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Abstract: Inflammation is crucial to osteoarthritis (OA) pathogenesis. The aim of this study was to
evaluate Siraitia grosvenorii residue extract (NHGRE) obtained by extracting S. grosvenorii fruits with
water as a potential food supplement for treating arthritis based on its analgesic, anti-inflammatory,
and chondroprotective effects and the remaining residue with 70% ethanol. We observed the analgesic
activity of NHGRE based on the acetic acid-induced writhing response in mice, examined its anti-
inflammatory efficacy against carrageenan-induced paw oedema in mice, and investigated its effect
on inflammatory cytokine expression in interleukin (IL)-1β-induced SW1353 cells. Furthermore,
we determined its effects on cartilage protection in interleukin-1β (IL-1β)-treated SW1353 cells.
NHGRE at 200 mg/kg significantly reduced the acetic acid-induced writhing response and prevented
oedema formation in the carrageenan-induced paw oedema model. In IL-1β-induced SW1353 cells,
NHGRE at 400 µg/mL reduced the expression of inflammation mediators such as tumour necrosis
factor (TNF)-α (55.3%), IL-6 (35.4%), and prostaglandin E2 (PGE2) (36.9%) and down-regulated the
expression of matrix metalloproteinase (MMP)-1 (38.6%), MMP-3 (29.3%), and MMP-13 (44.8%).
Additionally, it restored degraded collagen II levels in chondrocytes. NHGRE plays a protective role
in chondrocytes by regulating Nuclear factor kappa B (NF-κB) activation. Overall, NHGRE may be a
useful therapeutic agent for OA by controlling pain, oedema formation, and inflammation-related
mechanisms.

Keywords: Siraitia grosvenorii residue extract; anti-inflammation; interleukin-1β; NF-κB signalling
pathway; osteoarthritis; chondroprotection

1. Introduction

Inflammation is a complex biological response that involves the activation of enzymes,
release of various chemical mediators, migration of cells, release of fluids, and damage and
repair of tissues [1]. Inflammation is a common pathogenesis of chronic diseases, including
arthritis, diabetes, cancer, and cardiovascular and intestinal diseases [2]. The symptoms
of inflammation in osteoarthritis (OA) include redness, joint oedema, stiffness, and joint
function loss. The long-term pain experienced in OA is primarily caused by chronic inflam-
mation [3]. The expression of pro-inflammatory factors and matrix degrading enzymes is
up-regulated in OA chondrocytes [4]. Previous studies have shown that several inflamma-
tory mediators including interleukin (IL)-1β and IL-6 are involved in OA progression [5].
In particular, IL-1β plays an essential role in OA progression by exacerbating inflammatory
responses and the expression of over-induction-associated catabolic enzymes and inflam-
matory factors such as matrix metalloproteinases (MMPs), aggrecanases, cyclooxygenase
(COX)-2, inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), and a disintegrin
and metalloproteinase with thrombospondin motifs (ADMATs). This leads to extracellular
matrix (ECM) degradation in chondrocytes [6,7].

Siraitia grosvenorii, which is known as ‘monk fruit’ or ‘nahangwa (NHG) (in Korea)’, is
a perennial vine belonging to the Cucurbitaceae family. It is used in traditional Chinese
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medicine to treat throat, cough, asthma, and intestinal ailments [8,9]. Pharmacological
studies have shown that S. grosvenorii exhibits antihyperglycaemic, antitumour, immune-
enhancing, antioxidant, and protective effects in lung injury and intestinal damage [10–15].
S. grosvenorii fruit extract is naturally low in calories and contains sweet cucurbitane
glycosides. Therefore, for commercial use as a sugar substitute sweetener, S. grosvenorii
fruits are extracted with water, and the residue (NHGR) is usually discarded [9]. NHGR
is a raw material available at a low cost and contains several effective compounds that
are not extracted with water, and our previous study showed that this residue exerts
anti-inflammatory effects in vitro and anti-osteoarthritis effects in vivo [16]. Hence, in the
present study, we aimed to elucidate the antinociceptive and anti-inflammatory effects
of S. grosvenorii residue extract (NHGRE) in an animal model and its chondroprotective
activities in a chondrocyte model as these aspects of the extract have not been described
yet. For this purpose, we examined NHGRE as a potential food supplement for treating
arthritis based on its analgesic, anti-inflammatory, and chondroprotective effects.

