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Abstract: One of the most significant challenges in human health risk assessment is to evaluate
hazards from exposure to environmental chemical mixtures. Polycyclic aromatic hydrocarbons
(PAHs) are a class of ubiquitous contaminants typically found as mixtures in gaseous and particulate
phases in ambient air pollution associated with petrochemicals from Superfund sites and the burning
of fossil fuels. However, little is understood about how PAHs in mixtures contribute to toxicity in lung
cells. To investigate mixture interactions and component additivity from environmentally relevant
PAHs, two synthetic mixtures were created from PAHs identified in passive air samplers at a legacy
creosote site impacted by wildfires. The primary human bronchial epithelial cells differentiated at
the air–liquid interface were treated with PAH mixtures at environmentally relevant proportions
and evaluated for the differential expression of transcriptional biomarkers related to xenobiotic
metabolism, oxidative stress response, barrier integrity, and DNA damage response. Component
additivity was evaluated across all endpoints using two independent action (IA) models with and
without the scaling of components by toxic equivalence factors. Both IA models exhibited trends that
were unlike the observed mixture response and generally underestimated the toxicity across dose
suggesting the potential for non-additive interactions of components. Overall, this study provides an
example of the usefulness of mixture toxicity assessment with the currently available methods while
demonstrating the need for more complex yet interpretable mixture response evaluation methods for
environmental samples.

Keywords: mixtures; polycyclic aromatic hydrocarbons; chemical interactions; 3D in vitro models;
lung cells

1. Introduction

Traditional chemical toxicity assessments tend to focus on studying the effects of a
single chemical, but this is a great underestimation of the typical exposure scenario [1].
Organisms are most commonly exposed to chemical mixtures which can be varied and
complex depending on their location, time of exposure, chemical source, and other factors
resulting in unique health effects [2]. The US Environmental Protection Agency (EPA) and
National Institute of Environmental Health Sciences (NIEHS) have recognized the risk
of chemical mixture exposure on human health and the need for addressing methods in
mixture toxicity assessment [3–5]. A major limitation in mixture toxicity assessment is the
ability to adequately represent an exposure for testing. Three main methods have been
developed for addressing mixture toxicity including whole mixture, sufficiently similar
mixtures, and component-based approaches [5,6]. The whole mixture approach consists
of testing a whole extract collected from environmental sampling to assess the specific
toxicity of the environmental exposure. While whole mixture toxicity assessments provide
the most useful data for specific exposure scenarios, they are limited by the availability
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of the whole mixture. The US EPA addresses possible concerns over whole mixture data
calling for a consideration of the similarity of the collected mixture to the real exposure,
stability of the mixture after collection, and potential of human or ecological exposure to
the collected mixture [5]. When whole mixture data are unavailable or cannot be obtained,
representative or sufficiently similar mixture toxicity data may be considered for the risk
assessment. Sufficiently similar mixtures are formulated based on environmental sampling
to best represent the whole mixture and may be created based on component abundance,
toxicity, environmental fate, biological effects, or chemical class [7–10]. Sufficiently similar
mixtures reduce the mixture but should be validated to ensure that the formulated mixture
is truly representative of the whole mixture toxicity [9,10]. The US EPA recommends an
in-depth analysis of the mixture’s similarity to the whole mixture with considerations of
component composition differences, component concentration differences, and the bioavail-
ability of either mixture or its components [5]. Lastly, component-based approaches are
most commonly used in mixture risk assessment due to the lack of whole mixture and
sufficiently similar mixture data or the standardization for their approaches [1,5,11,12].
Component-based assessment consists of compiling available toxicity data on the compo-
nents of the whole mixture based on the interactions and toxicological similarity of the
components [1,13]. If there is a lack of sufficient component data, component responses may
be estimated based on a reference chemical according to the component toxic equivalency
factors (TEFs) [5].

Component-based mixture toxicity assessments require the selection of a modeling
technique to combine component data and characterize the mixture response for a given
endpoint. Three commonly used modeling techniques for investigating mixture toxicity
include concentration addition (CA), generalized concentration addition (GCA), and inde-
pendent action (IA) [12,14–16]. These methods characterize the mixture response on the
assumption that the component responses combine in an additive manner, but the resulting
model trend can be compared to the actual mixture response to determine the potential
for a weaker (antagonistic) or stronger (synergistic) response [15–17]. CA is the simplest of
the three methods with the main assumption that all components behave the same in the
system with the same mechanism of action and thus can be considered dilutions of each
other [14,15]. A limitation of this method is that all components are assumed to have similar
slopes in their response curves therefore limiting the maximal estimated response of the
mixture to that of the component with the lowest maximal absolute response [14,15]. GCA
is a derivation of the CA model and accounts for components with less than maximal ef-
fects by incorporating component EC50 values and the endpoint maximal response [18,19].
While this method removes the maximal effect limitation of CA, it is limited by the need to
calculate an EC50 value for all component response curves. IA was originally derived for
probability assessments but has been further developed to utilize quantitative data [17].
The TEF approach, which has primarily been applied to CA or GCA, is recommended by
the US EPA as a placeholder to fill missing data gaps [5]. However, most studies using a
TEF approach only utilize the reference chemical response in proportion to the component
TEFs which limits the scope of the assessment by assuming all components act with a
similar mechanism of action [19,20]. Unlike CA and GCA, IA is designed to model data
from components that may exert toxicity with dissimilar mechanisms of action and allows
for the use of more diverse data without the need for component EC50 or maximal effect
values [11,12,14,21]. In the present study, we apply a component-based approach with
IA modeling for a mixture of polycyclic aromatic hydrocarbons (PAHs) due to data input
requirements and unknown mechanisms of action for several compounds in the evaluated
mixtures. Additionally, we apply an adapted TEF approach for IA modeling by scaling
component concentrations based on their respective TEFs while still utilizing component
responses to remove the assumption of a similar mechanism of action. This study demon-
strates and discusses the usefulness and limitations of this method for component-based
additivity modeling for chemical mixtures.
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PAHs are a large class of chemicals consisting of two or more fused benzene rings [22,23].
They are common environmental air pollutants with natural and anthropogenic sources
such as wildfires, incomplete fossil fuel combustion, wood preservation, tobacco smoking,
etc. [24–29]. Organisms are typically exposed to PAHs in complex mixtures with their
composition determined by nearby sources [29]. Many PAHs have shown potential for
mutagenicity, genotoxicity, immunotoxicity, reproductive toxicity, and developmental
toxicity, and 16 PAHs have been designated as priority pollutants by the US EPA. Several
studies have found evidence that mixtures of PAHs may elicit unique toxicity as compared
to single chemical exposures suggesting potential for differences in the mechanism of action
between PAHs [30–34]. Due to the growing concern of increased or unique toxicity, there
has been a push for more research on PAH mixture toxicity assessments and methods
for evaluating PAH mixture toxicity for risk assessment. It is important to consider the
relevance of the chosen model for risk assessment since data generated in a model more
similar to the population of concern will result in fewer uncertainties. Humans may be
exposed to PAHs by inhalation, ingestion, or dermal contact, and PAHs have been detected
in most human tissues [22,35]. The lung is a major target organ for PAH toxicity where short
term exposures have been shown to impact individuals with asthma, and the metabolism of
PAHs has been shown to reduce lung function in individuals with no previous conditions
as well as increase the chance of lung cancer [35–38]. Primary human lung cell cultures
can be a valuable tool in PAH toxicity assessment by providing more human-relevant
mechanistic and toxicity data for PAH exposures as compared to immortalized cell lines
or in vivo animal models. Organotypically cultured primary human lung cells have been
demonstrated to have many similarities with the in vivo human lung including cellular
differentiation and basal transcript expression levels [39,40]. Additionally, this model
has previously been utilized for evaluating differential transcript expression after PAH
exposures [30,41,42].

