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Abstract: Drought is one of the major abiotic stresses with a severe negative impact on maize
production globally. Understanding the genetic architecture of drought tolerance in maize is a
crucial step towards the breeding of drought-tolerant varieties and a targeted exploitation of genetic
resources. In this study, 511 quantitative trait loci (QTL) related to grain yield components, flowering
time, and plant morphology under drought conditions, as well as drought tolerance index were
collected from 27 published studies and then projected on the IBM2 2008 Neighbors reference map
for meta-analysis. In total, 83 meta-QTL (MQTL) associated with drought tolerance in maize were
identified, of which 20 were determined as core MQTL. The average confidence interval of MQTL was
strongly reduced compared to that of the previously published QTL. Nearly half of the MQTL were
confirmed by co-localized marker-trait associations from genome-wide association studies. Based on
the alignment of rice proteins related to drought tolerance, 63 orthologous genes were identified near
the maize MQTL. Furthermore, 583 candidate genes were identified within the 20 core MQTL regions
and maize–rice homologous genes. Based on KEGG analysis of candidate genes, plant hormone
signaling pathways were found to be significantly enriched. The signaling pathways can have direct
or indirect effects on drought tolerance and also interact with other pathways. In conclusion, this
study provides novel insights into the genetic and molecular mechanisms of drought tolerance in
maize towards a more targeted improvement of this important trait in breeding.

Keywords: maize; drought tolerance; meta-QTL; candidate genes

1. Introduction

Maize (Zea mays L.) is a globally important crop and serves as food, fodder, and
industrial raw material [1–3]. Due to its broad adaptation, maize grows in different agro-
ecological zones around the world, contributing approximately 21% of the global food
production [4]. However, drought as the primary abiotic stress causes significant damage
to maize production [5,6]. Therefore, the development of drought-tolerant maize varieties
is pivotal to ensure stable maize yields for global food production.

Drought tolerance is a complex quantitative trait that is regulated by numerous genes
with minor effects. It negatively impacts various agronomic traits of maize, including
plant height, ear height, anthesis to silking interval, 1000 kernel weight, and grain yield.
Water scarcity during development reduces plant and ear height, leading to insufficient
photosynthesis [7]. Drought stress can also lead to sterile pollen production during flower-
ing [8] as well as the increase in the anthesis-silking interval [9] and poor development of
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grain filling [10], which ultimately results in the decrease in yield. Previous studies have
evaluated these traits under drought conditions to identify drought-tolerant germplasm
for breeding [11].

Studies on drought tolerance of maize have also included quantitative trait locus
(QTL) mapping. For example, Guo et al. [12] used a recombinant inbred line (RIL) pop-
ulation to perform QTL mapping on flowering time, plant height, grain yield, and yield
component traits. Ana et al. [13] identified 43 grain yield and morphological trait QTL
on all maize chromosomes except chromosome 9, and Zhao et al. [14] identified 69 QTL
under drought stress and control conditions, which were associated with plant height,
ear height, anthesis-silking interval, 100 grain weight, kernel weight, and kernel length.
However, due to the low accuracy of most initially located QTL, only a few have been
verified and subsequently applied in marker-assisted breeding in maize. Consequently, it
is necessary to identify consistent QTL and to reduce their confidence interval in order to
improve their utilization in breeding. This can be achieved by meta-QTL analysis, which is
an approach to integrate QTL data from different studies, in order to identify meta-QTL
with a reduced confidence interval [15]. This approach has the advantage that it allows the
integration of the results of different mapping populations, different molecular markers, as
well as different genetic linkage maps. Consequently, this method has been widely used in
plant genetics and breeding, for example for drought tolerance in foxtail millet [16], yield
traits under drought in rice [17], and yield-related traits of wheat [18]. In maize, meta-QTL
analysis has been successfully applied to traits associated with grain quality and yield [19],
disease resistance [20,21], and nutrient utilization [22].

A better understanding of the genetic and molecular mechanisms of drought tolerance
in maize is crucial for future breeding and a more targeted exploitation of genetic resources.
In this study, we therefore performed meta-QTL analysis for drought tolerance in maize.
In particular, our objectives were as follows: (1) to identify consensus genomic regions
linked to drought tolerance through meta-analysis, (2) to support the identified meta-QTL
by comparison with results from genome-wide association studies (GWAS), (3) to identify
candidate genes within the MQTL regions by searching for rice homologous genes and by
exploring the important MQTL regions, and (4) to further characterize the candidate genes
of MQTL.