2. Results
2.1. NHGRE Down-Regulates COX and 5-LOX Activities

NHGRE down-regulated COX-1 and COX-2 enzyme activities in a dose-dependent
manner, and its IC50 was found to be 62.00 and 82.33 µg/mL, respectively. Additionally,
5-lipoxygenase (5-LOX) activity was suppressed by NHGRE, with an IC50 of 270.95 µg/mL
(Table 1).

Table 1. Effect of NHGRE on COX-1, COX-2, and 5-LOX enzyme activities.

Enzyme NHGRE
Dose (µg/mL) Inhibition Rates (%) IC50 (µg/mL)

COX-1
25 29.29 ± 5.21

62.00 ± 3.5950 44.63 ± 12.03
100 70.16 ± 2.96

COX-2
25 14.02 ± 9.79

82.33 ± 9.9050 38.00 ± 5.52
100 58.56 ± 10.40

5-LOX
100 41.37 ± 0.15

270.95 ± 6.63250 48.89 ± 0.73
500 61.62 ± 0.44

2.2. Effect of NHGRE on Acetic Acid-Induced Writhing Response

As shown in Figure 1, treatment with NHGRE (75, 150, and 200 mg/kg) and diclofenac
(10 mg/kg) significantly reduced acetic acid-induced abdominal writhing by 21.2%, 37.0%,
39.7%, and 34.8%, respectively, compared to the control. These results demonstrate that
NHGRE has an analgesic effect on the acetic acid-induced writhing response.
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Figure 1. Inhibitory effect of NHGRE and diclofenac on abdominal constriction in mice treated with 
acetic acid. Values are expressed as mean ± SD. ** p  <  0.01 vs. Con. n = 5. 

2.3. Effect of NHGRE on Carrageenan-Induced Paw Oedema 
As shown in Figure 2, carrageenan injection increased the paw thickness and degree 

of swelling in a time-dependent manner, reaching the maximum percentage change from 
baseline values at 5 h. Pretreatment with NHGRE (200 mg/kg) and indomethacin reduced 
paw oedema by 23.3% and 15.2%, respectively, compared to the difference in oedema be-
tween 0 and 5 h in vehicle control mice. 

0h 1h 3h 5h
0

50

100

150

200

250

Ch
an

ge
 o

f p
aw

 o
ed

em
a 

(%
)

Con
NHGRE-200 mg/kg
NHGRE-150  mg/kg *** *

Indomethacin-5  mg/kg

 
Figure 2. Inhibitory effect of NHGRE and indomethacin on carrageenan-induced oedema in hind 
paw in rats. Volume of paw oedema was evaluated at 0, 1, 3, and 5 h after carrageenan injection. 
Values are expressed as mean ± SD. * p < 0.05 and *** p  <  0.001 vs. Con. n = 5. 

2.4. Effect of NHGRE on TNF-α, IL-6, and PGE2 Production in IL-1β-Treated SW1353 Cells 
As shown in Figure 3B–D, the expression of TNF-α, IL-6, and PGE2 was markedly 

elevated by IL-1β treatment in the SW1353 cell culture medium. In contrast, IL-6 expres-
sion was significantly suppressed, by 12.0%, 32.2%, and 35.4%, respectively, after treat-
ment with 100, 200, and 400 µg/mL NHGRE (Figure 3B). TNF-α expression decreased by 
40.9%, 47.7%, and 55.3%, respectively, in cells treated with NHGRE at 100, 200, and 400 
µg/mL (Figure 3C). NHGRE treatment at 100, 200, and 400 µg/mL significantly decreased 

Figure 1. Inhibitory effect of NHGRE and diclofenac on abdominal constriction in mice treated with
acetic acid. Values are expressed as mean ± SD. ** p < 0.01 vs. Con. n = 5.