This study assesses the additivity assumption for PAH mixtures by investigating
the combined effects of mixture components compared to the mixture response. Primary
human bronchial epithelial cells (HBECs) cultured at the air–liquid interface (ALI) are
used to investigate PAH mixture effects across multiple biomarkers of PAH exposure and
toxicity. The mixture response is assessed based on the additivity assumption using the
IA modeling of the individual component responses with and without TEF adjustments
for the studied biomarkers after the optimization of model parameters for PAH mixture
selection, exposure time, and dose range. Overall, this study provides guidance on the
best practices for mixture toxicity assessment, provides further evidence on PAH mixture
interactions, and shows the need for more research on the area of PAH mixture toxicity
regarding the component mechanism of action and additivity.

2. Results

The overall goal of this study is to assess component toxicity, the mechanisms of
action, and additivity in environmentally relevant PAH mixtures. In order to model the
additivity of mixture components, it is necessary to first optimize parameters to determine
the most appropriate PAH mixture, biomarkers, timepoints, and concentration ranges
to utilize for IA modeling in the ALI-HBEC model. Multiple endpoints, including those
associated with cytotoxicity, barrier integrity, xenobiotic metabolism, oxidative stress, and
DNA damage, were evaluated in the ALI-HBECs after treatment with two environmentally
relevant PAH mixtures across a range of concentrations and timepoints to select the optimal
parameters for mixture interaction studies. Lactate dehydrogenase (LDH) leakage was
used as an indicator of cytotoxicity, and transepithelial electrical resistance (TEER) was
used as a functional measure of barrier integrity in ALI-HBECs. Differential expressions of
CYP1A1, CYP1B1, ALDH3A1, GSTA, HMOX1, NQO1, GJA1, TJP2, and DDB2 were used
to evaluate transcriptional biomarker responses based on previous research which found
these markers to be predictive of PAH carcinogenicity [30,43]. For additivity modeling,
ALI-HBECs were either treated with a single PAH mixture, ToxMix, or with each of the
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individual PAH components across a range of concentrations for 24 h. Transcriptional
biomarkers related to barrier integrity, xenobiotic metabolism, oxidative stress, and DNA
damage were used for additivity modeling to characterize trends in the mixture response
curves compared to component PAH responses. Finally, the outputs of two IA models were
compared to the mixture response to assess component additivity and the potential for
component interactions.

2.1. Evaluation of PAH Mixtures in ALI-HBECs

To evaluate differences in cytotoxicity, barrier integrity, and transcriptional biomarker
responses between two PAH mixtures, ALI-HBECs were exposed to ToxMix (25%, 10%,
or 1%) or AbundMix (75%, 50%, or 10%) over 2, 6, 10, 24, or 48 h. There is no evidence of
increased cytotoxicity from AbundMix or ToxMix at any concentration or timepoint tested
(Figure 1A,B). Barrier integrity was only significantly (padj < 0.05) decreased by ToxMix
exposures at or above 10% relative concentration at 24 h (Figure 1C,D).
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Data points represent the average % change normalized to the vehicle control. Error bars represent 
the standard error of the means. Asterisks indicate 640 level of significance (* padj < 0.05; one-way 
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< 0.05) altered the expression of CYP1A1, CYP1B1, and GSTA in a dose-dependent manner 

