B and L-929 cells by MTT assay. ** p < 0.01, *** p < 0.001 vs. untreated control. (C) Effect
of Isoimperatorin on the migratory activity of Huh7 and Hep3B cells by wound-healing assay.
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2.2. Isoimperatorin Increases Sub G1 Population in Huh7 and Hep3B Cells

Isoimperatorin significantly enhanced the apoptotic sub G1 population to 12.51% and
17.36%, respectively, in Huh7 and Hep3B cells compared to the untreated control (0.83%,
1.12%), in a concentration-dependent manner (Figure 2).
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2.3. Isoimperatorin Attenuates the Expression of Pro-PARP and Pro-Caspase 3 in Huh7 and
Hep3B Cells

Isoimperatorin reduced the expression of pro-PARP and pro-caspase 3 in a concentration-
and time-dependent fashion in Huh7 and Hep3B cells (Figure 3).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 11 
 

 

2.2. Isoimperatorin Increases Sub G1 Population in Huh7 and Hep3B Cells 
Isoimperatorin significantly enhanced the apoptotic sub G1 population to 12.51% and 

17.36%, respectively, in Huh7 and Hep3B cells compared to the untreated control (0.83%, 
1.12%), in a concentration-dependent manner (Figure 2). 

 
Figure 2. Effect of Isoimperatorin on sub G1 population in Huh7 and Hep3B cells. Huh7 and Hep3B 
cells were exposed to Isoimperatorin (30 and 60 µM) for 24 h and were subjected to cell cycle analysis. 

2.3. Isoimperatorin Attenuates the Expression of Pro-PARP and Pro-Caspase 3 in Huh7 and 
Hep3B Cells 

Isoimperatorin reduced the expression of pro-PARP and pro-caspase 3 in a concen-
tration- and time-dependent fashion in Huh7 and Hep3B cells (Figure 3). 

 

Figure 3. Effect of Isoimperatorin on pro-PARP and pro-caspase 3 in Huh7 and Hep3B cells. Huh7 and
Hep3B cells were treated with Isoimperatorin (30, 60 µM) for 24 h and subjected to Western blotting.



Int. J. Mol. Sci. 2024, 25, 4248 4 of 10

2.4. Isoimperatorin Modulates Cell Cycle- and Survival-Related Proteins in Huh7 and Hep3B Cells

Isoimperatorin abrogated the expression of CDK2, CDK4, CDK6, cyclin D1, cyclin E1
and activated p21 as cell cycle-related proteins in a concentration-dependent fashion in
Huh7 and Hep3B cells (Figure 4). Likewise, Isoimperatorin suppressed the expression of
BCL2, survivin in survival genes, VEGF for angiogenesis and COX2 for proinflammation
in Huh7 and Hep3B cells (Figure 4).
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Figure 4. Effect of Isoimperatorin on cell cycle and survival-related proteins in Huh7 and Hep3B cells.
Huh7 and Hep3B cells were treated with Isoimperatorin (30 and 60 µM) for 24 h and subjected to
Western blotting.

2.5. Isoimperatorin Inhibits c-Myc Stability in Huh7 and Hep3B Cells

The increase in c-Myc stability was induced in mitotic cells in association with inhibited
c-Myc ubiquitination, since the c-Myc protein is usually degraded very rapidly within
a half-life of 20 to 30 min [24]. Here, Isoimperatorin abrogated the expression of c-Myc
in Huh7 cells during the exposure of the proteasome inhibitor MG132 (Figure 5A). Also,
Isoimperatorin reduced the stability of c-Myc in a time-dependent manner in Huh7 cells
during the exposure of the DNA synthesis inhibitor cycloheximide in Huh7 cells (Figure 5B).
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Figure 5. Effect of Isoimperatorin on c-Myc expression in Huh7 cells treated by MG132 or cyclo-
heximide. (A) Effect of Isoimperatorin on c-Myc expression in Huh7 cells treated by MG132. Huh7
cells were treated with Isoimperatorin (60 µM) for 24 h with or without MG132 and then were
subjected to Western blotting. (B) Effect of Isoimperatorin on c-Myc expression in Huh7 cells treated
by cycloheximide. Huh7 cells were treated with Isoimperatorin (60 µM) for 24 h with or without
MG132 and then were subjected to Western blotting.
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2.6. Isoimperatorin Inhibits the Expression of c-Myc and SIRT1 via c-Myc Degradation in
Huh7 Cells

