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Abstract: Urease, a pivotal enzyme in nitrogen metabolism, plays a crucial role in various microor-
ganisms, including the pathogenic Helicobacter pylori. Inhibiting urease activity offers a promising
approach to combating infections and associated ailments, such as chronic kidney diseases and
gastric cancer. However, identifying potent urease inhibitors remains challenging due to resistance
issues that hinder traditional approaches. Recently, machine learning (ML)-based models have
demonstrated the ability to predict the bioactivity of molecules rapidly and effectively. In this study,
we present ML models designed to predict urease inhibitors by leveraging essential physicochemical
properties. The methodological approach involved constructing a dataset of urease inhibitors through
an extensive literature search. Subsequently, these inhibitors were characterized based on physico-
chemical properties calculations. An exploratory data analysis was then conducted to identify and
analyze critical features. Ultimately, 252 classification models were trained, utilizing a combination of
seven ML algorithms, three attribute selection methods, and six different strategies for categorizing
inhibitory activity. The investigation unveiled discernible trends distinguishing urease inhibitors
from non-inhibitors. This differentiation enabled the identification of essential features that are crucial
for precise classification. Through a comprehensive comparison of ML algorithms, tree-based meth-
ods like random forest, decision tree, and XGBoost exhibited superior performance. Additionally,
incorporating the “chemical family type” attribute significantly enhanced model accuracy. Strategies
involving a gray-zone categorization demonstrated marked improvements in predictive precision.
This research underscores the transformative potential of ML in predicting urease inhibitors. The
meticulous methodology outlined herein offers actionable insights for developing robust predictive
models within biochemical systems.

Keywords: urease inhibitors; cheminformatics; machine learning; predictive modeling; bioactivity
prediction; classification models
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1. Introduction
1.1. Urease Enzyme and Its Implications in the Human Context

The urease enzyme is a key element in nitrogen (N) metabolism in bacteria, fungi,
algae, and plants, hydrolyzing urea (carbamide) over 1014-fold the conversion rate to
ammonia and CO2 [1,2]. One of the most conflictive ureolytic bacteria for humans is
Helicobacter pylori (H.p.), which is very well adapted to survive in a wide range of envi-
ronments by secreting a high number of urease enzymes, even in acidic environments
such as the stomach [3,4]. It is estimated that over 50% of the world population is already
infected by H.p. [5,6]. Once H.p. colonizes the host, this Gram-negative bacterium increases
the risk for peptic ulcers [7,8], chronic kidney diseases [9], idiopathic thrombocytopenic
purpura [10,11], iron deficiency anemia [12], and gastric cancer (GC) such as gastric adeno-
carcinoma [13,14] and MALT (mucosa-associated lymphoid tissue) lymphoma [15–17]. H.p.
is the only bacterium classified in Group I of carcinogens to humans by the International
Agency for Research on Cancer, where 89% of all GC is related to H.p. infections [18].
Until 2020, GC was one of the deadliest types of cancer worldwide [19]. In this sense, it
has been evidenced that H.p. eradication reduces the mortality rate caused by GC [20].
The current treatment proposed to eradicate H.p. infections is to combine broadband
antibiotics (amoxicillin, metronidazole, and clarithromycin) with a proton-pump inhibitor
or with bismuth-containing compounds [21–23]. Nowadays, these therapies have become
unfeasible due to both the alarming resistance of H.p. to antibiotics worldwide and the
side effects (nausea, diarrhea, headache, angioedema, and microflora disorders) produced
by antibiotics. New therapeutical strategies based on the use of urease inhibitors (UIs) have
been proposed to treat infections of urease-dependent microorganisms such as H.p since
inhibiting the ureolytic faculty in H.p. causes this bacterium to become unable to cause
infections in animal models [24]. However, available classic UIs (sulfhydryl compounds,
amides and esters of phosphoric acid, hydroxamic acid derivatives, and imidazoles) are
toxic for humans, which precludes their clinical uses [25].

Many efforts are being focused on searching for potent UIs [26]. Natural sources
provide an immeasurable number of organic compounds with anti-urease activity, and these
compounds could be used as a starting point to design stronger inhibitors. At present, there
exist compounds reported with anti-urease activity such as polyphenols, flavonoids [27–29],
alkaloids [30], triazole [31–35] thiadiazole [24,30,31,36], and coumarins [24,37–41]. Despite
the existence of a significant repertoire of urease inhibitors, there are compelling reasons
to continue the pursuit of novel inhibitors. This drive is fueled by the limitations of
conventional methods and the potential advantages offered by unconventional techniques,
such as ML. These ML models can provide insights into the structure–activity relationships
of urease inhibitors, aiding in the rational design of novel compounds while reducing time
and resources.