Figure 1. Cytotoxicity and barrier integrity from PAH mixture exposures as measured by LDH
leakage and TEER, respectively. ALI-HBECs (n = 3) were apically treated with ToxMix or AbundMix
for 2, 6, 10, or 24 h in DPBS with a 1% DMSO vehicle. (A) LDH leakage after AbundMix (75%, 50%, or
10%) exposure, (B) LDH leakage after ToxMix (25%, 10%, or 1%) exposure, (C) TEER after AbundMix
(75%, 50%, or 10%) exposure, and (D) TEER after ToxMix (25%, 10%, or 1%) exposure. Data points
represent the average % change normalized to the vehicle control. Error bars represent the standard
error of the means. Asterisks indicate 640 level of significance (* padj < 0.05; one-way ANOVA with
Dunnett’s post hoc test compared to the vehicle control). ToxMix (10%) at 24 h (n = 2) only. Created
with BioRender.com (accessed on 10 April 2024).
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Transcriptional biomarkers for CYP1A1, CYP1B1, ALDH3A1, GSTA, HMOX1, NQO1,
GJA1, TJP2, and DDB2 were evaluated across concentration and time for each PAH mixture.
Dose–response curves were fitted for all significantly (padj < 0.05) differentially regulated
transcripts and their EC50 values calculated (Figure 2). AbundMix significantly (padj < 0.05)
altered the expression of CYP1A1, CYP1B1, and GSTA in a dose-dependent manner for at
least one timepoint with the most sensitive genes being CYP1A1 and CYP1B1 (Figure 2A).
ToxMix significantly (padj < 0.05) altered expression for CYP1A1, CYP1B1, ALDH3A1,
HMOX1, and TJP2 in a dose-dependent manner for at least one timepoint with the most
sensitive genes being CYP1A1, CYP1B1, and ALDH3A1 (Figure 2B). AbundMix and ToxMix
appeared to reach saturation in gene expression by the highest relative concentration (75%
and 25%, respectively) for most genes that had a significant response. ToxMix resulted
in a significant (padj < 0.05) alteration of more transcripts, had a larger maximal absolute
change, and was more potent for most genes and timepoints. The timepoint of the maximal
absolute fold change differed among mixtures, concentrations, and genes, with the most
common timepoint being 24 h for both AbundMix and ToxMix (Figure 3), and ToxMix also
demonstrated a higher maximal fold change for most evaluated genes.
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Figure 2. Significantly altered transcriptional biomarkers from PAH mixture exposure as measured
by qPCR. ALI-HBECs (n = 3) were apically treated with (A) AbundMix (75%, 50%, or 10%) or
(B) ToxMix (25%, 10%, or 1%) for 2, 6, 10, 24, or 48 h in DPBS with a 1% DMSO vehicle. Data points
represent individual replicate responses. Regression lines represent the fitted model curve for the
data. EC50 = half maximal effective concentration represented as relative concentration. Significance
was determined as at least one concentration having a significant difference (padj < 0.05) from the
vehicle control as evaluated by a one-way ANOVA with Dunnett’s post hoc test. Created with
BioRender.com (accessed on 10 April 2024).
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Figure 3. A summary of the differential transcriptional expression by AbundMix (left) and ToxMix
(right) exposure. ALI-HBECs (n = 3) were apically treated with ToxMix (25%, 10%, or 1%) or
AbundMix (75%, 50%, or 10%) for 2, 6, 10, 24, or 48 h in DPBS with a 1% DMSO vehicle. Numbers
in boxes represent the timepoint in hours of the maximal fold change occurrence for each gene and
mixture relative concentration. The color represents the magnitude of the maximal fold change at the
designated timepoint for each gene and mixture relative concentration.

2.2. Selecting Mixture Parameters for Additivity Modeling

There were three criteria for biomarker data to be considered in the selection of
the mixture of interest for additivity modeling: (1) the endpoint showed significance
(padj < 0.05) for at least one tested concentration, (2) the data fit a dose–response curve
model, and (3) an EC50 could be calculated from the dose–response curve. Data that met
these criteria can be seen in Figure 2. Due to the increased response in the number of
significant transcripts, maximal absolute response, and potency, as seen in Figures 2 and 3,
ToxMix was chosen as the mixture of interest for additivity modeling. Mixture component
exposure times and concentrations were selected to increase interpretability and decrease
the complexity of the additivity model. Lower concentrations (10%, 5%, 1%, and 0.5%) were
used to avoid transcript response saturation and place more emphasis on the exponential
portion of the dose–response curve. The 24 h timepoint was chosen since this was the
most common timepoint showing a maximal transcript response between ToxMix and
AbundMix exposures (Figure 3).

2.3. Evaluation of PAH Mixture Components in ALI-HBECs

To evaluate mixture component additivity and potential component interactions,
cytotoxicity, barrier integrity, and transcriptional biomarker responses were evaluated from
ALI-HBECs exposed to ToxMix (10%, 5%, 1%, or 0.5%) or an individual component (10%,
5%, 1%, or 0.5%) for 24 h. There is no evidence of elevated cytotoxicity (Figure S1A) or
decreased barrier integrity (Figure S1B) after 24 h treatment with ToxMix or any of the
ToxMix components at the concentrations tested.

Treatment with either ToxMix or a component over 24 h had a significant (padj < 0.05)
result in seven of the nine tested genes including ALDH3A1, CYP1A1, CYP1B1, GSTA,
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HMOX1, NQO1, and TJP2 (Figure 4). Retene was the most active of the individual compo-
nents when exposed alone resulting in the highest absolute magnitude of change among
all individual components for CYP1A1 and CYP1B1 and showing significance (padj < 0.05)
in six out of seven transcripts. BaF and BbF were the next most active components when
exposed alone also resulting in significant (padj < 0.05) alteration in six out of seven tran-
scripts. CYP1A1 was the most sensitive gene to PAH exposure with a significant (padj < 0.05)
differential expression by all treatments.
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Figure 4. A summary of the differential transcriptional expression for ToxMix and individual
component exposures. ALI-HBECs (n = 4) were apically treated with ToxMix, retene, BaF, BbF, BcF,
triphenylene, BghiP, or BeP (10%, 5%, 1%, or 0.5%) for 24 h in DPBS with a 1% DMSO vehicle. “Yes”
indicates that at least one concentration was significant (padj < 0.05) from the vehicle control for that
treatment and gene control as evaluated by a one-way ANOVA with Dunnett’s post hoc test. “No”
indicates no significance from the vehicle control at any concentration for that treatment and gene.
The color represents the magnitude of the maximal fold change for that treatment and each gene over
all concentrations.