2.3. Effect of NHGRE on Carrageenan-Induced Paw Oedema

As shown in Figure 2, carrageenan injection increased the paw thickness and degree
of swelling in a time-dependent manner, reaching the maximum percentage change from
baseline values at 5 h. Pretreatment with NHGRE (200 mg/kg) and indomethacin reduced
paw oedema by 23.3% and 15.2%, respectively, compared to the difference in oedema
between 0 and 5 h in vehicle control mice.
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Figure 2. Inhibitory effect of NHGRE and indomethacin on carrageenan-induced oedema in hind
paw in rats. Volume of paw oedema was evaluated at 0, 1, 3, and 5 h after carrageenan injection.
Values are expressed as mean ± SD. * p < 0.05 and *** p < 0.001 vs. Con. n = 5.

2.4. Effect of NHGRE on TNF-α, IL-6, and PGE2 Production in IL-1β-Treated SW1353 Cells

As shown in Figure 3B–D, the expression of TNF-α, IL-6, and PGE2 was markedly
elevated by IL-1β treatment in the SW1353 cell culture medium. In contrast, IL-6 expression
was significantly suppressed, by 12.0%, 32.2%, and 35.4%, respectively, after treatment
with 100, 200, and 400 µg/mL NHGRE (Figure 3B). TNF-α expression decreased by 40.9%,
47.7%, and 55.3%, respectively, in cells treated with NHGRE at 100, 200, and 400 µg/mL
(Figure 3C). NHGRE treatment at 100, 200, and 400 µg/mL significantly decreased PGE2
production in IL-1β-stimulated cells by 25.7%, 29.1%, and 36.9%, respectively (Figure 3D).
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2.5. Effects of NHGRE on MMP Expression in IL-1β-Stimulated SW1353 Cells

The enzyme-linked immunosorbent assay (ELISA) showed an increased production of
MMP-1, -3, and -13 in the cell culture supernatants after stimulation with IL-1β; however,
the pretreatment of SW1353 cells with NHGRE reduced MMP-1, -3, and -13 production in a
dose-dependent manner. Additionally, the qRT-PCR results demonstrated the same trend
(Figure 4D–F). These findings suggest that NHGRE decreased the production of MMPs,
which could prevent ECM degradation in IL-1β-stimulated SW1353 cells.
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2.6. Effects of NHGRE on Type II Collagen Degradation in IL-1β-Stimulated SW1353 Cells

As shown in Figure 5A, IL-1β treatment significantly reduced type II collagen (COL2A1)
expression, and NHGRE pretreatment mitigated this effect in a dose-dependent manner. Fur-
thermore, an immunofluorescence analysis showed that IL-1β treatment effectively decreased
the expression of type II collagen (Figure 5B). In contrast, NHGRE treatment notably inhibited
IL-1β-stimulated cytoplasmic type II collagen degradation.

 
Figure 5. Effects of NHGRE on IL-1β-induced ECM degradation in IL-1β-treated 
SW1353 chondrocytes. (A) Protein expression, (B) immunofluorescence staining 
of type II collagen and DAPI staining of nuclei in chondrocytes, and (C) 
fluorescence intensity of type II collagen. Scale bar 20µm. Values are expressed as 
mean ± SD (n = 3). #### p < 0.0001 vs. untreated control. * p < 0.05, ** p < 0.01 and *** 
p < 0.001 vs. IL-1β-treated group. 

 

Figure 5. Effects of NHGRE on IL-1β-induced ECM degradation in IL-1β-treated SW1353 chondro-
cytes. (A) Protein expression, (B) immunofluorescence staining of type II collagen and DAPI staining
of nuclei in chondrocytes, and (C) fluorescence intensity of type II collagen. Scale bar 20 µm. Values
are expressed as mean ± SD (n = 3). #### p < 0.0001 vs. untreated control. * p < 0.05, ** p < 0.01 and
*** p < 0.001 vs. IL-1β-treated group.