1.2. Machine Learning in the New Era of Computer-Aided Drug Discovery

It is projected that bringing a drug from its initial stage to market may take up about a
decade and incur expenses exceeding USD 2.8 billion [42]. The early stage of drug discovery,
also named computer-aided drug discovery (CADD), has rapidly emerged along with the
development of structural biology and the computational power of new hardware [43].
CADD is a collection of diverse computational techniques and resources, comprising
compound databases, molecular simulations, structure- and ligand-based virtual screenings
(VS), hit and lead optimization, quantitative structure–activity relationship (QSAR), among
many others. The integration of various ML algorithms into the CADD process has greatly
benefited pharmaceutical companies and academic research as ML provides them with
innovative and efficient ways in every stage of the CADD process [44,45] and other branches
of chemistry [46–48]. In ML, there exist two primary categories of algorithms: supervised
learning and unsupervised learning. The first is responsible for learning from labeled
training samples to determine the labels of new samples, whereas the latter is responsible
for identifying patterns within an unlabeled dataset. Typically, before pattern recognition,
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high-dimensional data are transformed into a lower dimension via unsupervised learning
algorithms to increase efficiency [49]. Through the use of ML algorithms, various models
have been created which allow for a more precise understanding of the biochemical and
physical–chemical characteristics of candidate compounds in VS protocols, thus allowing a
reduction in false positives and false negatives [50]. In this sense, Liu and colleagues utilized
a support vector machine (SVM) algorithm to construct various classification models for
85 specific cyclooxygenase-2 inhibitors featuring the 1,5-diarylimidazoles scaffold. The
optimal classification models show accuracies of 91.2% and 88.2% for the training and test
sets, respectively [51]. Kumar and Patra employed known catechol O-methyltransferase
inhibitors as input to discover new inhibitors by combining ML regression and sampling
molecular dynamics methods. Their models achieved an R2 of over 0.7 for both training and
test datasets [52]. In order to deal with the imbalance of inhibitor and non-inhibitor classes,
Tinivella et al. employed a flexible thresholding strategy on a set of modulators deposited
in ChEMBL of two human carbonic anhydrase isoforms through an ML protocol [53]. In
the urease context, to our best knowledge, only two studies have employed ML techniques
for the development of new inhibitors. Mermer et al. [54] uses regression and classification
models to identify novel thiazole derivatives with a balanced accuracy of 78% and an R2

between 0.2 and 0.7. Aniceto et al. [55] discover new inhibitors of jack bean urease by using
three ML algorithms with 81% precision in its best model.

The main goal of this research is to construct robust and accurate ML models ca-
pable of predicting the activity of urease inhibitors in Hp (see schematic workflow in
Supplementary Figure S1). Simultaneously, we conduct a thorough exploratory data anal-
ysis to identify pertinent features crucial for predicting the behavior of urease inhibitors.
Subsequently, our objective is to investigate diverse strategies for categorizing bioactiv-
ity and identify suitable ML algorithms to determine the most effective approach for
model development. The study encompasses the standard procedures in ML protocols,
which include data collection, data preprocessing, exploratory data analysis (EDA), data
partitioning, and the learning stages (model selection, training, hyperparameter tuning,
and evaluation).

2. Results and Discussion
2.1. Exploratory Data Analysis

During the analysis of this dataset, we investigated 677 different compounds and
207 variables, with a specific focus on the response variable IC50. Opting to utilize pIC50
instead of IC50 proves beneficial due to the notable variation in concentration ranges
exhibited by the latter (ranging from 0.009 µM to 1000 µM within our dataset). IC50 values
frequently encompass a wide span of orders of magnitude, consequently giving rise to
challenges in direct comparison and effective visualization. In contrast, pIC50 offers a more
concise representation achieved by applying the negative logarithm to IC50 values, which
are then standardized to a consistent concentration level. This transformation serves a dual
purpose: not only does it normalize the data, but it also enhances the comprehension of
compound potency across a wider array of concentrations. In Supplementary Figure S2,
the distribution of bioactivity is illustrated, delineating nUIs, UIs, and the intermediate
gray-zone compounds generated by the 5–50 µM cutoff.