The inhibition of proteasome activity by MG132 suppresses c-Myc degradation, since
c-Myc is a substrate for ubiquitination [25]. Indeed, proteasome inhibitors including
MG132 (carbobenzoxyl-leucinyl-leucinyl-leucinal-H) and bortezomib (boronic acid dipep-
tide derivative) have been reported to have anticancer activity [26,27]. In this study, Isoim-
peratorin attenuated the expression of c-Myc and SIRT1 in Huh7 cells and also enhanced
the degradation of c-Myc in the presence of the proteasome inhibitor MG132 (Figure 6).
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Figure 6. Effect of Isoimperatorin on the expression of c-Myc and SIRT1 and also c-Myc degradation
in Huh cells. Huh7 cells were transfected with plasmids (V5-c-Myc and HA-Ubiquitin), followed by
the addition of 20 µM of the proteasome inhibitor MG132 for 2 h, immunoprecipitated with anti-HA
antibody and protein G-agarose beads, and immunoblotted with c-Myc and SIRT1.

2.7. Isoimperatorin Disturbs the Binding between c-Myc and SIRT1 in Huh7 Cells

Isoimperatorin attenuated the expression of c-Myc and SIRT1 in Huh7 cells (Figure 7B).
The binding score between c-Myc and SIRT1 was 0.884 using the String database (Figure 7A).
Consistently, it was confirmed that c-Myc binds to SIRT1 in Huh7 cells by Immunoprecipi-
tation assay (Figure 7C).
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(A) The binding score between c-Myc and SIRT1 using String database; (B) the effect of Isoimperatorin
on the expression of c-Myc and SIRT1 in Huh cells; and (C) the effect of Isoimperatorin on the binding
between c-Myc and SIRT1by Immunoprecipitation.

3. Discussion

Previous evidence revealed that Isoimperatorin was isolated and identified chemi-
cally from Angelicae dahuricae [28] and also was known to exert an antitumor effect in
several cancers. Isoimperatorin induced apoptosis in SGC-7901 gastric cancer cells via the
mitochondria-dependent pathway [22] and also inhibited the epithelial-to-mesenchymal
transition (EMT) in colorectal and hepatocellular carcinoma cells [29]. Despite its antitumor
efficacy, the underlying apoptotic mechanism remains unclear to date. Thus, the underlying
apoptotic mechanism of Isoimperatorin was explored in Huh7 and Hep3B hepatocellular
cancer cells.

Cell death is known to be the result of one of two distinct processes, either apoptosis
(programmed cell death) or necrosis (uncontrolled cell death) [30], or autophagy-dependent
cell death [31]. Apoptosis is characterized by a number of characteristic morphological
changes in the structure of the cell, together with a number of enzyme-dependent bio-
chemical processes [32]. Also, apoptotic caspases work predominantly to initiate caspases
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(caspase-2, -8, -9, and -10) and activate effector caspases (caspase-3, -6, and -7) [33,34].
These apoptotic caspases are further sub-grouped as initiator and effector caspases based
on their order of function in the execution of apoptosis. In the current work, Isoimperatorin
showed significant cytotoxicity in Huh7 and Hep3B cells. In the cell cycle analysis and
Western blotting, performed to confirm that the cytotoxicity of HCCs was due to apoptosis,
Isoimperatorin increased the subG1 apoptotic portion and also attenuated the expression
of pro-PARP and pro-caspase 3 in Huh7 and Hep3B cells, implying the apoptotic effect of
Isoimperatorin.