2.7. Effects of NHGRE on IL-1β-Stimulated NF-κB Activation

To further explore the mechanism underlying the anti-inflammatory action of NHGRE,
we investigated the protective effect of NHGRE on IL-1β activation in the NF-κB pathway
using Western blotting. IL-1β significantly promoted the phosphorylation of p65- and IκBα,
whereas NHGRE treatment showed a pronounced inhibitory effect on IL-1β-induced p65-
and IκBα phosphorylation in a dose-dependent manner (Figure 6).
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Figure 6. Effects of NHGRE on IL-1β-induced NF-κB activation in SW1353 chondrocytes. Protein
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(n = 3). # p < 0.05 vs. control. * p < 0.05 vs. IL-1β-induced group.

3. Discussion

Inflammation is a major factor in OA development. It is associated with the risk of the
progression of cartilage destruction and exacerbates the signs and symptoms of OA such as
joint pain, redness, heat, stiffness, and swelling [17]. Inflammation initiates and progresses
within inflammatory cells when arachidonic acid (AA) is metabolised by COX and LOX to
PGE2 and leukotriene (LT) B4, respectively [18]. Currently, treatment for the alleviation
of OA symptoms includes the use of non-steroidal anti-inflammatory drugs (NSAIDs),
which mainly inhibit COX expression and reduce prostaglandin (PG) synthesis [19]. The
inhibition of the COX-2 enzyme pathway by NSAIDs leads to the substrate diversion of AA
metabolism to the other major LOX pathway, resulting in an increased LT production and
increased inflammatory reaction. Leukotriene B4 (LTB4) terminates the 5-LOX pathway.
LTB4 is a mediator of inflammation in several diseases such as atherosclerosis, cancer, and
cardiovascular disease [20,21]. Therefore, new anti-inflammatory agents that can simulta-
neously inhibit the COX-2 and 5-LOX pathways show additional anti-inflammatory effects
and improved safety compared to COX inhibitors alone. In this study, the potential of
NHGRE to inhibit COX-1, COX-2, and 5-LOX enzyme activities was evaluated. NHGRE
showed a good inhibitory effect on the tested enzymes, with an IC50 = 62.00 µg/mL for
COX-1, 82.33 µg/mL for COX-2, and 270.95 µg/mL for 5-LOX. The carrageenan-induced
rat paw oedema model is suitable for the evaluation of the effects of anti-inflammatory
agents; it has been frequently used to evaluate the anti-inflammatory efficacy of natural
products [22]. In this study, NHGRE treatment at 200 mg/kg significantly inhibited paw
oedema formation in rats 5 h after carrageenan injection. Additionally, the acetic acid-
induced writhing model is used for screening and assessing anti-inflammatory agents or
for evaluating the peripheral antinociceptive effects of drugs, because acetic acid induces
abdominal contractions or writhing in mice by increasing the levels of pain mediators such
as PGE2 [1,23]. In this study, the oral administration of NHGRE at all doses significantly
reduced the number of writhing responses in mice compared with that in the control group.
Considering that the percentage of suppression elicited by NHGRE at 150 and 200 mg/kg
was similar, 150 mg/kg NHGRE was probably the maximum analgesic dose. We demon-
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strated that, in the MIA-induced OA rat model, NHGRE inhibits the expression of both
PGE2 and LTB4, which are products of the COX-2 and 5-lipoxygenase pathways [16]. Based
on the results of these in vivo studies, we propose that NHGRE exerts its inflammatory
and analgesic effects through a related AA metabolism.