To identify potential inhibitor features, a correlation analysis is performed with respect
to pIC50, which substantially increases correlations compared to IC50. Figure 1 displays a
heatmap of the correlation matrix between pIC50 and the 16 features with |ρ| > 0.4. Larger
circle diameters indicate stronger correlations. WTPT.4, TPSA, and RPSA exhibit moderate
and negative correlations with pIC50. These attributes pertain to topological (WTPT.4)
and electronic (TPSA and RPSA) characteristics. The initial one, WTPT.4, signifies the
molecular branching in each molecule originating from oxygen atoms. On the other hand,
TPSA and RPSA correspond to diverse measurements of the solvent-accessible surface
area (SASA). Specifically, TPSA represents the sum of the SASA of atoms with an absolute
value of partial charges ≥ 0.2, while RPSA is calculated as the ratio of TPSA to the total
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SASA. Additionality, positive relationships are observed with khs.dsN (Kier–Hall E-state
descriptor), C1SP2 (carbon atoms with hybridization Sp2), SCH.6 (Kier and Hall Chi chain
index), WTPT.5 (molecular branching starting from the nitrogen), MDEN.22, and MDEN.23
(molecular distance edge descriptors). Significant and strong positive correlations among
the independent variables are evident, such as TPSA and RPSA (0.92), FNSA.3 and RHSA
(0.94), khs.aasN and MDEN.23 (0.95), as well as RnRings5 and SCH.5 (0.99), among several
others. These correlations are unsurprising, given that these descriptors belong to the
same categories and are closely interconnected. Given that none of the selected features
exhibit a high correlation with the response variable pIC50, it suggests a lack of strong linear
association between the chemical properties of the compounds and their inhibitory activity
against urease. Consequently, the molecular descriptors captured by these variables may
not directly or simply correspond to the bioactivity measured by pIC50. This circumstance
prompts the exploration of supervised machine learning models as they can adeptly capture
complex and non-linear relationships between the features and pIC50 by discerning non-
trivial chemical patterns within our dataset.
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Figure 1. Heatmap of the correlation matrix. The heatmap was plotted by considering the negative
logarithm of response variable (pIC50) and the most strongly correlated features (ρ > 0.4). The size of
the circle, as well as the color, reflects the intensity of the correlation of the two variables found at the
intersection of the matrix. The blue color reflects positive correlations, while the red color reflects
negative correlations. Finally, white reflects an absence of correlation.

The central tendency (median) and variability (interquartile range) measures were
studied for the UI and nUI groups with the most correlated features. The boxplots in
Figure 2 show clear differences in the 16 relevant features between UI and nUI compounds.
The median and variability differ between the two groups, and outliers are present in most
features. Features with lower median values for inhibitor compounds include WTPT.4,
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TPSA, and RPSA, while the remaining features have higher median values allowing sep-
arate both classes. Furthermore, WTPT.4, TPSA, and RPSA not only have lower median
values for the inhibitor group but also lower variability, resulting in more consistent values
and lower uncertainty. Finally, all 16 features show statistically significant mean differences
between the two groups based on the p-value of a joint Wilcoxon rank sum test.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 17 
 

 

The central tendency (median) and variability (interquartile range) measures were 
studied for the UI and nUI groups with the most correlated features. The boxplots in Fig-
ure 2 show clear differences in the 16 relevant features between UI and nUI compounds. 
The median and variability differ between the two groups, and outliers are present in most 
features. Features with lower median values for inhibitor compounds include WTPT.4, 
TPSA, and RPSA, while the remaining features have higher median values allowing sep-
arate both classes. Furthermore, WTPT.4, TPSA, and RPSA not only have lower median 
values for the inhibitor group but also lower variability, resulting in more consistent val-
ues and lower uncertainty. Finally, all 16 features show statistically significant mean dif-
ferences between the two groups based on the p-value of a joint Wilcoxon rank sum test. 

 
Figure 2. Boxplots for the 16 most relevant features. Each feature plotted was separated according 
to the response variable using the double cutoff 5 µM and 50 µM. The p-value was computed with 
a statistical Wilcoxon rank sum test. 

Figure 3 presents a two-dimensional representation of the data using a PCA. The di-
rection of each arrow represents the direction and magnitude of the maximum variability 
in the data in the chemical feature space. Each arrow, also known as an eigenvector, indi-
cates the direction in which the data have the greatest variation: the larger the size, the 
greater the variation. The ellipsoids (red for nUIs and blue for UIs) represent the spread 
of the data for each class in the feature space reduced by the method. Each ellipsoid de-
scribes the cloud of points of a class in the lower-dimensional feature space generated by 
the PCA. The shape and size of the ellipsoids indicate the variability in and distribution 

Figure 2. Boxplots for the 16 most relevant features. Each feature plotted was separated according to
the response variable using the double cutoff 5 µM and 50 µM. The p-value was computed with a
statistical Wilcoxon rank sum test.