2.4. Evaluating Mixture Additivity

IA was utilized for additivity modeling based on model criteria relating to submax-
imal responses in the dose–response data from component and ToxMix exposures and
the uncertainty in the mechanisms of action for many mixture components. To model an
additive response from ToxMix, we applied the IA modeling method with transcriptional
biomarker results from individual ToxMix component exposures using either µM compo-
nent concentrations or TEF-adjusted component concentrations. We required a minimum
of two significant (padj < 0.05) observations per gene, compound, and concentration for a
treatment to be included in additivity modeling. CYP1A1 for 10% BeP exposure did not
meet this requirement and was removed from further analyses. For a gene to be included
in additivity modeling, we required at least three components to result in a significant
(padj < 0.05) response at any treatment concentration. ToxMix was not required to show a
significant response. TJP2 only had a significant (padj < 0.05) alteration by BaF and BghiP
exposure and was removed from further analyses. A total of six of the nine evaluated
genes were included in IA modeling. To evaluate model performance, we used the Pearson
correlation coefficient (r) to assess the similarity of trends in the fitted curves between the
model response and the ToxMix response and used the RMSE to assess similarity between
the average response for the predicted IA model compared to ToxMix. The IA models
using µM concentrations of the components (without TEFs) resulted in HMOX1 having
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a weak correlation (|r| < 0.3), ALDH3A1 having a moderate correlation (0.3 < |r| < 0.5),
and CYP1A1 and CYP1B1 having a strong correlation (|r| > 0.5) with the actual ToxMix
response (Figure 5A). Assessing the error of the modeled response by the RMSE shows
CYP1A1 having large error (RMSE > 2), CYP1B1, HMOX1, and NQO1 having moderate
error (1 < RMSE < 2), and ALDH3A1 and GSTA having small error (RMSE < 1). The IA
models using the TEFs of components resulted in HMOX1 having a moderate correlation
and ALDH3A1, CYP1A1, and CYP1B1 having a strong correlation with the actual ToxMix
response (Figure 5B). Assessing the error of the modeled response by the RMSE shows
CYP1A1, CYP1B1, and HMOX1 having large error, ALDH3A1 having moderate error, and
GSTA and NQO1 having small error. There was no evidence of differential expression
across dose for GSTA or NQO1 after ToxMix exposure, and a correlation coefficient could
not be calculated for either IA model methods. According to the Pearson correlation, the IA
model that accounts for component TEF values better described the mixture response curve
trends. According to the RMSE, the IA model using µM concentrations of the components
without TEFs better described the mixture response. Neither IA model outperforms the
other, and there are clear biases for each method. The TEF-adjusted IA model curves
tend to follow the trend of the component with the highest TEF value, BeP in this case,
and the µM (non-TEF) IA model curves tend to follow the trend of the most abundant
component, retene being the most abundant in this case. Both IA model methods also
tended to underestimate the ToxMix response for most genes which could be evidence for
chemical interactions or potential synergism occurring in the actual ToxMix response.
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adjusted concentration of components represented as log10 BeP equivalent concentration. Cells
(n = 4) were apically treated with ToxMix, retene, BaF, BbF, BcF, triphenylene, BghiP, or BeP (10%,
5%, 1%, or 0.5%) for 24 h in DPBS with 1% DMSO vehicle. Black solid line indicates mean ToxMix
response, black dots indicate individual sample responses for ToxMix treatment, and black dotted
lines indicate standard error of ToxMix response. Blue line indicates IA model of ToxMix response
based on individual component data. RMSE represents root-mean-square error between modeled
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and ToxMix response curves. Created with BioRender.com (accessed on 10 April 2024).
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3. Discussion
3.1. Differential Expression of Transcriptional Biomarkers by PAH Mixtures

This study assessed additivity for an environmentally relevant PAH mixture using
two IA models, with and without the inclusion of TEFs, to evaluate the predicted response
of individual components compared to the mixture response in primary HBECs cultured at
the ALI. Two environmentally relevant PAH mixtures were evaluated for their bioactivity
and potential for use in additivity modeling. We found the mixture formulated based on
toxicity metrics to be the most bioactive in human lung epithelium based on the differen-
tial expression of nine transcriptional biomarkers known to be altered by PAH exposure
and predictive of PAH carcinogenicity [30,43]. There is an abundance of the literature
researching the mechanisms of PAH toxicity with many studies finding PAHs, both sin-
gle chemical and mixture exposure, leading to alterations of several cellular pathways
such as barrier integrity, inflammation response, cell proliferation, cell cycle signaling,
oxidative stress response, xenobiotic metabolism, DNA damage response, and immune
response [30,44–46]. Genes related to oxidative stress, DNA damage, and inflammation
response pathways tend to be up-regulated, while genes related to barrier integrity tend to
be down-regulated [30,32,33,44,45,47,48]. Genes related to the metabolism of xenobiotics
such as cytochrome P450s may be up- or down-regulated depending on the chemical or
concentration of exposure [30,49].