Inflammation is ubiquitous during the progression of OA [24]. The inhibition of
the expression of pro-inflammatory cytokines and IL-6- and IL-1β-induced inflammatory
mediators such as NO and PGE2 alleviate OA development and reduce inflammation, pain,
and proteoglycan loss [25–27]. To mimic the initiation and pathogenesis of OA, in vitro
investigations generally use IL-1β to induce inflammatory responses in SW1353 cells [28].
In this study, we found that IL-1β induced the production of inflammatory cytokines
and mediators (TNF-α, IL-6, and PGE2) in SW1353 cells and that the expression of these
inflammatory factors was suppressed by NHGRE, suggesting that NHGRE may exert an
anti-inflammatory effect against IL-1β-induced inflammatory responses in SW1353.

The excessive production of inflammatory cytokines, such as TNF-α, IL-1, IL-6, and
IL-8, triggers joint inflammation, which leads to ECM breakdown and cartilage degen-
eration [29]. Notably, IL-1β induces the release of cartilage-degrading enzymes such as
MMPs and the ADAMTS family members, which consequently promotes collagen II and
aggrecan degradation [30]. Furthermore, the destruction of articular cartilage in OA is due
to an imbalance between the anabolic and catabolic processes in the ECM [31]. ADAMTS5,
MMP1, MMP3, and MMP13 are the most commonly reported enzymes in this catabolic
dysregulation, whereas type II collagen is involved in its anabolism [32]. Type II collagen
is a major constituent of the cartilage tissue, and a decrease in its expression is one of the
hallmarks of cartilage degeneration [33]. Therefore, MMP inhibition and type II collagen
up-regulation may prevent cartilage ECM loss and cartilage degradation. In this study,
IL-1β treatment notably induced the expression of MMP1, MMP3, and MMP13, which in
turn reduced the type II collagen level. In contrast, NHGRE treatment reversed the MMP
and type II collagen levels, suggesting that NHGRE may exert a protective effect against
IL-1β-induced cartilage degeneration.

NF-κB plays a crucial role in inflammation [34]. NF-κB, when activated, inhibits type II
collagen expression and increases MMP (MMP-1, -2, -3, -7, -8, -9, and -13) and aggrecanase
(ADAMTS4 and ADAMTS5) levels. It also increases NO, iNOS, COX-2, and PGE-2 produc-
tion, which promotes IL-1β-mediated OA progression [35,36]. Thus, NF-κB plays a decisive
role in OA progress; therefore, targeting the NF-κB signalling pathway is a promising ther-
apeutic strategy for OA [37]. The present study’s results showed that NHGRE blocks the
IL-1β-mediated inflammatory response via the NF-κB signalling pathway in SW1353 cells,
suggesting that the NF-κB signalling pathway may be involved in the cartilage-protective
effect of NHGRE in the IL-1β-induced SW1353 cell model. Taken together, our results
demonstrate that NHGRE reduces the levels of inflammation-related markers including pro-
inflammatory mediators, cytokines, and enzymes by down-regulating the NF-κB signalling
pathway activities. Furthermore, the inhibition of MMP expression and the up-regulation
of type II collagen expression by controlling inflammation exerted chondroprotective effects
by preventing cartilage ECM loss and cartilage degradation.

In our previous study, we found that NHGRE contains mogroside II, mogroside III,
mogroside IV, mogroside V (MV), and 11-oxo-mogroside V [38]. The study was performed
using NHGRE in which the concentration of the major component, MV, was standardised
to 5.3 mg/g [16]. Although MV is known to have the highest pharmacological activity, its
mechanism of action in OA is unknown, warranting further in vitro and in vivo studies.

4. Materials and Methods
4.1. Preparation of NHGRE

NHGRE was prepared according to a previously published method [16]. NHGRE was
provided by Dongkuk Pharmaceutical (Seoul, Republic of Korea). It was manufactured
as follows. Air-dried S. grosvenorii residue was extracted twice using 70% ethanol. The
extract was filtered, concentrated under reduced pressure, and mixed with food-grade
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maltodextrin at a 1:1 ratio. The mixture was dried to obtain a powdered sample, which was
then ground uniformly for use in experiments (batch No. LHGE-210417; Hunan, Huacheng
Biotech Inc., Changsha, China).