Figure 3 presents a two-dimensional representation of the data using a PCA. The
direction of each arrow represents the direction and magnitude of the maximum variability
in the data in the chemical feature space. Each arrow, also known as an eigenvector,
indicates the direction in which the data have the greatest variation: the larger the size, the
greater the variation. The ellipsoids (red for nUIs and blue for UIs) represent the spread of
the data for each class in the feature space reduced by the method. Each ellipsoid describes
the cloud of points of a class in the lower-dimensional feature space generated by the
PCA. The shape and size of the ellipsoids indicate the variability in and distribution of
the data for each class. It is revealed from this visualization that certain features, such as
khs.aaNH, SCH.5, SCH.6, C1SP2, VCH.6, and nRings5, are associated with UIs, while TPSA,
WTPT.4, and RPSA values are associated with nUIs. The intersection between the ellipsoids
represents the region where the two classes have an overlap in the reduced feature space.
This overlap indicates that there are data instances that share similar characteristics between
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both classes. Therefore, the intersection between the ellipsoids may contain points that are
difficult to definitively classify as belonging to a specific class, suggesting the presence of
instances with ambiguous or intermediate bioactivity. It is mainly on these that we hope
that later ML methods will allow them to be classified correctly. Moreover, we conduct
a t-SNE analysis, as showcased in Supplementary Figure S3. t-SNE reveals a separation
between UI and nUI classes where compounds situated within the gray zone exhibit
overlapping representations in both clusters (UIs and nUIs). This highlights, together
with the results of the PCA, the essential requirement to explore more intricate bioactivity
categorization approaches, with the aim of precisely distinguishing which compounds
can be appropriately classified as UIs. The exploratory analysis conducted underscores
the presence of a diverse range of features that facilitate clear distinctions both within
individual classes and among different groups. This forms a robust basis for crafting
ML classification models, which have the potential to unveil complex and less obvious
relationships during the preliminary stages of EDA.
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Figure 3. Two-dimensional representation of the data and relevant features using PCA where
each figure represents a distinct compound categorized as a urease inhibitor (UI) indicated in cyan,
encompassing molecules exhibiting an IC50 ≤ 5 µM. Similarly, non-urease inhibitors (nUIs) are
denoted in red, encompassing molecules with an IC50 ≥ 50 µM. Additionally are showed the features
contributing to each class.

2.2. Machine Learning Models

In the present study, an extensive methodology was employed to discover high-
performance models for the prediction of urease inhibitors. Seven ML algorithms, random
forest (RF), support vector machine (SVM), decision tree (DT), eXtreme Gradient Boosting
(XGB), k-nearest neighbor (KNN), naive Bayes (NB), and logistic regression, (LR) and three
attribute selection methods, Boruta, XGB, and nFS (non-feature selection), were compared
in conjunction with six different strategies for categorizing the bioactivity of the inhibitors,
resulting in a total of 126 models. Furthermore, each model was trained twice, considering
the attribute “chemical family type” and excluding it. In summary, 252 distinct models
were trained.
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Figure 4 displays a comparison of the seven ML algorithms. It can be observed that
each algorithm was combined with the three attribute selection methods, and each one
was executed separately, considering (Figure 4A) or excluding (Figure 4B) the “chemical
family type” attribute. It is crucial to mention that the six MCC values used to construct
each boxplot correspond to the six bioactivity categorization strategies (Table 1). As a
result, the best and worst models are labeled using the categorization cutoffs, while the
best and worst average algorithms are indicated by the red and black arrows, respectively.
Based on these findings, noticeable differences among the various algorithms become
evident. The algorithm with the poorest average performance is NB, regardless of whether
the chemical family type is considered or not. However, the individual model with the
worst MCC performance occurs when LR is used in combination with the bioactivity
categorization based on a 5 µM cutoff and without utilizing an attribute selection method,
yielding only a 0.25 MCC score. On the other hand, the algorithms with the best average
performance are DT, when the chemical family type is not considered, and XGB, when it
is considered. Both algorithms employ XGB as the attribute selection method. Regarding
individual models that do not consider the chemical family type, the best is RF, using
the BORUTA attribute selection method and combined with the bioactivity categorization
based on 10–50 µM cutoffs (RF_BORUTA_10–50), achieving a 0.84 MCC score. The top
individual models that consider the chemical family type are DT, using the BORUTA
attribute selection method and combined with the bioactivity categorization based on
5–50 µM cutoffs (DT_BORUTA_5–50), achieving a 0.97 MCC score. Additionally, XGB,
without an attribute selection method and combined with the bioactivity categorization
based on a 5 µM cutoff (XGB_nFS_5), achieves a 0.97 MCC score.
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Figure 4. Comparison of ML algorithms. Each algorithm was compared through Matthews correlation
coefficient (MCC) (A) excluding the chemical family and (B) including it. Black and red labels indicate
lowest and highest MCC values individually per strategy for bioactive characterization. Meanwhile,
black and red arrows show the lowest and highest MCC values as averages considering all the
strategies tested in each algorithm. nFS: non-feature selection; DT: decision tree; KNN: k-nearest
neighbor; RF: random forest; LR: logistic regression; SVM: support vector machine; XGB: eXtreme
Gradient Boosting. The points at the ends of the boxplots show the outliers in each comparison.
Calculated from those values that are below: Q1 − 1.5 ∗ IQR or above Q3 + 1.5 ∗ IQR. IQR being the
Interquartile Range.

