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Abstract: It is important to search for cytostatic compounds in order to fight cancer. One of them
could be 2′-methylthiamine, which is a thiamine antimetabolite with an additional methyl group at
the C-2 carbon of thiazole. So far, the cytostatic potential of 2′-methylthiamine has not been studied.
We have come forward with a simplified method of synthesis using commercially available substrates
and presented a comparison of its effects, as boosted by oxythiamine, on normal skin fibroblasts
and HeLa cancer cells, having adopted in vitro culture techniques. Oxythiamine has been found
to inhibit the growth and metabolism of cancer cells significantly better than 2′-methylthiamine
(GI50 36 and 107 µM, respectively), while 2′-methylthiamine is more selective for cancer cells than
oxythiamine (SI = 180 and 153, respectively). Docking analyses have revealed that 2′-methylthiamine
(∆G −8.2 kcal/mol) demonstrates a better affinity with thiamine pyrophosphokinase than thiamine
(∆G −7.5 kcal/mol ) and oxythiamine (∆G −7.0 kcal/mol), which includes 2′-methylthiamine as a
potential cytostatic. Our results suggest that the limited effect of 2′-methylthiamine on HeLa arises
from the related arduous transport as compared to oxythiamine. Given that 2′-methylthiamine
may possibly inhibit thiamine pyrophosphokinase, it could once again be considered a potential
cytostatic. Thus, research should be carried out in order to find the best way to improve the transport
of 2′-methylthiamine into cells, which may trigger its cytostatic properties.

Keywords: thiamine antimetabolites; cell growth inhibition; molecular docking; molecular dynamics; OCT1

1. Introduction

Thiamine (vitamin B1, Figure 1) is one of the key vitamins necessary for the proper
functioning of all cells and organisms. Its involvement in metabolism mainly impacts basic
bioenergetic pathways, where, after phosphorylation into thiamine pyrophosphate, it is
the coenzyme of the pyruvate dehydrogenase complex, catalyzing the oxidative decar-
boxylation of pyruvate, and thus contributing to the formation of the acetyl-Co-A and
2-oxoglutarate dehydrogenase complex, being one of the main regulatory enzymes of the
Krebs cycle. In addition, thiamine pyrophosphate is the coenzyme of transketolase, that
is an important enzyme of the pentose–phosphate pathway which generates the NADPH
required for the synthesis of fatty acids, steroids, nucleotides, and many other organic com-
pounds [1]. The essence of the thiamine pyrophosphate coenzymatic action derives from
the deprotonation of the C-2 carbon of the thiazole ring with ylide formation [2,3], which fa-
cilitates the decarboxylation process of especially small molecules like 2-oxoacids (pyruvate-
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and 2-oxoglutarate dehydrogenases) [4–6] or the transfer of two-carbon fragments from the
donor to the acceptor, especially in the metabolism of sugars (transketolase) [7,8].
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Due to its involvement in basic metabolic processes and potential practical use in
research and clinical practice, the synthesis of thiamine derivatives is of constant interest
in biology and medicine. Some of them have found applications in modeling thiamine-
deficient states and elucidating the mechanism of thiamine coenzymatic action. Others
are used in human and veterinary medicine as effective drugs in infections with various
microorganisms, or help to improve thiamine deficiency states [9–11]. Of particular in-
terest to researchers are thiamine antimetabolites that show cytostatic and antimicrobial
properties. Due to the high tolerance of some thiamine antimetabolites (oxythiamine,
benfooxythiamine) by human healthy cells (skin fibroblasts) [12], their use in the treatment
of lung cancer [13,14], pancreatic cancer [15,16], Ehrlich’s tumor [17], fungal infections [18],
and even viral infections [19] is postulated. Commercially available oxythiamine (Figure 1),
that is characterized by modification in the pyrimidine ring (it is an amine group instead
of a hydroxyl group) is one of the most potent and well-studied inhibitors of thiamine
pyrophosphate-dependent enzymes [10]. Research is currently underway to synthesize
thiamine analogues within the thiazole ring structure to enhance cytostatic effects [20].

One thiamine analogue with an altered thiazole ring structure is 2′-methylthiamine
(Figure 1). In this derivative, the C-2 carbon of the thiazole ring is substituted with a methyl
group, which prevents its deprotonation, so the coenzymatic activity of this derivative
should be completely canceled. Given the chemical structure of 2′-methylthiamine and
the mechanism of thiamine diphosphate-dependent reactions, this analogue meets all the
requirements of a potent thiamine antimetabolite. Although the route of 2′-methylthiamine
synthesis has been known since the second half of the last century [21], its impact upon
cells is practically unknown. The literature only mentions the lack of coenzymatic activity
of 2′-methylthiamine in the in vitro studies of thiamine-dependent pyruvate decarboxylase
isolated from yeast [21]. This fact does not conclusively determine the cytostatic properties
of the aforementioned thiamine derivative against human cells but is a premise for the
occurrence of those features. The lack of data on the effects of 2′-methylthiamine on human
cells may be due to the complicated route of synthesis and, consequently, the availability
restrictions of the compound for biological studies.