CDK4 and CDK6 are known to promote cell cycle progression from G0/G1 into the
S phase [35,36]. Also, it is well documented that E-type cyclins (Cyclin E1 and Cyclin
E2, and CCNE1 and CCNE2 genes) associated with CDK2 are known to promote G1/S
transition in the cells [37]. Notably, p21 is upregulated after activation of p53 by the
induction of DNA damage, leading to RB-E2F complex formation and the downregulation
of cell cycle genes [38]. Here, Isoimperatorin abrogated the expression of cyclin D1, cyclin
E1, CDK2, CDK4, and CDK6 and increased p21 in Huh7 and Hep3B cells, indicating that
Isoimperatorin regulates G1 phase arrest-related proteins.

Recently, target therapy has become attractive in live cancer treatment with some
natural compounds [39–42]. Accumulating evidence indicates that c-Myc, one of the Myc
gene family, modulates cell growth, differentiation, apoptosis, angiogenesis, cell cycle,
cancer progression and metabolism [7]. Also, the silent information regulator sirtuin 1
(SIRT1) protein is known as a post-translational regulator that is involved in inflammation
and cancer progression [43]. Hence, targeting the epigenetic modifiers of c-Myc or SIRT1
is regarded as a good strategy for effective cancer therapy. In our work, Isoimperatorin
abrogated the expression of c-Myc and SIRT1 at the protein level, and also Immunoprecipi-
tation revealed that their binding was disturbed by Isoimperatorin in Huh7 cells, implying
the inhibitory effect of Isoimperatorin on c-Myc and SIRT1. Furthermore, Isoimperatorin
suppressed the overexpression of c-Myc by the proteasome inhibitor MG132 and also
disturbed cycloheximide-treated c-Myc stability in Huh7 cells, indicating the critical role of
c-Myc in Isoimperatorin-induced apoptosis.

Collectively, these findings highlight the novelty of the pivotal role of c-Myc and
SIRT1 as molecular targets in cancer treatment [7,13], and how they are critically involved
in Isoimperatorin-induced apoptosis in HCCs as potent molecular targets in liver cancer
therapy. Nonetheless, further studies are still required on their bioavailability, pharmacoki-
netics, and potential toxicity for future clinical application.

4. Materials and Methods
4.1. Cell Culture

Huh7 and Hep3B human hepatocellular cancer cells and L-929 normal fibroblast cells
were supplied by Korean Cell Line Bank (KCLB, Seoul, Republic of Korea). The cells were
grown in RPMI1640 with 10% FBS and 1% antibiotic (Welgene, Gyeongsan, Republic of
Korea) at 37 ◦C under a 5% CO2 incubator.

4.2. Cytotoxicity Assay

Based on the paper of Cho et al. [44], the cytotoxicity of Isoimperatorin (CAS 482-45-1,
Merck, Darmstadt, Germany), purchased from Sigma Aldrich, was measured at the concentra-
tions of 15, 30, 60 and 120 µM, based on 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium
bromide (MTT) assay. In brief, Huh7 and Hep3B cells (1 × 104 cells/well) in a 96-well culture
plate were treated with Isoimperatorin for one day and then exposed to MTT (1 mg/mL) and
dimethyl sulfoxide (DMSO), followed by optical density (OD) analysis under a microplate
reader at 570 nm.

4.3. Wound-Healing Assay

As previously described [2], Huh7 and Hep3B cells (2.5 × 105 cells/well), seeded onto
12 well culture plates, were treated with Isoimperatorin for one day. Then, the scraping of
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the attached layers of cells was performed by a pipette tip and then the morphology was
photographed by light microscope and the distance was calculated for its migratory activity.