Table 1. Proposed prediction strategies based on the IC50 values for bioactive characterization.

One-Cutoff Strategies Two-Cutoff Strategies

UIs < 5 µM < nUIs UIs < 5 µM < gray zone < 50 µM < nUIs
UIs < 10 µM < nUIs UIs < 10 µM < gray zone < 50 µM < nUIs
UIs < 25 µM < nUIs UIs < 25 µM < gray zone < 50 µM < nUIs



Int. J. Mol. Sci. 2024, 25, 4303 8 of 16

A comparison to identify the optimal bioactivity categorization strategy for inhibitors
is presented in Figure 5. In this case, each strategy is combined with the three attribute
selection methods and executed separately, including or excluding the “chemical family
type” attribute. It is important to note that the seven MCC values used to construct each
boxplot correspond to the seven ML algorithms; hence, the best and worst models are
labeled with the algorithm names, while the best and worst average strategies are indicated
by the red and black arrows, respectively. Analyzing these results, the differences are
not as pronounced as in the comparison of ML algorithms. However, it is observed that
the best average strategy is when using the 5–50 µM cutoffs in combination with XGB as
the attribute selection method. This holds true for both cases, including or excluding the
“chemical family type” attribute. Since the data used to construct Figures 4 and 5 (MCC
scores of the models) are the same, the models with the best and worst performance coincide
between both figures. Thus, as can be observed, RF_BORUTA_10–50 emerges as the best
model when the “chemical family type” attribute is excluded, while DT_BORUTA_5–50
and XGB_nFS_5 are the best models when the “chemical family type” attribute is included.

The data collection process, as described in the methodology, underscores the robust-
ness of our study. Specifically, the calculation of molecular descriptors using the rCDK
package generated a comprehensive set of 290 parameters across five categories: ‘topologi-
cal’, ‘electronic’, ‘constitutional’, ‘hybrid’, and ‘geometrical’. From these initial parameters,
83 were excluded due to their high variability and minimal contribution to information.
The final set of 207 descriptors, along with an extra categorical attribute representing the
chemical family, were meticulously explored even with Boruta and XGB as feature selection
methods to ensure their relevance to physicochemical coupling with the urease binding site.
This rigorous selection process aimed to enhance the predictive capabilities of our models
and provide valuable insights into potential drug discovery pathways. However, there was
not a clear preference for one ML algorithm over another, even with better MCC perfor-
mances without feature selection (considering the 207/208 descriptors). It is also important
to notate that the characteristics selected in both the supervised and unsupervised processes
coincide to a large extent (Supplementary file: “Features_selected.xlsx”), supporting that
these characteristics were a good input for the construction of classification models.

The effectiveness of tree-based methods such as RF, DT, and XGB can be attributed to
several factors. Firstly, these algorithms are capable of capturing non-linear relationships
and interactions between features, which are often present in complex biological datasets.
Additionally, tree-based models inherently handle feature importance, allowing for the
identification of key molecular descriptors contributing to bioactivity prediction. Moreover,
ensemble methods like random forest and XGB further enhance predictive performance by
aggregating multiple decision trees, thereby reducing overfitting and improving general-
ization to unseen data.