Knowing the structure of 2′-methylthiamine, and the role of deprotonation of the
C-2 carbon of the thiazole ring of thiamine in the catalytic processes, we hypothesize that
2′-methylthiamine, due to its similar structure to thiamine and inability to form ylide, will
be a potent inhibitor of thiamine-dependent processes in cells. Thus, 2′-methylthiamine
should show equally strong, if not stronger, cytostatic properties against cancer cells as
compared to oxythiamine. Our research aims to synthesize 2′-methylthiamine from com-
mercially available substrates by means of a new, simplified method, and verify the above
hypothesis by comparing the cytostatic effects of oxythiamine and 2′-methylthiamine in
in vitro cultures of HeLa cells and normal skin fibroblasts. To propose a mechanism of
2′-methylthiamine action and compare it with oxythiamine action, we have used the cur-
rently available tools of computational chemistry, such as molecular docking and molecular
dynamics. In order to predict possible interactions between the tested ligands and the
thiamine diphosphate-dependent enzymes as well as thiamine transporter, models of se-
lected proteins that are available in the Protein Data Bank have been used. The use of
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theoretical chemistry tools together with the results of in vitro experiments has allowed us
to explain the observed effects and propose solutions that could support future research
on 2’-methylthiamine as a potential cytostatic. Moreover, by shedding a new light on
the mechanism of action of thiamine derivatives and the role of their transport into cells,
we show the research objectives that will indicate new possibilities for the use of already
known antimetabolites of thiamine.

2. Results and Discussion
2.1. Synthesis of 2′-Methylthiamine

We have developed an improved method for 2′-methylthiamine preparation (Scheme 1)
based on the modified synthesis previously published by Bag et al. [22]. First, the start-
ing material, 4-amino-2-methylpyrimidine-5-carbonitrile (1) was synthesized by reacting
acetamidine and ethoxymethylenemalononitrile [23] to obtain 68% yield. That process
was followed by the reduction to 4-amino-2-methylpyrimidine-5-carbaldehyde (2) in the
presence of Raney Nickel in 80% formic acid with the subsequent reaction to (4-amino-2-
methylpyrimidin-5-yl)methanol (3) by treatment with NaBH4 (68% yield after two steps).
Next, treating alcohol 3 by HBr in glacial acetic acid [24] resulted in bromide hydrobromide
salt, which was followed by the next reaction without product characterization. In parallel,
2,4-dimethyl-5-(2-hydroxyethyl)thiazole (4) was obtained according to the literature-based
procedure [25–27]. Taking bromide and 4 in hand, the final step was a condensation reaction
in excess of thiazole to give the desired 2′-methylthiamine in 20% yield.
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2.2. The Effects of Oxythiamine and 2′-Methylthiamine on Cells In Vitro

Microscopic observations of in vitro cultures indicate that both oxythiamine and
2′-methylthiamine inhibit the growth of HeLa tumor cells, with oxythiamine having a
stronger effect. We did not find a similar effect in the case of the fibroblasts and thiamine
cultures (Figure 2). In order to better explore the observed effect, the curves of cell growth
as a function of antivitamin concentration were performed (Figure 3A,B,D,E,G,H). Data
were collected when confluence was reached in the control cultures.

We did not observe any differences in the growth of cells cultured in the thiamine-
supplemented medium (Figure 3A,B), although data from the literature suggest that thi-
amine may reduce tumor cell proliferation [28]. However, these used concentrations beyond
the range tested in our study. Oxythiamine at the concentration of 47 µM caused a higher
than five-fold decrease in the HeLa cell number as compared to the control (Figure 3G,H),
while 2′-methylthiamine at the same concentration caused a decrease in the cell number
by only about a half (Figure 3D,E). At the maximum concentration of the tested antivi-
tamins (1500 µM), the number of 2′-methylthiamine-treated HeLa cells approximately
equaled 25% of the control, while that of the oxythiamine-treated cells dropped to just
2% of the control. In the case of fibroblasts, we did not find any significant differences in
the cell numbers in comparison to the controls in the case of both 2′-methylthiamine and
oxythiamine-treated cultures (Figure 3D,E,G,H). These results indicate a limited sensitivity
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of healthy cells to thiamine antimetabolites in contrast to cancer cells. The results from the
previous studies [12] where human skin fibroblasts were treated with oxythiamine have
indicated that, in addition to not affecting cell survival in the concentration range from
30 µM to 1000 µM, oxythiamine stimulates collagen synthesis by activating prolidase and
the factors regulating the expression of genes associated with collagen synthesis. Similar
results were obtained in the studies on the effects of benfooxythiamine (a novel prodrug
releasing oxythiamine) and oxythiamine on primary human gingival fibroblasts, where it
was shown that both compounds caused only a slight reduction in cell viability (about 10%)
at the concentration of 100 µM [19]. On the contrary, in the above-mentioned experiments,
oxythiamine reduced the proliferation of cancer cells [12,19] and tumor growth in models
of various cancers [15,17]. Oxythiamine is one of the more extensively studied thiamine
antimetabolites [10]. Its effects on metabolism have been studied at different levels as
follows: in vivo animal studies, and in vitro on various cell lines and isolated thiamine
diphosphate-dependent enzymes. It has been shown that thiamine antivitamins may act
as substrates for thiamine pyrophosphokinase to form their pyrophosphate esters [29,30].
That process may impact the thiamine pyrophosphate synthesis and provide for an an-
ticoenzyme that has a high affinity with thiamine pyrophosphate-dependent enzymes,
including transketolase, the activity of which is very important for cancer cells [31–33]. The
IC50 of oxythiamine for rat liver transketolase was 0.2 µM [34] and for yeast, transketolase
was approximately 0.03 µM, and even the addition of 0.5 µM of thiamine diphosphate did
not restore enzyme activity [35]. The cited data indicate that oxythiamine may be a very
good inhibitor of transketolase. Unfortunately, in the related literature, there is no data
on the interaction of 2′-methylthiamine with this enzyme. The only information about the
interaction of 2′-methylthiamine with thiamine-dependent enzymes concerns pyruvate
decarboxylase derived from yeast [21] since that derivative has not been proven to have
catalytic properties comparable to that of thiamine.