4.2. COX and 5-LOX Activity Assay

Inhibition COX and LOX activities were determined using the COX inhibitor screening
assay kit (Catalogue no. 760111; Cayman Chem., Ann Arbor, MI, USA) and 5-LOX inhibitor
screening assay kit (Catalogue no. 760700; Cayman Chem.), respectively. The IC50 value of
NHGRE was determine according to the manufacturer’s protocol.

4.3. Acetic Acid-Induced Writhing Response

Male ICR mice aged 7 weeks were supplied by Orient Bio (Seongnam, Republic of
Korea). The mice were randomly assigned to different groups (n = 5). Vehicle (0.5% car-
boxymethyl cellulose (CMC)), NHGRE (75, 150, and 200 mg/kg), or diclofenac (10 mg/kg)
was orally administered to the mice in each group. After 1 h, acetic acid (0.75%, 10 µL/g)
was intraperitoneally injected into the mice. After 5 min, the number of writhes that
occurred within a period of 10 min was recorded. The responses observed included stretch-
ing, the extension of the hind legs, and tension on one side [39]. All experiments were
performed in accordance with the guidelines of the Korea Institute of Oriental Medicine
(KIOM) (Approval Number: 22-102).

4.4. Carrageenan-Induced Paw Oedema

A carrageenan-induced rat hind paw oedema model was used generated using a
previously described method, with some modifications [40]. Seven-week-old male ICR
mice were supplied by Orient Bio. The mice were randomly assigned to different groups
(n = 5). Vehicle (0.5% carboxymethyl cellulose (CMC)), NHGRE (150 and 200 mg/kg), or
indomethacin (5 mg/kg) was orally administered to the mice in each group. After 1 h,
carrageenan (1%, 50 µL) was administered to the mice via intraplantar injection. Paw
oedema was measured before carrageenan injection and at 1, 3, and 5 h post-injection based
on the change in paw volume (Vtime − Vzero). Vzero is the baseline paw volume for each
group before carrageenan injection. Vtime is the paw volume for each group at 1, 3, and
5 h after carrageenan injection. The percentage of paw oedema was calculated using the
following equation:

Percentage of paw oedema = (Vtime − Vzero)/Vzero × 100

4.5. Cell Culture and Cytotoxicity Measurement

SW1353 human chondrocytes were purchased from the American Type Culture Collec-
tion (ATCC, Manassas, VA, USA). The cells were cultured in Dulbecco’s modified Eagle’s
medium/nutrient mixture F-12 (DMEM/F12; Gibco-BRL, Grand Island, NY, USA), which
contained 10% foetal bovine serum (FBS) and 1% penicillin/streptomycin (Gibco-Invitrogen,
Carlsbad, CA, USA) under 5% CO2 at 37 ◦C. The cells were cultured in a 96-well plate and
incubated for 24 h. After incubation with NHGRE at various concentrations for 2 h, the cells
were stimulated with IL-1β (10 ng/mL) for 24 h. For determining cell viability, after all treat-
ments, the medium was removed, and 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium
bromide (MTT) solution was added to each well. Following incubation in the dark for 2 h,
the supernatant was replaced with an equal volume of DMSO to dissolve blue formazan
crystals. The absorbance of the samples was determined at 570 nm using a microplate
reader (Bio-Rad, Hercules, CA, USA) as previously described [41].

4.6. ELISA

The inhibitory effects of NHGRE on the expression of pro-inflammatory cytokines and
mediators, namely, TNF-α, IL-6, PGE2, MMP-1, MMP-3, MMP-13, and type II collagen,
were examined using commercial ELISA kits from R&D Systems (Minneapolis, MN, USA).