Finally, Figure 6 presents a direct comparison of the top four models, whether in-
cluding the “chemical family type” attribute or not. First and foremost, it is observed
that all models achieve an AUC greater than 0.93. However, the best performances are
attained when the “chemical family type” of the inhibitors is considered as an attribute.
As mentioned previously, the best model when excluding the “chemical family type” at-
tribute is RF_BORUTA_10–50, which achieves an AUC of 0.9928 in this analysis. On the
other hand, when the “chemical family type” attribute is considered, the top identified
models are DT_BORUTA_5–50 and XGB_nFS_5, both of which achieve a perfect AUC
of 1, indicating flawless classification between inhibitors and non-inhibitors. Another
crucial aspect to mention regarding the algorithms is that all eight models presented in
Figure 6 are tree-based methods, surpassing other models like SVM, LR, KNN, or NB.
From the perspective of attribute selection methods, there seems to be no direct preference
for one over the other; therefore, all of them could be viable for implementing tree-based
models. As for the categorization strategies, there also appears to be no clear preference
when analyzing these ROC curves. However, considering the results from Figure 5, it is
inferred that the best outcomes are obtained when using the strategies with a gray zone,
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meaning the use of two cutoffs to categorize UIs and nUIs. The ROC curves emphasize
their ability to distinguish between UIs and nUIs. Achieving high AUC values in ROC
curves is crucial in drug discovery as it reflects the model’s ability to correctly classify
compounds into their respective categories. High AUC values indicate strong predictive
performance, suggesting that the models are capable of accurately identifying potential UIs.
In a clinical context, these models could play a vital role in accelerating the drug discovery
process by prioritizing compounds with a higher likelihood of urease inhibition for further
experimental validation. Additionally, the biological relevance of the models’ predictive
accuracy underscores their practical utility. The accurate prediction of bioactivity enables
researchers to focus resources on compounds with the greatest potential for therapeutic
intervention, thereby facilitating the development of novel treatments for conditions such
as Hp infection.
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3. Materials and Methods
3.1. Data Collection

A scientific literature exploration was carried out on the Web of Science (WOS)
database, utilizing the search terms “urease inhibitors” AND “Helicobacter pylori”. The
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search was limited to articles published from 2010 onwards. Afterward, a categorization
of inhibitors was produced by grouping them according to their chemical family. We
found compounds belonging to flavonoids [27–29], alkaloids [30], triazole [31–35], thiadia-
zole [24,30,31,36], and coumarins [24,37–41] chemical families. This dataset involved an
IC50 range from 0.009 micromolar (µM) to concentrations where a minimum inhibitory
concentration for Hp urease enzyme was not determined, here termed non-urease inhibitors
(nUIs). This is because some molecules were compounds whose inhibitory concentration
was not detected in the experiments; in other words, they were molecules without in-
hibitory potency for Hp urease. Therefore, they did not have a numerical value associated
with the response variable. Thus, considering the biological criteria and empirical values of
non-inhibitory compounds reported in the literature, an arbitrary IC50 value of 1 mM was
assigned to all these molecules. Lastly, those compounds whose inhibition measurement
was not carried out by calculating the half-maximal inhibitory concentration (IC50) were
discarded. The UIs and nUIs previously collected were drawn utilizing the 2D Sketcher tool
from the Maestro Schrodinger suite [56], which was also used to add their corresponding
valences. To assign protonation states, the Epik tool [57] was utilized at a pH of 7.2, which
is the standard pH at which biological assays are typically carried out in urease. Finally,
each of the 667 molecules were converted to an SDF format for subsequent analysis.

3.2. Characterization and Preprocessing

The calculation of molecular descriptors was performed using the rCDK package
version 3.6.0. [58] from the Chemistry Development Kit library in the R programming
environment [59]. All available categories of descriptors in this library (“topological”, “elec-
tronic”, “constitutional”, “hybrid”, and “geometrical”) were calculated, generating a total
of 290 descriptors (Table S1 in Supplementary Information). Subsequently, data processing
was carried out to discard any variable with minimal information contribution and/or
to impute missing data in specific variables. To do this, firstly, a criterion was generated
to exclude attributes that had 80% or more information loss. As a result of this, 286 de-
scriptors remained, and the excluded variables were Wgamma1.unity, Wgamma2.unity,
Wgamma3.unity, and WG.unity. Then, using the multiple imputation by chained equations
method [60] with 3 iterations and 3 imputations, missing data were completed for the
variables Weta1.unity and WD.unity. Next, variables with variance close to zero were
excluded using the nearZeroVar function of the Caret package version 6.0-94 [61], resulting
in a total of 207 molecular descriptors. It is important to mention that, in addition to
the 207 descriptors, an extra categorical attribute corresponding to the type of chemical
family previously recorded was considered. This attribute had significant relevance for
the subsequent stages of the study as it may or may not have been included in the models
according to the strategy used.