Measurement of the changes in the metabolic activity of the HeLa cells and fibroblasts
(MTT assay) have shown the metabolic activity of HeLa cells to have decreased significantly
under the influence of oxythiamine at the concentration of 47 µM (50% of control, Figure 3I),
while for HeLa cells treated with 2′-methylthiamine, a statistically significant decrease of
30% concerning the control was observed at the concentration of 750 µM (Figure 3F). In
contrast to the HeLa cells, we did not find any significant differences in the metabolic rate
of fibroblasts as compared to the control for both thiamine antivitamins tested (Figure 3F,I).
In addition, we observed that the metabolic activity of fibroblasts slightly increased under
the influence of thiamine at concentrations above 47 µM (Figure 3C). In order to make
a direct comparison of the effects of thiamine and the tested thiamine antivitamins on
HeLa cells and fibroblasts, we determined the values of the GI50, IC50, and SI coefficients
(Table 1). The obtained GI50 and IC50 values for the tested thiamine derivatives confirmed
previous observations. The average GI50 (39 µM) and IC50 (51 µM) values for oxythiamine
are approximately two times lower than those reported for 2′-methylthiamine (83 µM and
112 µM, respectively) in the case of HeLa cells, while the above-mentioned coefficients for
thiamine and both tested thiamine derivatives for fibroblasts go substantially beyond the
range of the tested concentrations.

Summarizing the experimental data obtained, it must be concluded that contrary to
the initial assumption, oxythiamine shows a much stronger cytostatic effect on tumor cells
as compared to 2′-methylthiamine, and that normal human fibroblasts are resistant to the
negative effects of both thiamine derivatives tested. However, attention should be drawn to
the SI (Table 1) that is significantly higher (by about 20%) for 2′-methylthiamine. It demon-
strates the better selectivity of its action against tumor cells as compared to oxythiamine.
The data also further indicate the potential of 2’-methylthiamine as a cytostatic.
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Table 1. Comparison of the effect of oxythiamine, 2′-methylthiamine, and thiamine on fibroblasts
and HeLa cancer cells line (mean ± SD).

Cell Line/Compound GI50 (µM) IC50 (µM) SI

fibroblasts/OT >1500 >1500 OT
150 ± 20.83HeLa cells/OT 39 * ± 6.50 51 * ± 2.89

fibroblasts/MT >1500 >1500 MT
186 ± 35.48HeLa cells/MT 83 * ± 14.50 112 * ± 20.36

fibroblasts/T >1500 >1500
(-)HeLa cells/T >1500 >1500

GI50—growth inhibition concentration (the concentration causing 50% cell growth inhibition, value calculated
from cell growth graphs); IC50—inhibition concentration (the concentration of the compound required for
50% reduction in cell metabolism rate, value calculated from the MTT test results); MT—2′-methylthiamine;
OT—oxythiamine; T—thiamine; SI—selectivity index (ratio of IC50 for OT, MT or T, concerning fibroblasts versus
HeLa cells); *—the statistically significant difference between the averages for HeLa OT and HeLa MT, Student’s
t-test p < 0.01; (-)—impossible to calculate.

Analyzing the obtained results in relation to the chemical structure of the antivitamins
studied, we have hypothesized that the differences in their effect on cancer cells might be
due to the differences in their affinity with enzymes or proteins involved in the thiamine
transport. In order to verify this hypothesis in further studies, we have used the computa-
tional chemistry tools to compare the interaction of the derivatives tested with the thiamine
diphosphate-dependent enzymes and proteins responsible for the thiamine transport.
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Figure 3. Comparison of the antiproliferative activity of thiamine, oxythiamine, and 2′-methylthiamine
on fibroblasts and HeLa cells. Total number of cells (A,D,G); high resolution of the total num-
ber of cells in the concentration range 0–100 µM (B,E,H); MTT assay results (C,F,I); #—statistically
significant differences compared with the control group; mean ± SE (A–C,F,I); medians ± maxi-
mum and minimum values (D,E,G,H); Student’s t-test, p < 0.01 (A–C,F,I); Mann–Whitney U test,
p < 0.01 (D,E,G,H).