2. Results
2.1. Distribution of QTL for Drought Tolerance in the Maize Genome

For this meta-QTL study, 56 original QTL mapping studies on maize drought tolerance
published between 1996 and 2023 were collected. By filtering according to the water
treatments and by QTL quality information, 27 studies [9,12,13,23–46] with 511 QTL were
selected for the meta-analysis (Tables S1 and S2; Figure S1). The population size of these
studies ranged from 49 to 450, and the marker types were mainly SSR, AFLP, RFLP, and SNP
markers. The number of QTL obtained from each study ranged from 11 to 92. Regarding
the LOD scores of these QTL, the number of QTL with LOD less than 2 was 31, most of
the QTL (329) had a LOD score between 2 and 4, and 119 QTL were between 4 and 6. The
number of QTL with an LOD < 2 (31) or > 6 (32) were relatively low (Figure 1a). Regarding
another key feature, the proportion of variance explained (PVE) by the QTL, most of the
QTL (243) explained 5–10%, while the remainder of the three levels <5% (101), 10–15%
(95), and >15% (72) appeared to be equivalent (Figure 1b). There were 24 traits measured
under drought conditions, which can be divided into four categories (Table S3). Grain yield
component traits (GY) accounted for the highest proportion (59.9%), followed by flowering
time-related traits (FR) (23.9%), and plant morphology traits (PM) (11.7%), while drought
tolerance index (DTI) accounted for 4.5% (Figure 1c; Table S3).
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Figure 1. Classification of the QTL associated with drought used for this meta-analysis. (a) Distri-
bution of their LOD score; (b) distribution of proportion of variance explained (PVE) by the QTL;
(c) classification of the traits. GY, grain yield components traits; FR, flowering time-related traits; PM,
plant morphology traits; DTI, drought tolerance index.

2.2. Meta-Analysis of QTL for Drought Tolerance in Maize

Meta-analysis of the 511 QTL associated with drought tolerance in maize identified
a total of 83 MQTL (Figure 2a and Figure S2; Table S4). The maximum and minimum
number of MQTL per chromosome was 10 (Chr. 2 and 8) and 6 (Chr. 5), respectively.
Regarding the number of initial QTL, Chr. 1 harbored the most with 96, which formed
9 MQTL after meta-analysis (Figure 2b). Except for MQTL4_2 and MQTL4_7, which were
both formed by only a single initial QTL, all other MQTL were formed by at least two
initial QTL. The two MQTL with the highest number of initial QTL are MQTL8_2 (located
on Chr. 8 incorporating 21 initial QTL related to 11 traits) and MQTL5_3 (located on
Chr. 5 that had 20 initial QTL from 12 traits). There were four MQTL with a very narrow
confidence interval of less than 1 cM, MQTL2_5, MQTL3_7, MQTL4_9, and MQTL8_10,
whose confidence interval was 0.6, 0.8, 0.9, and 0.4 cM, respectively, and which influenced 6,
11, 10, and 3 traits, respectively (Table S4). The average confidence interval of MQTL were
substantially decreased compared with the confidence interval of the initial QTL on every
chromosome, ranging from a 2.5-fold reduction (Chr. 9) to a 6.5-fold reduction (Chr. 5),
with an average value of 4.3-fold reduction across the whole genome (Figure 2c).
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Figure 2. Characteristic features of QTL and MQTL. (a) Circular plot of the drought-related MQTL in
maize. From the inside to the outside: the innermost circle represents the gene density contained in
the MQTL as well as genes related to drought tolerance; the middle circle is the physical map position
of the MQTL, and the outermost circle shows the core and hotspot MQTL intervals; (b) distribution
of QTL and MQTL on the different maize chromosomes; (c) comparison of the confidence intervals of
QTL and MQTL, showing the fold level of reduction in the size of the confidence interval.
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2.3. Confirmation of MQTL with GWAS Results

In order to provide additional confirmation of the identified meta-QTL, their physical
positions were compared with the physical positions of marker–trait associations (MTAs)
identified by GWAS. A total of 40 MQTL (upstream and downstream 500 kb regions) were
found to overlap with 247 MTAs, which were identified in five GWAS on drought tolerance
in maize [47–51] (Tables S5 and S6). Among them, MQTL1_3 overlapped with 68 MTAs and
MQTL4_9 with 29 MTAs, followed by MQTL2_7, MQTL8_9, and MQTL2_10 overlapping
with 18, 17, and 12 MTAs, respectively. Furthermore, there were 11 MQTL overlapping
with 3–10 MTAs and 7 MQTL overlapping with 2 MTAs, while 17 MQTL only overlapped
with 1 MTA. It is worth noting that the latter MTA-MQTL included five MQTL with very
small confidence interval of less than 1 Mb (Figure 3).
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2.4. Exploring Candidate Genes for Drought Tolerance in the MQTL Regions

Several genes related to drought tolerance in maize were found in the MQTL re-
gions (Figure 2a; Table S4). This includes ZmWRKY79 in MQTL7_4 that impacts lateral
roots, lower stomatal aperture, and water loss under drought stress [52], ZmXerico2 of
MQTL7_5 confers ABA hypersensitivity and improves water use efficiency by overexpres-
sion [53], ZmTCP42 in MQTL7_7 is teosinte-branched 1/cycloidea/proliferating (TCP)
plant-specific transcription factors and plays a positive role in drought tolerance [54],
and ZmPTF1 in MQTL9_1 is known to contribute to root development and to improve
drought tolerance [55]. Furthermore, MQTL9_3 contains ZmTIP1 that contributes to root
hair elongation [56] and ZmVPP1 enhances photosynthetic efficiency and root develop-
ment [49], ZmRtn16 of MQTL9_5, encoding a reticulon-like protein, was found to con-
tribute to drought resistance by facilitating the vacuole H+-ATPase activity [57], ZmBSK1
of MQTL9_9 positively affects drought tolerance in maize [58], and ZmASR1, that af-
fects the synthesis of branched-chain amino acids and maintains maize grain yield under
drought conditions, is located in MQTL10_2 [59]. In addition, some drought tolerance genes
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were searched and found along 500 kb upstream and downstream of the MQTL regions,
such as ZmLBD2 (MQTL1_1) [60], ZmCIPK3 (MQTL1_3) [50], ZmNF-YA3 (MQTL1_5) [61],
ZmEREBP60 (MQTL1_7) [62], ZmNAC080308 (MQTL3_6) [63], ZmPP2C-A (MQTL4_9) [64],
ZmALDH22A1 (MQTL7_8) [65], and ZmWRKY106 (MQTL8_10) [66].