Many genes play an important role in PAH toxicity whether it be for the activation
or detoxification of xenobiotics. Several genes studied here have been shown to be differ-
entially expressed by PAH exposure in previous studies, and we investigated the effects
of two PAH mixtures on these common biomarkers of PAH exposure including CYP1A1,
CYP1B1, GSTA, and ALDH3A1 which have been demonstrated to mediate PAH metabolism
and are biomarkers of PAH exposure [38,50–55]. Many individual PAHs and PAH mixtures
similar to the ones studied here have been shown to induce CYP1A1 and CYP1B1 expres-
sion and protein activity, including retene, acenaphthene, BghiP, wildfire particulate matter
(PM) extract, ambient air PM extract, coal tar extract (CTE), cigarette smoke, and various
occupational mixture exposures. ToxMix, which is predominantly retene, was shown to
be a more potent and efficacious CYP1A1 and CYP1B1 inducer with a lower EC50 at all
timepoints and a larger magnitude of change when compared to AbundMix. However,
there is evidence that some PAHs can inhibit these enzymes such as BeP, acenaphthene,
and occupational mixture exposures [30,43,44,46,47,49,54–63]. In the current study, HBECs
grown at the ALI were exposed to two PAH mixtures and evaluated for the differential
expression of transcriptional biomarkers across dose and time. GSTA has previously been
shown to be differentially expressed by both individual and mixture PAH exposures [30,43].
While there exists a large data gap surrounding modifications of the alpha group by PAHs,
studies focusing on other GSTs, such as pi, mu, or theta GST groups, show a similar in-
duction of the GST mRNA levels [56,64]. In the present study, AbundMix was the only
mixture to result in a significant (padj < 0.05) change in GSTA expression with a decrease in
expression after 48 h. The calculated EC50 for GSTA at the 48 h timepoint is lower than
for CYP1A1 showing an increased potency at this timepoint; however, GSTA was only
significantly altered at a single timepoint compared to CYP1A1 which was significantly
induced at four out of five timepoints. Previous studies have shown individual and mixture
PAH exposures to differentially regulate the expression of ALDH3A1 with many mixture
exposures such as CTE and tobacco smoking increasing the expression. The direction of the
differential expression from individual PAH exposure appears to rely on the PAH being
tested with many PAHs inducing expression and others, such as phenanthrene, inhibit-
ing expression [30,43,45,46]. In the current study, only ToxMix significantly (padj < 0.05)
induced the expression of ALDH3A1 at 6, 10, and 24 h. The increase in expression was
moderate with the maximal fold change at the 24 h timepoint, but the EC50 tended to
be large depending on the timepoint giving a similar potency to CYP1A1 and CYP1B1
but a maximal absolute response more similar to GSTA. Overall, toxicity- and abundance-
based PAH mixtures differentially express transcriptional biomarkers related to xenobiotic
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metabolism with high efficacy and potency, and CYP1A1 was the most sensitive biomarker
to PAH mixture exposure.

PAHs have been shown to induce oxidative stress in human cells, and there exists
antioxidant mechanisms to combat excess oxidative stress and reactive oxygen species (ROS)
production [32,44,48]. To assess the oxidative stress response from exposure to two PAH
mixtures, we investigated changes in transcriptional expression for HMOX1 and NQO1,
two known antioxidant genes [32,54,65–67]. Previous studies have demonstrated HMOX1
differential expression after PAH exposures with most research showing an induction
such as from organic particulate matter (PM) extract, diesel exhaust PM extract, oil burn
PM extract, and several individual PAH exposures [32,44,48,49,68]. In the present study,
HMOX1 was only significantly (padj < 0.05) induced by ToxMix at the 48 h timepoint.
NQO1 has been demonstrated to be differentially expressed by PAH exposures with most
studies showing an induction of the gene from exposures such as PM extract, smoking,
CTE, naphthalene, and phenanthrene [43,46,56,59]. However, NQO1 was not altered after
AbundMix or ToxMix exposure in the present study at any timepoint or concentration.
While the toxicity-based PAH mixture moderately altered the expression of transcriptional
biomarkers for the oxidative stress response, HMOX1 was the least sensitive in this study.

The integrity of the lung epithelial layer is crucial in maintaining lung health. However,
PAHs have been shown to disrupt epithelial and barrier integrity through a reduction in
tight and gap junction function [30,33,45,47]. We investigated the effects of two PAH
mixtures on tight and gap junction function through the differential expression of GJA1 and
TJP2 [69–73]. GJA1 expression has been shown to be altered in mouse lung cells by PAH
mixture exposure consisting of compounds commonly found in cigarette smoke [33,47]. In
the present study, AbundMix and ToxMix did not significantly alter GJA1 expression at any
timepoint or concentration. TJP2 has been shown to be induced by organic extracts of urban
air PM which included BeP and BghiP [74]. In the present study, TJP2 was only significantly
(padj < 0.05) induced by ToxMix exposure at the 24 h timepoint. TJP2, while not as sensitive
as the xenobiotic metabolism biomarkers, was more sensitive to PAH mixture exposure
than the oxidative stress response biomarkers. Overall, the toxicity-based PAH mixture
moderately altered the expression of transcriptional biomarkers for tight junction integrity.

Many PAHs have been shown to cause DNA damage and are associated with increased
carcinogenicity [75]. We investigated the potential for DNA damage by the two PAH
mixtures by evaluating the differential expression of DDB2, a DNA damage response
biomarker [76,77]. DDB2 has previously been shown to be induced by PAH extract from
nut roasting PM, and several genes related to DNA damage response have been shown
to be differentially expressed by individual and mixture PAH exposure [43,49,53,58,63,78].
However, in the present study, AbundMix and ToxMix did not significantly alter DDB2
expression at any timepoint or concentration.