2.3. Molecular Docking

For a comprehensive analysis, three enzymes (transketolase (EC 2.2.1.1), pyruvate
dehydrogenase (EC 1.2.4.1), and thiamine pyrophosphokinase EC 2.7.6.2)) have been taken
into account, employing computational methods to shed light on the observed disparities
in the experimental data.

2.3.1. Docking to Enzymes—Affinities

The preliminary docking comparisons of both thiamine derivatives, as pyrophosphate
forms, and the natural coenzyme to three tested enzymes revealed a huge variation of
matches. In order to facilitate the data analysis, we have grouped those matches into
similar positions (Table 2). In the case of transketolase and pyruvate dehydrogenase,
we have identified two positions for each of the three ligands. In the case of thiamine
pyrophosphokinase, we found three positions for each ligand. The comparison of the
recorded ligand positions in the active centers of the enzymes is shown in Figure 4. For
all the analyzed enzymes, the first of the identified positions has the highest number of
single matches (Table 2), and that position also contains the match with the lowest docking
affinity (Table 3). When comparing the mean docking affinity determined for position 1 for
transketolase, we found no difference between thiamine pyrophosphate and oxythiamine
pyrophosphate, at −5.5 kcal/mol (71.9% matches) and −5.6 kcal/mol (65.7% of all the
matches), respectively. However, 2′-methylthiamine pyrophosphate had a higher mean
docking affinity as compared to thiamine pyrophosphate at −5.3 kcal/mol (71.7% of all the



Int. J. Mol. Sci. 2024, 25, 4359 7 of 25

matches). Similar relationships can be seen for the lowest recorded docking affinity for a
single match at −6.2 kcal/mol, −6.2 kcal/mol, and −6.1 kcal/mol for thiamine pyrophos-
phate, oxythiamine pyrophosphate, and 2′-methylthiamine pyrophosphate, respectively
(Table 3). In the case of pyruvate dehydrogenase, similar relationships have been observed.
Over 99% of the matches found for each compound exhibit the lowest average docking
affinity. For thiamine and oxythiamine pyrophosphate, it is −9.1 kcal/mol, while for
2′-methylthiamine pyrophosphate, it is −8.3 kcal/mol. The minimum docking affinity
is −9.8 kcal/mol for thiamine pyrophosphate, −9.5 kcal/mol for oxythiamine pyrophos-
phate, and −9.2 kcal/mol for 2′-methylthiamine pyrophosphate. A different relationship
has been observed for thiamine pyrophosphokinase, where the average docking affinity for
position 1 is the lowest at −7.5 kcal/mol (as well as the lowest docking affinity noted for
a single match at −8.2 kcal/mol) for 2′-methylthiamine than that recorded for thiamine,
while the docking affinities for oxythiamine and thiamine were similar (−7.0 kcal/mol and
7.1 kcal/mol, respectively, Table 3).

Table 2. The quantitative analysis of thiamine pyrophosphate, oxythiamine pyrophosphate, and
2′-methylthiamine pyrophosphate docking to selected enzymes.

Enzyme

Number and Percent of Matches Per Docking Position for a Particular Ligand

T-PP or T OT-PP or OT MT-PP or MT

Position 1 Position 2 Position 3 Position 1 Position 2 Position 1 Position 2 Position 3

Transketolase
120 47

(-)
119 62 129 51

(-)71.9% 28.1% 65.7% 34.3% 71.7% 28.3%

Pyruvate
dehydrogenase

122 1
(-)

113 1 116 1
(-)99.2% 0.8% 99.1% 0.9% 99.1% 0.9%

Thiamine
pyrophosphokinase

117 29 2 123 10 123 24 1
79.1% 19.6% 1.3% 92.5% 7.5% 83.1% 16.2% 0.7%

T-PP—thiamine pyrophosphate; OT-PP—oxythiamine pyrophosphate; MT-PP—2′-methylthiamine pyrophos-
phate; (-)—third docking position not found; positions 1, 2, 3 indicate a group of similar matches in the active
center of the enzyme.

Table 3. The comparison of docking affinities of thiamine (T), oxythiamine (OT), and 2′-methylthiamine
(MT), or their pyrophosphate derivatives, in respect of the selected enzymes and docking positions.