3.3. Exploratory Data Analysis

The dataset comprised 677 examples (compounds), 207 numerical variables (molecular
descriptors), and 1 categorial variable (family type), and the response variable (IC50 in µM)
was subjected to an EDA with the double aim of (1) detecting the existence of a correlation
between descriptors studied and (2) identifying whether all descriptors or a subset of them
enabled a clear differentiation between the UI and nUI classes in the response variable.
Furthermore, IC50 is not a linear measure, and hence, it does not allow the adequate
separation of the classes. We transformed the variable response into pIC50, the negative
logarithm of IC50. This transformation is also commonly applied in statistical contexts
to positive quantities to symmetrize data. On the other hand, and as mentioned before,
this work aimed to predict UIs through binary classification models. For this purpose, we
assigned a cutoff in the response variable to maximize the separation between the UI and
nUI classes, where UIs had an IC50 ≤ 5 µM (pIC50 ≤ 5.30) and nUIs had an IC50 ≥ 50 µM
(pIC50 ≥ 4.30). For the 207 numerical descriptors, we analyzed the correlation between
variables through a heatmap of the correlation matrix by using the corrplot package in R.
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We considered variables with a correlation magnitude (regardless of the sign) of >0.4. The
variables exhibiting the highest correlations with the response variable were considered
the most promising candidates for constructing predictive models. This stemmed from
the fact that alterations in these highly correlated variables tend to correspond with shifts
in the response variable. Therefore, the correlated features were used (1) as input to
analyze the central tendency (median) and variability (interquartile range) measures in UI
and nUI classes with a statistical Wilcoxon rank sum test and (2) to separate both classes
through a principal component analysis (PCA) using the built-in R functions prcomp().
Additionally, we visualized the chemical space of the dataset by using the Python library
ChemPlot [62,63] through a t-distributed stochastic neighbor embedding (t-SNE) analysis
with 1000 iterations and perplexity = 30. t-SNE is a non-linear dimensionality reduction
technique that is particularly effective at preserving the local structure of the data. Here,
we presented the dimensionality of UIs, nUIs, and those molecules that did not fit into the
predefined classes, here called the gray zone.

3.4. Strategies for Bioactivity Categorization (Data Splitting)

In the previous EDA, we employed a cutoff to separate and categorize both classes.
Particularly, the t-SNE analysis indicated that the chosen cutoff (5–50 µM) effectively
separated the classes. However, the presence of gray points representing the gray zone
highlighted the need for deeper exploration. These data points, with their ambiguous
bioactivity, required further scrutiny to optimize the class separation while minimizing
data loss. In this sense, in the ML scheme, more than one cutoff concentration was used for
this bioactivity categorization, giving rise to different classification tasks and at the same
time different strategies to predict UIs. The details of the cutoffs used, and the proposed
prediction strategies, are presented in Table 1. Six strategies were planned, three based
on 1 cutoff and three based on 2 cutoffs. Basically, when there were 2 cutoffs, compounds
with IC50 values greater than cutoff 1 and lower than cutoff 2 (compounds in the gray
zone) were excluded from the training and testing of the models. Instead, in the case of
employing a single cutoff, no compound was excluded within the ambiguous gray zone,
thus defining compounds under the cutoff as UIs and those surpassing it as nUIs. The
quantities of UIs and nUIs for each strategy are presented in Tables 2 and 3. It is important
to note that the use of either IC50 or pIC50 is irrelevant for ML models as they can naturally
model non-linearities through various non-linear transformations during preprocessing.

Table 2. UIs and nUIs for 1-cutoff strategies for bioactive characterization.

IC50: 5 µM IC50: 10 µM IC50: 25 µM

N◦ % N◦ % N◦ %

UIs 119 18 145 22 221 33
nUIs 558 82 532 78 456 67

Table 3. UIs and nUIs for 2-cutoff strategies for bioactive characterization.

IC50: 5 µM and 50 µM IC50: 10 µM and 50 µM IC50: 25 µM and 50 µM

N◦ % N◦ % N◦ %

UIs 119 26 145 30 221 39
nUIs 341 74 341 70 341 61

3.5. Training and Testing of Inhibitory Classification Models

In the six proposed strategies, the data were distributed between training and testing in
an 80:20 ratio (Table 4). Seven supervised ML algorithms were used and compared to train
the models: RF, SVM, DT, XGB, KNN, NB, and LR. In addition, Boruta [64] and XGB [65]
were used separately as feature selection methods during training to compare them with the
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models built using all the attributes (nFS). Boruta utilizes a random forest-based approach
to identify relevant features by comparing their importance with randomized counterparts.
On the other hand, XGB assesses feature importance by training multiple decision trees and
evaluating their frequency of use in decision-making processes. Repeated cross-validation
(10 folds and 5 repetitions) was used to train and validate the models. Furthermore,
SMOTE [66] was applied to balance the classes in each training step. Moreover, the
hyperparameters of each algorithm were optimized during cross-validation using a grid
search method. The models were both trained and tested with consideration for the
chemical family of the compounds within the dataset and without taking this parameter
into account. All ML algorithms, feature selection methods, SMOTE, and cross-validations
were executed in R using the Caret package functions. Finally, to evaluate the models, the
Matthews correlation coefficient (MCC) and the area under the ROC curves (AUC-ROC)
were calculated.