In order to identify further candidate genes potentially related to drought tolerance
traits in the MQTL regions, three methods were applied. First, maize genes homologous to
271 rice drought tolerance genes were searched. Based on the homology between maize
and rice through protein alignment, a total of 63 orthologous maize genes were found
in the MQTL regions (Table S7). The 63 candidate genes had effects on similar drought
tolerance-related traits in maize and rice. For example, Zm00001d029740 (MQTL1_4) and
Zm00001d028999 (MQTL1_3) affect yield-related traits similar to their rice homologous
genes OsSCE1 and OsNAC10, respectively. Zm00001d023420 (MQTL10_1) and its rice
homologous gene RCN1 both affect seed weight and thickness under drought stress. The
gene Zm00001d052537 located in the MQTL4_6 region and OsCEN2 both affect flowering-
related traits during drought stress (Table S7). These results indicate that the functions
of these candidate genes are likely conserved in maize and rice. As a second approach,
we explored the genomic regions of breeders’ MQTL for candidate genes. MQTL with
a confidence interval physical distance less than 1 Mb, a genetic map distance less than
4 cM and initial QTL number greater than 2, are called breeders’ MQTL [67]. There were
eight breeders’ MQTL, namely MQTL4_9, MQTL5_6, MQTL7_1, MQTL8_2, MQTL8_6,
MQTL8_7, MQTL8_10, and MQTL9_8 that were explored further. Based on gene annotation,
106 promising candidate genes were found for those MQTL. For the third approach, we
explored candidate genes within the most promising MQTL with MTA hits. The MQTL that
were matched with more MTAs have a higher probability of harboring functional genes
related to drought tolerance. We set the threshold that a MQTL must have greater than three
MTAs to be considered for this analysis, which left 14 MTA-MQTL, including MQTL1_3,
MQTL2_3, MQTL2_5, MQTL2_7, MQTL2_10, MQTL3_4, MQTL4_9, MQTL6_7, MQTL7_1,
MQTL7_6, MQTL8_8, MQTL8_9, MQTL9_9, and MQTL10_8. Except for MQTL4_9 and
MQTL7_1, which coincided with the breeders’ MQTL, the remaining 12 MQTL with larger
confidence intervals (> 4 cM) were used and 453 candidate genes were found in the 500 kb
interval surrounding the MQTL peak. Given the two overlapping MQTL, the eight breeders’
MQTL and the 14 MTA-MQTL gave 20 MQTL that are most promising for drought tolerance
and that are defined here as core MQTL (Figure 2a). These 20 core MQTL and the maize–rice
orthologous genes were investigated and a total of 583 candidate genes were identified for
them (Table S8).

2.5. Functional Annotation of Candidate Genes

We next performed GO and KEGG pathway enrichment analysis of the identified
583 candidate genes to determine their functional classification. Among them, 360 genes
with GO annotation were mainly related to biological processes (19 items), molecular
functions (17 items), and cellular components (2 items) (Figure 4). The most abundant
GO terms related to biological processes were cellular process (GO: 0009987, 236/360,
65.6%) and metabolic process (GO: 0008152, 203/360, 56.4%), biological regulation (GO:
0065007, 86/360, 23.9%), regulation of biological process (GO:0050789, 79/360, 21.9%), and
response to stimulus (GO: 0050896, 66/360, 18.3%). GO terms related to molecular function,
binding (GO: 0005488, 198/360, 55.0%), and catalytic activity (GO: 0003824, 162/360, 45.0%)
were also highly enriched. Cellular anatomical entity (GO: 0110165, 273/360, 75.8%) and
protein-containing complex (GO: 0032991, 43/360, 11.9%) were enriched in the cellular
component’s annotation. The KEGG metabolic pathway is significantly enriched with signal
transduction pathways and protein kinases, such as plant hormone signal transduction,
mitogen-activated protein kinases (MAPK) signaling pathway-plant, and plant–pathogen
interaction (Figure 5).
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2.6. Expression Analysis of Candidate Genes