Enzyme 1

Average ∆G for Particular Ligand in Addition to Docking Position (kcal/mol) Minimum ∆G Including Position
(kcal/mol)T-PP or T OT-PP or OT MT-PP or MT

Position 1 Position 2 Position 3 Position 1 Position 2 Position 1 Position 2 Position 3 T-PP
or T

OT-PP
or OT

MT-PP
or MT

TK 3 −5.5
(−6.2/25.0)

−5.5
(−5.9/32.4) (-) −5.6

(−6.2/24.3)
−5.6

(−6.1/41.7)
−5.3 6

(−6.0/29.2)
−5.5

(−5.8/44.8) (-) −6.2
Pos. 1

−6.2
Pos. 1

−6.1
Pos. 1

PDH 4 −9.1
(±0.25) −7.5 2 (-) −9.1

(±0.23) −7.7 2 −8.3 7

(±0.19) −7.8 2 (-) −9.8
Pos. 1

−9.5
Pos. 1

−9.2
Pos. 1

TPP 5 −7.0
(−7.5/−6.7)

−7.0
(−7.4/−6.8)

−7.0
(−7.2/−6.8)

−7.1
(−7.4/−6.7)

−7.0
(−7.2/−6.8)

−7.1 8

(−8.2/−6.9)
−7.0

(−8.1/−6.9) −6.8 2 −7.5
Pos. 1

−7.0
Pos. 1

−8.2
Pos. 1

T-PP—thiamine pyrophosphate; OT-PP—oxythiamine pyrophosphate; MT-PP—2′-methylthiamine pyrophos-
phate; TK—transketolase; PDH—pyruvate dehydrogenase; TPP—thiamine pyrophosphokinase; (-)—that position
has not been reported; Position 1, is the one for which the highest number of matches was found; 1 in the case of
transketolase and thiamine pyrophosphokinase, values represent medians (min./max.), in the case of pyruvate
dehydrogenase, value represents the average (±SD); 2 one match has been found for each of those positions;
3 no significant differences have been found between the ligand docking energies for the various positions, the
Mann–Whitney U test, p > 0.05; 4 average docking affinities for all ligands in position 1 are significantly different
from the docking affinities recorded for position 2, the single-sample Student’s t-test, p < 0.05; 5 no significant
differences have been found between T and OT average docking affinities for the various positions, MT docking
affinity of position 3 is different from position 1 and 2; 6 the statistically significant difference between T-PP
position 1 and MT-PP position 1, the Kruskal–Wallis test, p < 0.05; 7 the statistically significant difference between
T-PP position 1 and MT-PP position 1, Anova p < 0.05, post hoc RIR test, p < 0.05; 8 the statistically significant
difference between T position 1 and MT position 1, the Kruskal–Wallis test, p < 0.05.
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Figure 4. Assignment of thiamine (T), oxythiamine (OT), and 2′-methylthiamine (MT), or their
pyrophosphate derivatives, to transketolase, pyruvate dehydrogenase, and thiamine pyrophospho-
kinase according to the observed positions. Various colors were used to indicate differences in the
conformations of individual positions.

Taking into account the above data, it is plausible to conclude that the binding of
the anticoenzyme (oxythiamine pyrophosphate) in the active sites of transketolase and
pyruvate dehydrogenase is competitive and possibly the same as the binding of thiamine
pyrophosphate. In addition, the docking analyses of those ligands at the active centers
of both enzymes indicate a very similar localization when comparing the most common
position with the most convenient average docking affinity (Figure 5). In contrast, the
binding of 2′-methylthiamine pyrophosphate in the active sites of those two enzymes may
be more difficult than in the case of a native coenzyme because of the higher average
docking affinity as compared to thiamine pyrophosphate.
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2.3.2. Docking to Enzymes—Ligand Arrangements

In addition, the arrangement of 2′-methylthiamine pyrophosphate in the active center
of both enzymes has been found to differ significantly from that of the native coenzyme
(Figure 6). This observation would confirm the effects noted as a result of the experi-
ment on HeLa cells, where oxythiamine shows a stronger cytostatic effect as compared to
2′-methylthiamine if it were not for the fact that 2′-methylthiamine shows a lower docking
affinity with thiamine pyrophosphokinase. Thiamine pyrophosphokinase is the main
enzyme supplying cells with the coenzymatically active form of vitamin B1 and has a
very high affinity with it, having great importance for thiamine uptake and distribution
in cells, as well as the activity of all thiamine pyrophosphate-dependent enzymes [36–38].
Although the oxythiamine and thiamine docking affinities are almost identical (Table 3),
the difference in the forming interactions with the active center of the enzyme may be more
favorable in the case of thiamine. As shown in Figure 6, oxythiamine is involved in the
adverse acceptor–acceptor interactions with ASP 100, which may indicate the presence of
repulsive forces between ligand and target. According to our results, the probability of
2′-methylthiamine binding in the active site of thiamine pyrophosphokinase is higher than
in the native substrate (Table 3). Moreover, the localization of 2′-methylthiamine in the
active center of thiamine pyrophosphokinase is in the opposite conformation as compared
to thiamine (Figure 5). The incorrect location of the substrate hydroxyl group in the active
center of the enzyme may prevent the synthesis of the thiamine pyrophosphate ester. Our
ligand-binding analyses of the 2′-methylthiamine binding with the enzyme’s active center
indicate that the amino group of the pyrimidine ring establishes five additional ionic inter-
actions (including the salt bridge) that are absent in the case of oxythiamine and thiamine
(except for the ASP 100 residue, Figure 6).