Table 4. Data distribution between training and testing per strategy.

1-Cutoff Strategies 2-Cutoff Strategies

IC50 Training Testing IC50 Training Testing

IC50: 5 µM 542 135 IC50: 5 µM and 50 µM 368 92
IC50: 10 µM 542 135 IC50: 10 µM and 50 µM 389 97
IC50: 25 µM 542 135 IC50: 25 µM and 50 µM 450 112

4. Conclusions

In conclusion, this study provides valuable insights into the prediction of urease
inhibitors using cheminformatics and ML approaches. Through a comprehensive method-
ology and rigorous analysis, several key conclusions can be drawn:

1. Algorithm Preference: The study recommends favoring tree-based methods, including
random forest (RF), decision tree (DT), and eXtreme Gradient Boosting (XGB), over
other algorithms like k-nearest neighbor (KNN), support vector machine (SVM), naive
Bayes (NB), or logistic regression (LR) for inhibitor classification.

2. Attribute Selection Influence: While attribute selection methods could potentially
improve model performance, their influence varies based on the ML algorithm cho-
sen. There is not a clear preference for one method over another, suggesting their
implementation should be algorithm-specific.

3. Effective Categorization Strategies: The exploratory data analysis and ML analysis
recommend employing strategies that involve a gray zone, utilizing two cutoffs for
categorizing urease UIs and nUIs. These strategies tend to yield better model perfor-
mance, offering improved accuracy in classification tasks, reaching almost 10 percent
over one-cutoff strategies in our models. By delineating these boundaries, we can
effectively train our models to distinguish between active and inactive compounds,
thus enhancing the accuracy of our predictions. Moreover, understanding the impli-
cations of these cutoffs is critical for optimizing model performance. Nevertheless,
strategies with a gray zone can lead to better performance, and it is crucial to consider
the biological implications. Expanding the gray zone for categorization may result in
the loss of important information about inhibitors.

4. Consideration of Chemical Family: The inclusion of the chemical family attribute
significantly enhances the classification models. However, obtaining this attribute
might require manual annotation or inspection as automatic extraction from databases
like ChemBL might not be straightforward. Despite the effort required, incorporating
this attribute contributes to the models’ effectiveness.

5. State of Art in Urease Inhibitors: To the best of our knowledge, in the context of
drug discovery targeting Hp infection through urease inhibition, our study stands
out as the most comprehensive and systematic evaluation of optimal conditions for
developing predictive models of bioactivity for potential inhibitor candidates. By
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rigorously testing various attribute selection methods, machine learning algorithms,
and bioactivity categorization strategies, we provide a robust framework that could
significantly accelerate the identification and development of novel urease inhibitors.
The elucidation of the structure–activity relationship (SAR) is crucial for rational drug
design as it provides valuable information about how changes in the chemical struc-
ture of compounds affect their biological activity. Our investigation contributes to this
understanding by identifying molecular features that correlate with UIs. By analyzing
these relationships, researchers can gain insights into the chemical properties that are
essentials for designing potent UIs.

6. Practical Significance for Drug Design: Our approach serves as a practical guide
applicable not only to urease but also to other proteins in drug design, potentially
impacting the field with its systematic methodology and comprehensive evaluation.
This intersection between computational modeling and biological relevance highlights
the significance of our findings in advancing both drug discovery efforts and our
understanding of urease inhibition mechanisms. Developing predictive models that
accurately classify compounds based on their inhibitory activity against any relevant
clinical target, as demonstrated in our study, enables the efficient screening of large
compound libraries to identify promising drug candidates. This can significantly
accelerate the drug discovery process by prioritizing compounds with the highest
likelihood of exhibiting inhibitory activity.

In general, this study illustrates the effectiveness of combining seven ML algorithms,
three attribute selection methods, and six different strategies for categorizing inhibitory
activity to enhance the prediction of urease inhibitors. The provided recommendations
offer practical guidance for researchers aiming to develop effective classification models
for similar biochemical systems.
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