The expression characteristics of the identified candidate genes in major stages and tis-
sues were analyzed through the public database qTeller. The results showed that 504 of the
583 candidate genes had expression levels, 398 genes had expression levels > 2 transcript
per million (TPM), and 307 genes even had > 10 TPM in at least one tissue (Table S8). Here,
we focused on 169 candidate genes (63 maize–rice homologous genes and 106 candidate
genes within the breeders’ MQTL regions), of which 104 candidate genes with highly spe-
cific expression (TPM > 2) in various tissues were visualized (Figure 6; Table S9). According
to their different expression patterns, these 104 candidate genes were divided into four cat-
egories (Figure 6). In the first category, the expression levels were high in almost all tissues
and stages. Among them, Zm00001d012675 (gst1-glutathione-S-transferase1) had the high-
est expression in all tissues and is involved in the regulation of diverse stress tolerances. The
expression levels of Zm00001d038709, Zm00001d009594, Zm00001d038543, Zm00001d048102,
and Zm00001d052416 were also quite high in almost all tissues at each stage. The second
type was highly expressed only in some tissues. For example, Zm00001d018030, which may
be related to photosynthesis, has the highest expression in leaf tissues. Zm00001d018744
and Zm00001d042541 are highly expressed in tap roots, crown roots, and brace roots, and
may affect root length and root diameter. The third type of genes was expressed in all
tissues but the expression level was rather low, and the fourth type was expressed only in
one or some tissues/stages but at a medium level.
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Figure 6. Heat map of high-confidence candidate genes expressed at ≥ 2 transcript per million. DAP, days after pollination; POL, pollination; NOPOL, no pollination;
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Z3, Zone 3 (lower half of differentiation zone); Z4, Zone 4 (upper half of differentiation zone).
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3. Discussion
3.1. Characteristics of QTL and MQTL for Drought Tolerance in Maize

In the last three decades, a large number of QTL mapping studies have been carried
out. Due to the different genetic material as well as the different types of molecular markers
used in each study, the QTL results are often not comparable or transferable. Moreover, even
for the same marker type, the genetic linkage maps are different, complicating comparisons
of QTL positions, and the confidence intervals of most QTL are quite large, making the use
of identified QTL in marker-assisted selection (MAS) inaccurate. Meta-QTL analysis can
overcome those limitations and can combine QTL results from different environments and
genetic backgrounds to locate consistent MQTL with high reliability. For example, Guo
et al. [67] performed meta-analysis for chlorophyll traits in wheat with 411 original QTL
and identified 56 consensus MQTL with an average confidence interval 3.2 times narrower
than that of the original QTL. Sharma et al. [68] collected 523 QTL to carry out meta-analysis
for silage quality traits in maize and also achieved substantial reductions in the size of
the confidence intervals. Sethi et al. [19] conducted meta-analysis for grain quality and
yield-related traits with 2974 initial QTL in maize and obtained a total of 68 MQTL with a
mean physical confidence interval of 3.30 Mb. Concerning drought tolerance, Loni et al. [16]
employed meta-analysis in foxtail millet with 448 initial QTL and identified 41 MQTL. In
maize, Liu et al. [69] also conducted a meta-analysis for drought tolerance with 457 initial
QTL, and 74 MQTL were found.

In our study, 511 initial QTL for grain yield and its component traits, flowering
time-related traits, plant morphology traits, and drought tolerance index under drought
conditions were collected for meta-analysis based on the public genetic map of IBM2 2008
Neighbors [70]. In total, 83 MQTL were identified with an average confidence interval of
9.3 cM, which is an on average 4.3-fold reduction compared to that of the original QTL.
The average confidence interval appears slightly larger than that of the similar study on
drought-tolerance QTL in maize, which is due to the employed reference genetic map on
which the consensus QTL are projected. For our study, we used the IBM2 2008 Neighbors
map that integrates different segregating generations but always with B73 and Mo17 as
parents (https://maizegdb.org/data_center/reference?id=1204261 accessed on 1 October
2023) and has an average genetic map length of 789.8 cM per chromosome. Since this
reference map has the same parents (B73 and Mo17) and integrates over 19,000 public
molecular markers, we believe that it is more useful and reliable than other consensus maps
that are built with completely different parental combinations.

Compared with the previous study [69], we identified 26 overlapping MQTL (Table S4),
and most of them have a shortened confidence interval. Furthermore, in addition to the
collection of the three major types of traits GY, FR, and PM under drought conditions,
we paid more attention to the collection of DTI which we believe can better reflect the
drought tolerance of maize. Specifically, we identified 8 breeders’ MQTL with a narrower
physical interval (< 1Mb) and 95% confidence interval < 4 cM. These MQTL are promising
candidates for future gene cloning as well as being reliable for the marker-assisted breeding
of drought-tolerant maize varieties.

3.2. Many MQTL Can Be Substantiated by GWAS Results

It is valuable to validate MQTL with MTAs identified in GWAS, as this provides
further evidence for their stability and reliability for the candidate genes in these genomic
regions. Sharma et al. [68] found a total of 51 MTAs co-localized with the 20 MQTL. Li
et al. [71] validated 31 of the 64 MQTL with at least one MTA. In our study, we found that
247 published MTAs were co-localized with 40 MQTL (500 kb upstream and downstream
of the MQTL) and thus, nearly half (48.19%, 40/83) of the MQTL were verified by results
from GWAS. In particular, these MQTL are promising for a further characterization, up
to the molecular cloning of the underlying genes towards a better understanding of the
molecular processes of drought tolerance in maize.

https://maizegdb.org/data_center/reference?id=1204261
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3.3. The Role of Plant Hormone Signaling Pathways in Drought Tolerance in Maize

A total of 583 candidate genes for the MQTL were identified based on three methods.
Their further characterization by KEGG revealed that the most enriched metabolic pathway
was plant hormone signal transduction (Figure 5). Plant hormones include abscisic acid
(ABA), auxin (IAA), brassinosteroid (BR), cytokinin (CTK), ethylene (ETH), gibberellin (GA),
jasmonate (JA), salicylic acid (SA), and strigolactone (SL), which regulate diverse processes
including plant growth and response to abiotic stress [72]. In our study, 19 candidate genes
from 13 MQTL are involved in plant hormone signaling pathways, including ABA, IAA,
BR, CTK, ETH, and SA (Table 1; Figure 7).