This explains the lower docking affinity with 2′-methylthiamine relative to the other
ligands and indicates that 2′-methylthiamine may strongly inhibit the enzyme. Thus, it is
plausible to assume that if 2′-methylthiamine enters the cells; it should significantly inhibit
the activity of thiamine pyrophosphokinase and thus limit the availability of the active
coenzyme for all the enzymes dependent on thiamine pyrophosphate, thereby limiting
their activity as well.
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2.3.3. Docking to Transporters

Considering the above interpretation of the docking results, the question of why
2′-methylthiamine has a much weaker effect on cancer cells as compared to oxythiamine
remains open. Searching for an answer to that question, we decided to investigate the
possible effects of the tested thiamine antimetabolites on membrane thiamine transporters.
Three proteins in the SLC19A (solute carrier transporters) family, THTR1, THTR2, and RFC1,
are involved in the transport of thiamine into mammalian cells. The THTR1 (SLC19A2)
and THTR2 (SLC19A3) transporters act as antiporters of thiamine and hydrogen ions. The
two transporters differ significantly in their affinity with thiamine. The THTR1 transporter
(Km = 2.5 µM) has a significantly lower affinity with thiamine compared to the THTR2 trans-
porter (Km = 2.7 × 10−4 µM) [37,39,40]. Another RFC1 protein (SCL19A1), a reduced folate
transporter, does not transport thiamine but only the phosphate derivatives of that vitamin.
Likely through its involvement in pumping thiamine mono- and diphosphate out of the cell,
it contributes to the regulation of intracellular levels of the thiamine phosphate esters (in
both cofactor and non-cofactor forms) [39,41]. Although the function of these proteins as
well as the sequence of the genes encoding them are well understood, their crystallographic
data in terms of the PDB are not available. Therefore, in our study, we have been forced
to use another protein involved in transporting thiamine into cells, the crystal structure of
which is available in the Protein Data Bank, the human organic cation transporter OCT1 (gene
SLC22A1) and ThiT. Human OCT1 is located mainly in hepatocytes, enterocytes, and renal
cells, where it mediates the facilitated transport of a variety of organic cations, including
thiamine [42]. The importance of the OCT1 transporter for cellular thiamine levels is described
in the mice model [43,44]. In humans, the affinity of OCT1 with thiamine is lower than that
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of THTR1 and THTR2; however, the Vmax of OCT1 is significantly higher in comparison to
THTR1 and THTR2 [45]. It may therefore be assumed that OCT1 plays a role in transporting
thiamine into human cells. The results of the recent study indicate that they may be related in
transport of drugs to cancer cells (Km for doxorubicin 4.6 µM). Moreover, the expression of
OCT1 is elevated in tumorous breast tissue as compared to normal breast tissue [46]. Other
data indicate that the OCT1 expression in tumor tissue is lower than in surrounding healthy
tissue, particularly in the advanced stages of cancer [47,48]. Due to elevated metabolism,
the tumor tissues are more sensitive in the case of reduced thiamine availability. That may
explain the lower cytotoxic effect of thiamine antimetabolites on tumor cells as compared
to fibroblasts. On the other hand, the enhanced expression of OCT1 is correlated with less
differentiation toward the kidney tumor cells and is the positive prognostic value in the case
of various liver cancers due to involvement of this protein in cytostatics transport [47–49].
ThiT is the S-component of the thiamine-specific energy coupling factor ECF derived from
Lactococcus lactis, which is a known prokaryotic thiamine transporter that has been used in
the studies of the transport of various thiamine derivatives into bacterial cells [50–52].

2.3.4. Docking Statistics

A general analysis of thiamine, oxythiamine, and 2′-methylthiamine docking in relation to
the transport proteins (Table 4) indicates that the 2′-methylthiamine or thiamine matches with
OCT1 are grouped into three or four positions, while 2′-methylthiamine is characterized by
only one position for the ThiT transporter. Oxythiamine interacted with ThiT in two positions
while it interacted with OTC1 in four positions. We have found the greatest variation in the
docking capabilities of all ligands for OCT1, where the individual matches have been grouped
into four positions in the case of thiamine as well as oxythiamine, and three positions for
2′-methylthiamine (Table 4 and Figure 7). The analysis of the docking affinity of the individual
ligands with both thiamine transporters has shown that the lowest docking affinities have
been recorded for a single match assigned to positions with the highest number of matches.
Those positions have also exhibited the lowest average docking affinity (Table 5). Hence, the
most likely docking position for thiamine is position 2 for OCT1 (average ∆G −6.5 kcal/mol,
72.3% of all the matches) as well as ThiT (average ∆G −7.8 kcal/mol, 77.8% of all the matches),
position 2 for ThiT (average ∆G −7.9 kcal/mol, 53.3% of all the matches) and position 1 for
OCT1 (average ∆G −6.5 kcal/mol, 61.8% of all the matches) for oxythiamine, and position
3 for OCT1 (average ∆G −7.1kcal/mol, 70.1% of all the matches) and position 1 for ThiT
(average ∆G −7.0 kcal/mol, 100.0% of all the matches) for 2′-methylthiamine. Given the
data on the docking affinity of the individual ligands with thiamine transporters, it should
be concluded that oxythiamine can be incorporated into both transporters with the similar
probability as thiamine due to the lack of significant differences in the docking affinity for
both ligands (Table 5). Taking into consideration the similar localization of thiamine and
oxythiamine in the most beneficial position in ThiT as well as OTC1 molecules (Figure 8), it
can be assumed that oxythiamine will be transported into human as well as bacterial cells,
where it can be phosphorylated and inhibit, in the form of pyrophosphate, the activity of
thiamine pyrophosphate-dependent enzymes thus causing a reduction of the cell growth rate.