4.4. Cell Cycle Analysis

Based on the paper of Jung et al. [45], Huh7 and Hep3B cells (2 × 105 cells/mL)
were grown with Isoimperatorin (0, 30 and 60 µM) for one day, and then were fixed in
75% ethanol. The cells were also treated by RNase A (10 mg/mL) and propidium iodide
(50 µg/mL) in the dark. The DNA content of stained cells was measured by FACSCalibur
with CellQuest Pro-Software 7.5.3.

4.5. RNA Interference

Huh7 and Hep3B cells were transfected with siRNA plasmids (control or FBW) (Bioneer,
Daejeon, Republic of Korea). Then, the cells were exposed to INTERFERinTM transfection
reagent for 15 min and then were maintained at 37 ◦C for the next molecular work.

4.6. Western Blotting

Based on the paper of Jung et al. [45], Huh7 and Hep3B cells exposed to Isoimperatorin
(5 and 10 µM) for one day were lysed in lysis solution (1 mM Na3VO4, 1 mM NaF, 50 mM
Tris–HCl, pH 7.4, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 1 mM EDTA, and 1× protease
inhibitor cocktail) on ice, and centrifuged at 14,000× g for 20 min at 4 ◦C by using an RC DC
protein assay kit (BIO-RAD, Hercules, CA, USA). Then, the protein samples were separated
on 4–12% NuPAGE Bis–Tris gels and uploaded into a Hybond ECL transfer membrane
to identify the antibodies of PARP, caspase3, BCL2, survivin, CDK2, CDK4, CDK6, p21,
Cyclin D1, Cyclin E1, VEGF, COX-2, c-Myc, SIRT1 and β-actin.

4.7. Cycloheximide Assay

Cycloheximide assay was performed based on the paper of Aprelikova et al. [46].
Huh7 and Hep3B cells treated with Isoimperatorin (60 µM) for one day were grown
with 50 µg/mL cycloheximide for different times (0, 30, 60 and 120 min) for further
Western blotting.

4.8. Ubiquitination Assay

Huh7 cells were transfected with c-Myc and HA-Ubiquitin plasmids, followed by the
addition of 20 µM proteasome inhibitor MG132 for 2 h, and then immunoprecipitated with
anti-HA antibody and protein G-agarose beads. Finally, it was immunoblotted with the
antibodies of c-Myc and SIRT1.

4.9. Co-Immunoprecipitation Assay

Based on the paper of Cho et al. [44], Huh7 and Hep3B cells treated with or without
Isoimperatorin (30, 60 µM) were lysed in lysis buffer solution. The cell lysates were
immunoprecipitated with the antibodies of c-Myc and SIRT1. After the cells were exposed
to Protein A/G sepharose beads, the final precipitated proteins were subjected to Western
blotting with the antibodies of SIRT1 and c-Myc.

4.10. Statistical Analysis

All data were represented by means ± standard deviation (SD). To evaluate statistical
significance, the Student t-test was used for assessing the different significance between the
control and Isoimperatorin-treated groups by using Sigmaplot version 12 software. The
value of p < 0.05 between Isoimperatorin and the untreated control groups was determined
to be statistically significant.

5. Conclusions

Isoimperatorin from Angelicae dahuricae inhibited the viability, increased the subG1
apoptotic portion and also abrogated the expression of pro-PARP and pro-caspase 3 in
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Huh7 and Hep3B cells. Also, Isoimperatorin abrogated the expression of cyclin D1, cyclin
E1, CDK2, CDK4, and CDK6, increased p21 and reduced the expression and their binding
of c-Myc and SIRT1 in Huh7 cells. Furthermore, Isoimperatorin suppressed the overexpres-
sion of c-Myc by the proteasome inhibitor MG132 and also disturbed cycloheximide-treated
c-Myc stability in Huh7 cells. Taken together, it can be concluded that Isoimperatorin
induced apoptosis via the pivotal role of c-Myc and SIRT1 in HCCs as a potent candidate
for liver cancer therapy.
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