Int. J. Mol. Sci. 2024, 25, 4268 9 of 12

4.7. RNA Isolation and RT-PCR

Total RNA was extracted from cells using the RNeasy Mini Kit (Qiagen Inc., Valencia,
CA, USA), according to the manufacturer’s instructions and quantified. cDNA synthesis
was performed using the iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) and
amplified with SYBR Green Supermix on a CFX Connect Real-Time PCR System (Bio-Rad,
Hercules, CA, USA) under the following conditions: 10 min at 95 ◦C, 40 cycles at 95 ◦C for
15 s, 60 ◦C for 20 s, and 72 ◦C for 20 s. After determining the cycle threshold (Ct) values,
we normalised the target mRNA level to the glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) level and calculated the relative mRNA levels of different target genes using the
2−∆∆ct method. The primer sequences used are presented in Table 2.

Table 2. Sequences of the primers used for the real-time PCR.

Gene Direction Primer Sequence

MMP-1
Forward 5′-GACAGAGATGAAGTCCGGTTT-3′

Reverse 5′-GCCAAAGGAGCTGTAGATGTC-3′

MMP-3
Forward 5′-ATTCCATGGAGCCAGGCTTTC-3′

Reverse 5′-CATTTGGGTCAAACTCCAACTGT-3′

MMP-13
Forward 5′-AGCCACTTTATGCTTCCTGA-3′

Reverse 5′-TGGCATCAAGGGATAAGGAAG-3′

GAPDH
Forward 5′-CACCCACTCCTCCACCTTTG-3′

Reverse 5′-CCACCACCCTGTGCTGTAG-3′

4.8. Western Blotting

The protein was extracted from cells using RIPA buffer. Samples were electrophoresed
on 10% polyacrylamide gels and transferred onto PVDF membranes. Following 1 h
blocking with 5% non-fat milk, the membranes were incubated with primary antibodies
(1:1000 dilution; Santa Cruz Biotechnologies, Santa Cruz, CA, USA) overnight at 4 ◦C. Next,
the membranes were washed with TBST and incubated with horseradish peroxidase-linked
secondary antibodies (diluted 1:2000) for 60 min at room temperature. Following TBST
washes, the signals were detected using SuperSignal Chemiluminescence Reagent (Thermo
Scientific, Atto Corporation, Tokyo, Japan) using an image analyser (LAS 4000 mini; GE
Healthcare Bio-Sciences, Piscataway, NJ, USA).

4.9. Immunofluorescence Staining

The cells were fixed in 4% paraformaldehyde solution (pH 7.4) for 30 min at room
temperature. The cells were permeabilised with 0.3% Triton X-100 in PBS for 20 min and
blocked with 5% bovine serum albumin in PBS for 30 min. The cells were then incubated
with anti-collagen II (1:200 dilution; Santa Cruz Biotechnologies, Santa Cruz, CA, USA)
for 1 h and Texas Red-conjugated secondary antibodies (1:100 dilution) for 1 h at room
temperature in the dark. After washing thrice with PBS, the cells were stained with
4–6-diamidino-2-phenylindole (DAPI) for 10 min. The slides were covered with mounting
media and visualised using a Fluoview FV10i confocal microscope (Olympus, Tokyo,
Japan). Fluorescence data were exported from generated images; they are expressed as the
percentage of fluorescence intensity relative to that of the control.

4.10. Statistical Analyses

All data are expressed as the mean ± standard deviation (SD); they were analysed us-
ing the Prism 7.0 software (GraphPad Software, Boston, MA, USA). Statistical comparisons
of more than two groups were performed by the one-way analysis of variance, followed by
Dunnett’s test. Results with p < 0.05 were considered statistically significant.
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5. Conclusions

Collectively, the in vitro results of the present study showed that NHGRE down-
regulates the IL-1β-induced expression of inflammatory mediators, including TNF-α, IL-6,
and PGE2, and cartilage-degrading enzymes, such as MMP-1, MMP-3, and MMP-13. It up-
regulates type II collagen levels. These results showed that NHGRE protected chondrocytes
by inhibiting IL-1β-stimulated anti-inflammatory activity and cartilage degeneration by
regulating the NF-κB signalling pathway. Our findings suggest the potential of NHGRE as
an effective therapeutic agent for OA.
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