3.2. Differential Expression of Transcriptional Biomarkers by Mixture Components

We further evaluated the response of the transcriptional biomarkers to PAH mixture
and component exposure for mixture additivity modeling. There exists little to no research
on the toxicity, alteration of transcriptional biomarkers, or mechanism of action for several of
the components. Retene was the most bioactive component of ToxMix showing the largest
maximal fold change in transcriptional expression especially for CYP1A1 and CYP1B1 as
well as having a significant (padj < 0.05) response for all six genes considered for additivity
modeling. Retene has been shown to greatly induce CYP1A expression with reliance on
the aryl hydrocarbon receptor (AhR) in zebrafish [62,79]. BbF was the next most bioactive
component with significance (padj < 0.05) in all six genes considered for additivity modeling
and large inductions for CYP1A1 and CYP1B1. Hawliczek et al. found that BbF greatly
induced CYP1A expression in zebrafish, and responses from BbF exposure most likely
occurred through interaction with the AhR [79]. While BeP has the largest assigned TEF
among the ToxMix components with a value of 1, it was the least bioactive component with
significant bioactivity for only three of the six genes considered for additivity modeling.
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Prior studies report that BeP increases CYP1A1 expression or activity in rats and mice and
interacts with glycine N-methyltransferase (GNMT) at a higher affinity than the AhR for
CYP450 regulation [80–82]. BghiP exhibited moderate bioactivity compared to the other
ToxMix components with significance (padj < 0.05) in four of the six genes considered for
additivity modeling. Previous studies have found BghiP to have a higher affinity for GNMT
compared to the AhR, not significantly inducing CYP1A1 expression in rat and human liver
cells [81,83]. While Cherng et al. found that BghiP did not significantly bind to the AhR or
induce CYP1A1, they observed it did enhance AhR binding and CYP1A1 expression in the
human liver when co-exposed with benzo[a]pyrene suggesting a possible interaction of
the two PAHs [83]. These data suggest some dissimilar mechanisms of action between the
components in ToxMix. Specifically, BeP and BghiP have the potential to act through the
GNMT pathway, retene and BbF most likely act through the AhR pathway, and BaF, BcF,
and triphenylene have an unknown mechanism for transcriptional regulation.

3.3. Modeling Mixture Response Based on Component Additivity

While whole mixture or sufficiently similar mixture approaches are preferred, the most
commonly used method for mixture risk assessment is a component-based approach due
to the lack of whole mixture and sufficiently similar mixture data or the standardization
for their approaches. The US EPA cautions the use of the component-based approach
with large, complex mixtures given that the uncertainty in component interactions grows
substantially with more components present [5]. Component-based approaches limit the
assessment of complex interactions between chemicals of different classes but allow for
more simplicity in the toxicity assessment which leads to more interpretable results and
usefulness of the assessment. While more complex tools for mixture toxicity assessment
have been created through the use of machine learning methods, there is a need for simpler,
more interpretable methods to aid in faster integration into current risk assessments for
regulatory decisions [4]. If there is not sufficient data for all mixture components for the
endpoint of interest, component responses may be estimated from a reference chemical
based on their TEF values, and the mixture toxicity assessment is conducted as if the mixture
components are dilutions of the reference chemical. While the US EPA recommends using
this approach to fill data gaps, there is debate over the usefulness of the TEF approach for
PAH mixtures due to uncertainties in the component mechanisms of action [5,20,84]. Here,
we apply a modified version of the component-based TEF approach by scaling component
concentrations based on TEFs while still utilizing individual component responses as
opposed to an estimated reference chemical response. This adaption should eliminate
uncertainties in using reference chemical responses by not assuming all components are
direct dilutions of each other with similar mechanisms of action.

The mixture response can be characterized by the component data using an additivity
model such as CA, GCA, or IA all of which assume that the components do not physically,
chemically, or biologically interact and combine in an additive manner to create the mixture
response. While CA has been a popular method for mixture risk assessments, many of
its assumptions have been questioned including components having similar mechanisms
of action and similar response curve slopes [85,86]. However, CA has shown to describe
the additive mixture response well when components have a similar or mostly similar
mechanism of action [87,88]. The GCA derivation of the CA method has been shown to give
better additive mixture response characterization when components exhibited different re-
sponse curve slopes [18,19]. The simplicity of CA and GCA is what makes these models the
default methods used by regulators when only component data are available [89]. The TEF
approach applied with CA and GCA models has also been shown to characterize mixture
exposure well in some cases. Petry et al. demonstrated the usefulness of the TEF approach
to characterize PAH mixture carcinogenicity, and Howard et al. demonstrated the TEF
approach to characterize the mixture response as well as a GCA model when components
have similar mechanisms of action but not when components have dissimilar mechanisms
of action [19,90]. Unlike CA and GCA, IA does not assume that all components exert toxicity
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through a similar mechanism of action [11,12,14,21]. Originally, IA was used as a probabil-
ity assessment for a certain biological endpoint, but a newer version has been derived to
apply the model to more quantitative data [17]. IA has been shown to better characterize
the mixture response when components have a dissimilar mechanism of action, while CA
and IA have similar performances for components with similar mechanisms of action, and
IA has been shown to overcome the limitation of characterizing only up to the maximal
effect of the weakest compound seen in the CA model [17,34,91–95]. While IA may be more
accurate in certain circumstances, CA is noted to give a more conservative evaluation for
mixture toxicity and, thus, is considered more useful for regulatory decisions [14,89,96,97].
Additivity modeling with component-based approaches has been shown to have many
limitations and errors in assumptions for PAH mixtures mainly involving the additivity of
responses or effects assumption [31,98,99]. However, component-based methods compared
to mixture effects have shown expected additive effects in some cases [17,98,100]. Previous
studies have found IA models to characterize the mixture response well when components
have dissimilar mechanisms of action but tends to describe a lower mixture response or
incorrect trend of the mixture response curve when components have similar or mostly
similar mechanisms of action [87,88,91,93–95,97,101]. Here, we also applied a modified
TEF approach by scaling component concentrations to their respective TEFs. By applying
this method, the modeled curve for the mixture response will be altered and may more
closely resemble the observed mixture response curve. In the present study, both IA models,
with and without TEFs, mainly underestimate mixture responses or provide an incorrect
trend of the mixture response curve based on the RMSE and Pearson correlation metrics,
respectively. There are two possible explanations for these differences from the mixture
response: ToxMix components exert toxicity through potential component interactions
resulting in a non-additive or synergistic toxicity of the mixture or may represent similar
mechanisms of action. The incorrect curve trend characterized by the Pearson correlation
could be explained by components of ToxMix acting through mostly similar mechanisms
of action to alter the transcriptional expression of the evaluated biomarkers. However,
as described above, there is evidence for some dissimilar mechanisms of action between
ToxMix components with some having a high affinity for the AhR and others for GNMT.
The incorrect characterization of the mixture response based on the RMSE metric could be
explained by the components having non-additive interactions. It would appear that the
components potentially interact in a synergistic manner. However, there is little research on
how these PAHs may interact on a chemical or physical level. There exist several examples
of the inability of CA, GCA, and IA to adequately characterize the mixture response as well
as the hazards of chemical interactions such as when combining low- and high-molecular-
weight PAHs demonstrating the importance of the mechanism of action and potential
component interactions, as in this study [14,18,31,33,34,47,88,92,99,102,103]. In order to
further address these hypotheses, more data would need to be collected for PAH alterations
on transcriptional biomarkers, the mechanisms of action for differential transcriptional
regulation, and the potential for chemical or physical interactions between compounds.