First, there are six candidate genes involved in the ABA pathway (Table 1; Figure 7a).
ABA is mainly able to induce stomatal closure and reduce leaf expansion under stress,
in addition to its role in signal transduction in plant tissues [73]. Two candidate genes
in MQTL5_3, Zm00001d016294 (ZmPYL3) and Zm00001d016105 (ZmPYL10) may play an
important role in drought tolerance in maize, as their overexpression can enhance ABA
signal transduction, proline, and other drought-related genes [74]. Moreover, ZmPYL3 and
ZmPYL10 are homologous to the rice drought-related genes, OsPYL3 and OsPYL9 (Table S7).
For MQTL8_3, Zm00001d009747 was identified, which is member of the protein phos-
phatase 2C (PP2C) family and homologous to the rice drought tolerance gene OsABIL2. The
overexpression of OsABIL2 was shown to significantly change the stomatal density and root
structure, causing a hypersensitivity to drought stress [75]. Wei et al. [76] used microarray
and RNA-seq data to analyze the expression profiles of ZmPPs at different developmental
stages in maize. For drought stress conditions, 13 genes were found to be differentially
expressed in the leaf, out of which 10 were up-regulated. For MQTL5_1, Zm00001d013201
was identified, which belongs to the SnRK2 kinase group. It is a key component of the
ABA pathway and is regulated by ABA receptors (PYR/PYL) and by the PP2C (Figure 7b).
Studies by Hasan et al. [77] have shown that when plants are subjected to drought stress,
they produce more ABA, which leads to defensive stress responses and activates many
SnRK2 through ABA-dependent or ABA-independent pathways. Zm00001d013201 is ho-
mologous to the rice gene OsSAPK8 (Table S7), which can be strongly induced by abiotic
stress, including low temperature, high salt stress, and drought [78]. For MQTL8_5, a mem-
ber of the ABF transcription factors was found (Zm00001d010638), which is homologous
to the rice drought tolerance gene OsbZIP62. OsbZIP62 can interact with ABA-activated
protein kinases 1, 2, 4, and 6, that phosphorylate OsbZIP in rice. Plants overexpressing
OsbZIP62 showed increased drought tolerance and a high salt stress tolerance [79]. The
ABA signaling cascade then regulates the drought and osmotic stress response through the
downstream MAPK signaling pathway (Figure 7b).

Table 1. Candidate genes for the MQTL involved in plant hormone signal transduction pathways.

MQTL Gene ID Pathway Description

MQTL1_3 Zm00001d028974 ETH Ethylene insensitive-like3
MQTL2_10 Zm00001d007395 IAA Auxin amido synthetase3
MQTL2_10 Zm00001d007448 SA Pathogenesis-related protein19
MQTL4_9 Zm00001d053815 IAA Small auxin up RNA45
MQTL5_1 Zm00001d013201 ABA Serine/threonine-protein kinase SRK2E
MQTL5_3 Zm00001d016105 ABA Abscisic acid receptor PYL10
MQTL5_3 Zm00001d016294 ABA Abscisic acid receptor PYL3
MQTL7_1 Zm00001d018734 SA Pathogenesis-related protein8
MQTL7_1 Zm00001d018737 SA Pathogenesis-related protein13
MQTL7_1 Zm00001d018738 SA Pathogenesis related protein4
MQTL7_4 Zm00001d019364 SA Pathogenesis-related protein15
MQTL8_3 Zm00001d009747 ABA Protein phosphatase homolog15
MQTL8_5 Zm00001d010638 ABA bZIP-transcription factor 96
MQTL8_5 Zm00001d010697 IAA Auxin amido synthetase12
MQTL8_8 Zm00001d012005 CTK Putative histidine kinase family protein
MQTL8_9 Zm00001d012538 ABA Abscisic acid-insensitive5-like protein 2
MQTL8_9 Zm00001d012553 SA Octopine synthase binding factor4
MQTL9_5 Zm00001d047563 ETH Ethylene insensitive-like1
MQTL9_9 Zm00001d048345 BRs Brassinosteroid-signaling kinase1 bsk1



Int. J. Mol. Sci. 2024, 25, 4295 12 of 21
Int. J. Mol. Sci. 2024, 25, 4295  13  of  22 
 

 

 

 

Figure 7. A model representing maize drought tolerance candidate genes associated with plant hormone signal transduction. (a) Plant hormone signal transduction 

(https://www.kegg.jp/pathway/ko04075 accessed on 1 October 2023). The red boxes represent the candidate genes involved in drought tolerance. (b) ABA signaling 

pathway.