Table 4. The quantitative analysis of thiamine, oxythiamine, and 2′-methylthiamine docking with
respect to selected thiamine transporters.

Thiamine
Transporter

Number and Percentage of Matches per Docking Position for Particular Thiamine Transporter

T OT MT

Position 1 Position 2 Position 3 Position 4 Position 1 Position 2 Position 3 Position 4 Position 1 Position 2 Position 3

ThiT S-
component

10
(4.1%)

189
(77.8%)

44
(18.1%) (-) 113

(46.7%)
129

(53.3%) (-) (-) 129
(100%) (-) (-)

OTC1 47
(13.9%)

245
(72.3%)

37
(10.9%)

10
(2.9%)

212
(61.8%)

100
(29.2%)

24
(7.0%)

7
(2.0%)

2
(0.6%)

99
(29.3%)

237
(70.1%)

T—thiamine; OT—oxythiamine; MT—2′-methylthiamine; (-)—docking position not found; positions 1, 2, 3, and
4 indicate a group of similar matches in the transporter.
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Table 5. The comparison of docking affinities of thiamine, oxythiamine, and 2′-methylthiamine in
respect to selected thiamine transporters and docking positions.

Transporter

Average ∆G for Particular Ligand in Addition to Docking Position (kcal/mol) 1
Minimum ∆G Including Position

(kcal/mol)
T OT MT

Position 1 Position 2 Position 3 Position 4 Position 1 Position 2 Position 3 Position 4 Position 1 Position 2 Position 3 T OT MT

ThiT 2 −6.9
(−7.4/−6.9)

−7.8
(−8.1/−7.4)

−7.3
(−7.4/−7.1) (-) −7.6

(−8.1/−6.9)
−7.9

(−8.2/−7.3) (-) (-) −7.0 4

(−7.6/−6.6)
(-) (-) −8.1

Pos.2
−8.2

Pos. 2
−7.6

Pos. 1

OCT1 3 −6.3
(−6.3/−6.2)

−6.5
(−6.6/−6.3)

−6.5
(−6.5/−6.4)

−6.3
(−6.4/−6.3)

−6.5
(−6.6/−6.4)

−6.5
(−6.5/−6.4)

−6.2
(−6.3/−6.2)

−6.3
(−6.3/−6.3)

−6.8
(−6.8/−6.8)

−6.8
(−6.9/−6.7)

−7.1 5

(−7.1/−7.0)
−6.6

Pos. 2
−6.6

Pos. 2
−7.1

Pos. 3

T—thiamine; OT - oxythiamine; MT—2′-methylthiamine; (-)—that position has not been reported; 1—values
represents the median (min./max.); 2—for T, the median docking affinity with position 2 differs significantly
from positions 1 and 3, the Kruskal–Wallis test p < 0.05, for OT the median docking affinity with positions 1 and
2 differs significantly, the Mann–Whitney U test p < 0.05; 3—for T, the median docking affinity with position 2
differs significantly from position 1, but does not differ from positions 3 and 4. For OT, the median docking affinity
with position 1 differs significantly from position 3 but does not differ from positions 2 and 4, which do not differ
from each other. For MT, the median docking affinity with position 3 differs significantly from position 2, but
does not differ from position 1, the Kruskal–Wallis test p < 0.05; 4—the statistically significant difference between
T position 2, OT position 2, and MT position 1, T in position 2 and OT in position 2 are not different from one
another, Kruskal–Wallis test, p < 0.05; 5—the median docking affinity for MT position 3 differs significantly from
position 2 for T and position 1 for OT, the latter two do not differ significantly from one another, Kruskal–Wallis
test, p < 0.05.
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2.3.5. Docking—Discussion