3.4. Best Practices for Additivity Modeling of PAH Mixtures

The findings from this study have highlighted some key considerations for PAH
mixture toxicity assessments by component-based approaches. When evaluating the PAH
mixture response, it is beneficial to consider the advantages and disadvantages for all
methods and choose the most appropriate for the current mixture of interest. The endpoint
of interest should be selected and fully understood prior to conducting toxicity assessments.
In addition, the potential mechanisms of action for the mixture components need to be
evaluated, taking into consideration how those mechanisms may affect the endpoint of
interest. If using component-based approaches, the modeling method should also be
chosen with consideration for component similarity, known interactions, the availability
of component data, and the ability to collect new component data. The inclusion of the
TEF concentration adjustment should also be taken into consideration if the component
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mechanisms of action are unknown or not well understood, but more research is needed
to describe the utility of the adapted TEF approach with additivity modeling. Lastly, new
modeling methods need to be formulated and validated to account for potential component
interactions as opposed to strictly modeling additive responses.

4. Materials and Methods
4.1. Mixture Formulation

Two PAH mixtures were previously formulated based on environmental air samples
from a legacy creosote site impacted by wildfires [10]. Briefly, air samples were collected by
low-density polyethylene stationary air samplers. Samples were concentrated to 1 mL and
analyzed for 63 PAHs using an Agilent 7890B gas chromatograph with an Agilent 7000C
triple quadrupole mass spectrometer (Agilent, Santa Clara, CA, USA). The Abundance
Mixture (AbundMix) was formulated from 6 of the most abundant PAHs in the whole
mixture: naphthalene, acenaphthene, 2-methylnaphthalene, 1-methylnaphthalene, fluo-
rene, and phenanthrene, and the Toxicity Mixture (ToxMix) was formulated from the 7
most toxic PAHs in the whole mixture assessed by available and predicted toxicity metrics:
retene, benzo[a]fluorene (BaF), benzo[b]fluorene (BbF), benzo[c]fluorene (BcF), tripheny-
lene, benzo[e]pyrene (BeP), and benzo[ghi]perylene (BghiP) (Table S1). Both mixtures
conserved environmentally relevant ratios of components (Table 1), and it is notable that
they contain no overlap in chemical constituents.

Table 1. AbundMix and ToxMix components and relative ratios.

AbundMix ToxMix

Component Percent of Mixture Component Percent of Mixture

Naphthalene 44% Retene 68.6%

Acenaphthene 18.3% Benzo[a]fluorene 16.8%

2-methylnaphthalene 15.9% Benzo[b]fluorene 8.42%

1-methylnaphthalene 11.9% Benzo[c]fluorene 4.21%

Fluorene 6.7% Triphenylene 1.68%

Phenanthrene 3.16% Benzo[e]pyrene 0.168%

Benzo[ghi]perylene 0.0842%

4.2. Primary Human Bronchial Epithelial Cell Maintenance and Exposure

Normal HBECs (Lonza, Basel, Switzerland) were expanded to passage 4 in PneumaC-
ult Ex Plus medium (STEMCELL Technologies, Vancouver, BC, Canada) and transferred
to 24-well plates with transwell inserts for differentiation at the air–liquid interface (ALI)
using PneumaCult ALI medium (STEMCELL Technologies, Vancouver, BC, Canada). Cells
were cultured at the ALI for 25 days at 37 ◦C and 5% CO2 with media changes every 2
to 3 days. On day 25, cells were rinsed with DPBS before apically treating with 25 uL of
AbundMix (75%, 50%, or 10%, n = 3, Table S2a) or ToxMix (25%, 10%, or 1%, n = 3, Table
S2b) in DPBS with a 1% DMSO vehicle for 2, 6, 10, 24, or 48 h or apically treated with 25 µL
of ToxMix, retene, BaF, BbF, BcF, triphenylene, BeP, or BghiP (10%, 5%, 1%, or 0.5%, n = 4)
in DPBS with a 1% DMSO vehicle for 24 h (Table S2b). Apical wash and basal media were
collected and stored at −80 ◦C. Tissues were collected from inserts in an RLT lysis buffer
with 1% β-mercaptoethanol using the Qiagen RNeasy Mini Kit (Qiagen, Hilden, Germany)
and stored at −80 ◦C.

4.3. Transepithelial Electrical Resistance (TEER)

TEER was measured using an epithelial volt-ohmmeter (World Precision Instruments,
Sarasota, FL, USA). The volt-ohmmeter was calibrated using a test electrode prior to the
measurements. At time zero and the time of collection, DPBS was added to both apical
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and basal chambers and resistance was measured (ohms) for each insert. The results
were adjusted for background resistance by subtracting the resistance measured from an
empty insert.

4.4. Cytotoxicity

Lactate dehydrogenase (LDH) leakage was measured in media after treatment using
a Pierce™ LDH Cytotoxicity Assay Kit (Thermo Fisher, Waltham, MA, USA) per the
manufacturer’s protocol except half volumes of the basal media, reaction mixture, and
stop solution were used. Cytotoxicity was calculated by subtracting the absorbance at
680 nm from the absorbance at 490 nm using a Synergy HTX plate reader (BioTek, Winooski,
VT, USA).