Figure 7. A model representing maize drought tolerance candidate genes associated with plant hormone signal transduction. (a) Plant hormone signal transduction
(https://www.kegg.jp/pathway/ko04075 accessed on 1 October 2023). The red boxes represent the candidate genes involved in drought tolerance. (b) ABA
signaling pathway.
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In addition, there are seven candidate genes involved in the IAA, BR, CTK, and
ETH signaling pathways. For the IAA pathway, three candidate genes were identified,
namely Zm00001d007395 (MQTL2_10), Zm00001d053815 (MQTL4_9), and Zm00001d010697
(MQTL8_5). Zm00001d007395 and Zm00001d010697 are homologous to the rice drought
tolerance gene OsGH3.13, that encodes an indole-3-acetic acid (IAA)-amide synthase. This
gene is significantly induced under drought stress and enhances the drought tolerance
of rice [80]. Interestingly, Zm00001d007395 (ZmGH3.13) was found to be differentially
expressed in maize seedlings under heat stress [81]. Feng et al. [82] identified 13 ZmGH3
genes and based on gene structure and tissue-specific expression patterns concluded
that ZmGH3s are involved in the tolerance of maize to abiotic stress. For MQTL9_9,
Zm00001d048345 (ZmBsk1) related to BR signaling was found that interacts with cal-
cium/calmodulin (Ca2+/CaM)-dependent protein kinase (ZmCCaMK) and phosphorylates
ZmCCaMK. Drought stress enhances the phosphorylation of ZmCCaMK by ZmBSK1, which
has a positive effect on drought tolerance in maize [58]. Furthermore, Zm00001d012005
found for MQTL8_8 is a histidine receptor kinase of the CTK pathway, which senses cy-
tokinin signaling and promotes the autophosphorylation of histidine. For the ETH pathway,
two genes were identified, namely Zm00001d028974 for MQTL1_3 and Zm00001d047563 for
MQTL9_5. Their homologous rice drought tolerance gene is OsEIL2, which confers abiotic
stress sensitivity by regulating OsBURP16 [83]. Xu et al. [84] identified Zm00001d028974
(ZmEIL3) as a candidate gene related to iron deficiency tolerance.

Last, there are six genes from the SA pathway. Zm00001d012553 of MQTL8_9 is the
octopine synthase binding factor 4, which was found to be up-regulated in maize kernels
under different N rates [85]. The remaining five genes are pathogenesis-related proteins
(PRP or PRs), namely Zm00001d007448 (MQTL2_10), Zm00001d018734, Zm00001d018737,
and Zm00001d018738 (MQTL7_1), and Zm00001d019364 (MQTL7_4). The rice drought
tolerance homologous gene of Zm00001d018734, Zm00001d018738, and Zm00001d019364 is
OsPR1a, whose transcripts were found to be induced by abiotic stress treatments, such as
water-deficient oxidative stress, indicating that PR proteins play an important role in abiotic
stress adaptation in addition to plant defense responses to pathogens. Compared with
wild-type plants, overexpression of OsPR1a in Arabidopsis could enhance the tolerance to
salt and water stress [86]. The accumulation of PR proteins can be stimulated by pathogen
infection, but also by abiotic stress [87], indicating that the production and accumulation of
this protein plays an important role in resistance to both biotic and abiotic stress in plants.

3.4. Characterization of MQTL Candidate Genes and Their Roles in Maize Drought Tolerance

The maize drought tolerance genes ZmWRKY79 [52], ZmXerico2 [53], ZmTCP42 [54],
ZmPTF1 [55], ZmTIP1 [56], ZmVPP1 [49], ZmRtn16 [57], ZmBSK1 [58], and ZmASR1 [59]
have been identified for the MQTL. Among them, ZmASR1 affects the synthesis of branched-
chain amino acids and maintains the grain yield of maize under drought conditions.
ZmASR1 is located in MQTL10_2, which is not only related to ear length and diameter, but
also to flowering traits. This indicates that ZmASR1 may regulate drought tolerance by
affecting the flowering process and through this ultimately the grain yield of maize. Both
ZmPTF1 and ZmTIP1 contribute to the development of roots, and the corresponding MQTL
affect traits related to yield, flowering period, and seed setting rate, which may be related
to the enhancement of roots and of drought tolerance, thus ensuring a normal flowering
period and yield. The MQTL9_3 contains two related drought tolerance genes, ZmTIP1 and
ZmVPP1, involved in 16 initial QTL for a large range of ten different traits, indicating its
complex regulatory role.

In this study, we also exploited the close evolutionary relationship between the
genomes of the gramineous plants maize and rice, as the analysis of maize–rice homologous
relationships can broaden our understanding of maize genes. For example, OsSCE1 [88],
OsNAC10 [89], and RCN1 [90] have been shown to affect drought tolerance in rice and have
similar functions in maize, indicating that it is possible to identify candidate genes based
on interspecific homology analysis. A total of 63 maize–rice orthologous drought tolerance
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genes were found in the MQTL genomic regions, which are relatively conserved and may
therefore affect similar traits in maize (Table S7).