4.5. Real-Time Quantitative PCR (RT-qPCR)

RNA was isolated from tissues using the RNeasy Mini Kit (Qiagen, Hilden, Ger-
many) per the manufacturer’s protocol and was quantified on a Synergy HTX plate reader
equipped with a Take3 module (BioTek, Winooski, VT, USA). RNA quality was evaluated
based on a 280/260 ratio. cDNA was synthesized using the SuperScript III First-Strand
Synthesis Supermix for RT-qPCR (Invitrogen/Thermo Fisher Scientific, Waltham, MA,
USA) per the manufacturer’s protocol except half volumes of 2X RT Reaction Mix and RT
Enzyme Mix were used for a final volume of 10 µL. RT-qPCR reactions were performed
using a BioRad CFX96 system (BioRad Laboratories, Hercules, CA, USA). The thermo-
cycler was programmed for 1 cycle 95 ◦C for 1 min initial denaturing, 40 cycles 95 ◦C
for 15 s denaturing, 60 ◦C for 30 s annealing/elongation, and a melt curve 65–95 ◦C/0.5◦

per 5 s for validating single product amplification. Human CYP1A1, CYP1B1, ALDH3A1,
GSTA, HMOX1, NQO1, GJA1, TJP2, and DDB2 levels were normalized to PPIA using the
∆∆Ct comparative method with primers from Invitrogen (Table S3, Invitrogen, Waltham,
MA, USA).

4.6. Statistical Analysis

Three treatment replicates were used for timecourse exposures of AbundMix and
ToxMix, and based on a power analysis to calculate the number of replicates needed
to determine the statistical significance of endpoints, five replicates were used for the
additivity modeling of ToxMix compared to individual component exposures. Outliers
were identified and removed from the datasets prior to statistical analysis. Significant
treatment effects for all assays were evaluated relative to the vehicle control using a one-
way ANOVA with Dunnett’s post hoc test. A significance level cutoff was defined at an
adjusted p-value of 0.05.

4.7. Dose–Response Analysis

Dose–response models for each treatment compound were fit to each gene analyzed
by qPCR using the drc v3.0-1 R package [104]. Log-logistic, Weibull, Michaelis–Menten,
asymptotic regression, and Gompertz models were fit to the data. Additionally, linear
polynomial regression models (i.e., standard linear and quadratic regression models) were
considered. The dose–response model with the smallest Akaike information criterion (AIC)
was taken to be the optimal fitting model. If a polynomial model had the smallest AIC, we
chose the best fitting dose–response model unless the polynomial AIC was smaller than
the dose–response model by more than 2 [105]. The half maximal effective concentration
(EC50) was identified for each non-polynomial fit curve.

4.8. Independent Action Modeling

An IA model was used to model the ToxMix response for each gene at 24 h post
exposure using two variations of component data. One variation used the µM concen-
tration of components, and the other scaled components based on toxicity. Component
concentrations were scaled based on their respective toxicity equivalency factors (TEFs,



Int. J. Mol. Sci. 2024, 25, 4326 15 of 20

Table 2), and the resulting values are reported as BeP equivalent concentration. We used
the IA model formulated in Labib et al. [17] with a modification to account for genes with
compounds displaying up- and down-regulation as presented in Schüttler et al. [103] and
given by Equation (1).

log2FCmix(cmix) =

[
1 − ∏nup

i=0

(
log2FC

(
ci,up

)
maxlog2FCup

)]
× maxlog2FCup +

[
1 − ∏ndown

i=0

(
log2FC(ci,down)

maxlog2FCdown

)]
× maxlog2FCdown (1)

Table 2. Toxicity equivalency factors (TEFs) for ToxMix components used for independent action
modeling as reported in Messier et al. [106].

Compound TEF

Retene 0.001

Benzo[a]fluorene 0.001

Benzo[b]fluorene 0.001

Benzo[c]fluorene 0.001

Triphenylene 0.001

Benzo[e]pyrene 1

Benzo[ghi]perylene 0.01

In this formulation, log2FCmix(cmix) is the modeled response of the mixture at a given
concentration, log2FC(ci) of the response induced by the component, maxlog2FC is the max-
imum response, and up and down signify up- and down-regulation, respectively [17,103].
The Pearson correlation between the fitted models was calculated based on the observed
mixture response and the IA model response to quantify the similarity of fitted curves
between the observed and modeled trends and could only be calculated for data that fit a
dose–response curve. The root-mean-square error (RMSE) between the mixture response
and the modeled response was calculated to quantify the similarity between the observed
and modeled data.

5. Conclusions

In summary, component-based additivity was assessed by IA modeling across multi-
ple biomarkers for usefulness in characterizing the risk for representative PAH mixtures
created from complex environmental samples for which limited data exist about compo-
nent toxicity, including a lack of understanding of the mechanisms of toxicity. Biomarker
responses associated with PAH toxicity and carcinogenicity were evaluated using a 3D
organotypic lung model and assessed for component additivity using the IA modeling
of component biomarker responses. Additionally, the use of TEF adjustments on compo-
nent concentrations was evaluated for their utility in the IA model characterization of the
mixture response after the optimization of model parameters for PAH mixture selection,
exposure time, and dose range. We found that the IA modeling of component interactions
adequately described the mixture response well in some cases but did not fully charac-
terize the mixture response overall, generally underestimating toxicity and suggesting
non-additive component interactions. Some differences between the IA models and mixture
response may also suggest similar or mostly similar mechanisms of action between mixture
components for the selected endpoints tested. This study demonstrates the limitations
of the current additivity models and important considerations needed when conducting
the additivity modeling of component data. In addition, this study shows the need for
the further development of more complex yet interpretable mixture response evaluation
methods for PAH mixtures representing the complexity of environmental samples.
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