By analyzing tissue-specific expression, we found that 398 candidate genes are highly
specifically expressed in various tissues (TPM > 2) in leaves, roots, and grains (Table S8), and
104 of them were visualized (Figure 6; Table S9). These candidate genes have strong expres-
sion in tissues that may affect the drought tolerance of maize. For example, Zm00001d012675
(glutathione-S-transferase1, GST1) has a strong expression in various tissues of maize. GST
plays an important role in the defense system of organisms, and previous studies have
shown that the overexpression of GST genes in Arabidopsis, rice, and wheat, led to an
enhanced drought or salt tolerance [91–93]. The most strongly expressed gene in leaf tissue
was Zm00001d018030 (NDH subunit F6, NDF6). Zhang et al. [94] created maize plants
lacking NDH function and observed a significant decrease in its growth, photosynthetic
activity, and key photosynthetic protein levels. This indicates that the gene may affect
photosynthesis and thereby crop drought tolerance. In summary, based on the functional
exploration of maize–rice homologies and the analysis of tissue expression patterns, sev-
eral high-confidence candidate genes for drought tolerance in maize were found in the
MQTL regions.

3.5. The Homology among Plant Species Shows Promising Prospect to Gene Resource Mining

From genetics to breeding, gene resource mining is the first step. The second step is to
assess the polymorphism among the natural population and verify the function of each
gene. If there are many genes related to the same function, the third step is to diagram
the temporal–spatial expression of those genes, and evaluate the synergism or antagonism
among those genes. Finally, we can introduce those functional genes to breed ideal target
variety. The first step gene resource mining is the basis and crucial to the study system.

Due to convergence in selection and domestication, there is a great deal of homology
among crop species. A star gene, KNR2, shows convergent selection and orthologs between
rice and maize [95]. Rice is a model plant in crops, and a large number of drought-
tolerance genes were explored and verified, we found over 271 drought-tolerance genes
from the China Rice Data Center (https://ricedata.cn/ontology/ontology.aspx?ta=TO:
0000276 accessed on 1 January 2024). Basing on the homology between maize and rice,
we identified 63 drought tolerance genes within the MQTL regions in maize. Apart from
rice, the proximate species sorghum [96–98], and even some Gramineae grasses such as Zea
mays ssp. Mexicana [99], could provide anti-stress genes for maize. It provides a significant
prospect to explore new genes based on the homology among plant species.

4. Materials and Methods
4.1. Collection of QTL Information

In this study, QTL mapping studies on drought tolerance in maize were collected
from the website of the China Knowledge Network (https://www.cnki.net/ accessed on
1 October 2023), PubMed (https://pubmed.ncbi.nlm.nih.gov/ accessed on 1 October 2023),
and the Web of Science (https://www.webofscience.com/ accessed on 1 October 2023),
using the keywords ‘maize’, ‘drought’, and ‘QTL’ for searching. The main QTL information
of drought tolerance-related traits, including QTL name, trait, chromosome, position, LOD
value, proportion of variance explained (PVE), confidence interval (CI), population type,
mapping population size, and genetic map were collected. The phenotypes collected in
the drought tolerance studies included grain yield (GY), 1000 kernel weight (KWT), kernel
weight per ear (KWE), number of rows per ear (NRE), number of kernels per row (NKR),
ear number (EN), kernel number (KN), ear length (EL), ear weight (EW), ear diameter
(ED), kernel length (KL), kernel width (KW), kernel thickness (KT), cob weight (CW),
cob diameter (CD), ear setting percentage (ES), anthesis to silking interval (ASI), male
flowering (MF), flowering days (FD), female flowering (FF), tassel branch number (TBN),
plant height (PH), ear height (EH), and drought tolerance index (DTI). The 24 phenotypic
traits (Table S3) were categorized into grain yield component traits (GY), flowering time-

https://ricedata.cn/ontology/ontology.aspx?ta=TO:0000276
https://ricedata.cn/ontology/ontology.aspx?ta=TO:0000276
https://www.cnki.net/
https://pubmed.ncbi.nlm.nih.gov/
https://www.webofscience.com/
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related traits (FR), plant morphology traits (PM), and drought tolerance index (DTI). IBM2
2008 Neighbors was downloaded from the website MaizeGDB (https://maizegdb.org/data_
center/map?id=1140201 accessed on 1 October 2023) as a unified genetic map and reference
map. The collected QTL were subjected to a quality check and QTL with a confidence
interval > 200 cM, PVE < 1%, or LOD < 1.5 were removed. Moreover, only the phenotypic
data under drought conditions were retained, while results from conditions with sufficient
water were excluded.

4.2. Integration of QTL Information

According to the information requirements of QTL collected by Biomercator V4.2
software [100], the CI and PVE of QTL are two key parameters. The meta-analysis of QTL
is mainly achieved through the QTL LOD score, PVE, position, and CI. If the collected
QTL data lack the 95% CI, it is inferred according to the formula offered by Darvasi and
Soller [101], where N is the size of the original mapping population:

CI = 530/(N × PVE) (1)

CI = 163/(N × PVE) (2)

Formula (1) is suitable for backcross and F2 mapping populations, and Formula (2) is
suitable for RIL mapping populations.

4.3. Projection and Meta-Analysis of Initial QTL

The information of the complete genetic map and collected QTL was uploaded by
genetic data loading, and the QTL were mapped to the reference map. The genetic linkage
map of IBM2 Neighbors is a combination of the high-density molecular marker linkage map
of maize (Intermated B73 × Mo17 Map; IBM) and other molecular marker linkage maps.
The map contains 19,111 loci, including RFLP, SSR, and RAPD markers, gene and sequence
probes, with a total length of 7898.35 cM (https://maizegdb.org/data_center/map accessed
on 1 October 2023, last updated on August 10, 2022 by Marty Sachs). The number of
meta-QTL on each chromosome was determined by five optional criteria: AIC (Akaike
information criterion), AICc (AIC correction), AIC3 (AIC 3 candidate model), BIC (Bayesian
information criterion), and AWE (average weight of evidence). Each model provides the
most likely position and CI on the chromosome by Gaussian theorem, according to the
maximum likelihood function ratio method. The best MQTL model was determined using
the lowest value of the five optional criteria, which helped us to ascertain the number of
generated MQTL [68]. Finally, the obtained CI of MQTL corresponded to the left and right
markers according to IBM2 2008 Neighbors, and the physical position of the markers in the
RefGen_v4 version was obtained in MaizeGDB (https://chinese.maizegdb.org/ accessed
on 1 October 2023). If there was no physical position of the marker, the relevant physical
position can be obtained through the primer sequence based on local BLASTN.

4.4. Verification of MQTL with GWAS Studies

In order to substantiate the identified MQTL, five independent maize genome-wide
association studies (GWAS) on drought-tolerance were collected [47–51]. The physical
position of significant marker–trait associations (MTAs) from these studies was compared
with the physical positions of the MQTL. The overlapping MTAs or adjacent MTAs (within
500kb upstream and downstream of the MQTL regions) were considered as verification of
the MQTL [19].

4.5. Mining and Functional Annotation of Candidate Genes

Three methods were used to explore candidate genes in the MQTL genomic regions:
(1) The maize–rice homology was exploited and maize genes orthologous to rice

drought tolerance-related genes were identified by sequence alignment. For this, we
downloaded all published rice drought tolerance-related genes with functional verification

https://maizegdb.org/data_center/map?id=1140201
https://maizegdb.org/data_center/map?id=1140201
https://maizegdb.org/data_center/map
https://chinese.maizegdb.org/
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from the China Rice Data Center (https://www.ricedata.cn/ accessed on 1 October 2023)
and from various databases of the literature, and extracted the protein sequence of the rice
drought tolerance genes through the Rice Genome Annotation Project (http://rice.uga.
edu/analyses_search_blast.shtml accessed on 1 October 2023). The BLASTP alignment of
the maize protein sequence was performed by inputting the rice protein sequence through
the Phytozome website (https://phytozome-next.jgi.doe.gov/ accessed on 1 October 2023).
The alignment criterion was Evalue < 1 × e−10 and identity > 40%.

(2) As a second approach, we explored candidate genes within the breeders’ MQTL [19,71],
which were defined as being composed of more than two original QTL, and having a
physical distance < 1 Mb and a genetic map distance < 4 cM.

(3) As a third approach, we searched for candidate genes within the MQTL validated
by GWAS-MTA, for those MQTL with more than three MTAs. For MQTL with long physical
confidence interval (>1 Mb), a 1 Mb genomic region (500 kb on both sides of the MQTL
peak) was used, for which the physical peak positions of the MQTL were calculated as
proposed by Saini et al. [18]:

peak position(bp) = start position(bp) +
(end position(bp)− start postion(bp))
(end position(cM)− start position(cM))

× CI(cM, 95%)

2
(3)

among them, peak position (bp): the center of physical positions of MQTL; start position
(bp): left physical positions of MQTL; end position (bp): right physical positions of MQTL;
start position (cM): left genetic position of MQTL; end position (bp): right genetic position
of MQTL.

For the candidate genes obtained by the three methods, a functional analysis was
performed using gene ontology (GO) enrichment on the GENE DENOVO cloud platform
(https://www.omicshare.com/tools accessed on 1 January 2024) in order to understand the
biological functions of the MQTL. Then, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis (https://www.omicshare.com/tools accessed on
1 January 2024) was used.

4.6. Analysis of Expression Patterns of Candidate Genes

In addition, an expression analysis was performed for selected candidate genes from
the MQTL. The transcriptome data of multiple tissues of maize were downloaded from
the website qTeller (https://qteller.maizegdb.org/ accessed on 1 January 2024). The whole
transcriptome data cover 46 tissues/stages [102], including the embryo (16, 18, 20, 22,
24 DAP), endosperm (16, 18, 20, 22, 24 DAP), leaf (0, 12, 18, 24, 30 DAP-NOPOL), leaf (0, 12,
18, 24, 30 DAP-POL), whole seed (2, 6, 10, 14, 18, 22, 24 DAP), stem (V1, V2), anthers (R1),
cob (R1, V18), tassel (V13, V18), whole primary root (7 d), whole root system (3, 7 d), tap
root (Z1, Z2, Z3, Z4), brace root (V13), and crown root (V7, V13). The expression level of
candidate genes was evaluated by transcript per million (TPM) value, and the genes with
TPM value > 2 in tissue expression [103] were screened for expression analysis, and the
log2(TPM + 1) was used for heat map plotting.

5. Conclusions

In this study, a total of 83 MQTL for drought tolerance in maize were identified
and nearly half of them could be substantiated by results from genome-wide association
studies. For the 20 core MQTL and maize–rice homologous genes, 583 candidate genes were
identified. The MQTL and the candidate genes found in this study form the basis for future
research on drought tolerance in maize and have the potential to assist the improvement in
maize performance under drought conditions by molecular breeding.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25084295/s1.
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