This section interprets the outcomes of our HeLa cell experiment. The highlighted
observation holds particular significance for prokaryotic cells, hinting at the potential
utility of oxythiamine as an antibiotic. Yet, our search has yielded limited data on the
oxythiamine–bacteria interaction [53]. In the case of 2′-methylthiamine, we show different
docking affinity as compared to thiamine (Table 5). In the case of bacterial transporter ThiT,
2′-methylthiamine shows a significantly higher docking affinity as compared to thiamine,
which indicates the high specificity of that transporter to thiamine and the low probability
of 2′-methylthiamine binding. In addition, the pattern of 2′-methylthiamine docking with
ThiT in the most optimal position indicates the opposite orientation of the ligand in the
protein molecule as compared to the docking of thiamine (Figure 7), which may adversely
impact the transport rate. Thus, it can be assumed that 2′-methylthiamine will not be
transported into bacterial cells, so there is no basis for considering it as an antibiotic. On
the contrary, in the case of human OCT1, 2′-methylthiamine shows a significantly lower
docking affinity as compared to thiamine and oxythiamine, so it can be predicted that it will
be more easily bound by this transporter than thiamine. Additionally, the inverted location
of the thiazole ring compared to the docking of thiamine and oxythiamine (Figure 8) may
hinder, if not prevent, the transport of 2′-methylthiamine into cells. These assumptions
are supported by the analysis of intermolecular interactions between thiamine, oxythi-
amine, and 2′-methylthiamine, and the OCT1 transporter proteins (Figure 9). This binding
analysis has demonstrated that thiamine forms a stable conventional hydrogen bond with
residues SER 470 and GLN 241. Those interactions are further stabilized by the presence
of four alkyl/π-alkyl interactions between the pyrimidine ring, and MET 218, CYS 450,
TRP 354, and LYS 214. Thiamine, as a cation, forms a strong ionic bond (charge–charge
interactions) with ASP 474, as well as extra π-cation interactions with the residue TYR 36.
Moreover, thiamine has also exhibited π–π stacked interactions with TYR 36 at the distance
of 5.16 Å, and π-sigma at PHE 244 at 3.64 Å. Oxythiamine binds via identical interactions
as thiamine except for the presence of an additional hydrogen bond with LYS 214, and the
absence of a strong charge–charge electrostatic attraction with ASP 474. The consequence of
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introducing an additional methyl group to form 2′-methylthiamine is the rotation around
the single bond between the methylene bridge and thiazolium ring, hence it has a different
arrangement in the transporter canal. That ligand interacts with ASP 474 by the strong ionic
bond, just like in the case of thiamine, but the additional methyl moiety forms π-sigma
interactions with TRP 217 as well as PHE 244 (instead of 4′-methyl group) at the distances of
3.96 Å and 3.73 Å, respectively. To sum up, it should be emphasized that 2′-methylthiamine
is extra stabilized by interactions with a shorter distance, and therefore it binds stronger
than thiamine and oxythiamine. The inability of 2′-methylthiamine to be transported into
the cells may probably be the main reason for its weaker effect on cancer cells as compared
to that of oxythiamine, which is transported into the cells as evidenced by the results of
other research on rats and yeast [54,55] (Figure 2 and Table 2).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 15 of 26 
 

 

 
Figure 9. Binding interactions of OCT1 transporter with (A) thiamine, (B) oxythiamine, and (C) 
2′-methylthiamine supported by the docking studies. 

2.3.6. Docking—Future Directions 
Since the experiment demonstrates the significant anti-tumor activity of 

2′-methylthiamine, it is interesting to investigate the derivatives with similar effectiveness 
but improved penetration through relevant transporters. Specifically, replacing one of 
2′-methylthiamines’s methyl groups with another could potentially combine its anti-
cancer properties with enhanced transport capabilities. However, given the numerous 
potential substituent combinations, it is essential to conduct prior in silico verification of 
prospective compounds. QSAR-type studies will also be beneficial in preliminarily as-
sessing their suitability as drug candidates. 

2.4. Molecular Dynamics 
Molecular docking simulations suggest a weakening of 2’-methylthiamine due to 

steric effects caused by an additional methyl group. To further substantiate this hypoth-

Figure 9. Binding interactions of OCT1 transporter with (A) thiamine, (B) oxythiamine, and
(C) 2′-methylthiamine supported by the docking studies.



Int. J. Mol. Sci. 2024, 25, 4359 15 of 25

2.3.6. Docking—Future Directions

Since the experiment demonstrates the significant anti-tumor activity of 2′-methylthiamine,
it is interesting to investigate the derivatives with similar effectiveness but improved pene-
tration through relevant transporters. Specifically, replacing one of 2′-methylthiamines’s
methyl groups with another could potentially combine its anticancer properties with
enhanced transport capabilities. However, given the numerous potential substituent com-
binations, it is essential to conduct prior in silico verification of prospective compounds.
QSAR-type studies will also be beneficial in preliminarily assessing their suitability as
drug candidates.

2.4. Molecular Dynamics

Molecular docking simulations suggest a weakening of 2’-methylthiamine due to
steric effects caused by an additional methyl group. To further substantiate this hypothesis,
monitoring fluctuations in the dynamics of complexes formed by the OCT1 transporter with
specific ligands is crucial for gaining deeper insights into protein and docked complexes
under biological conditions. The 100 ns simulations started from the best docking positions
as detailed earlier, with base trajectory parameters for each ligand shown in Figure 10.
To draw more accurate conclusions regarding the transportation mechanism, elementary
descriptive statistics were gathered in Table S1 in the Supplementary Materials. The
Root Mean Square Deviation (RMSD) measures the average distance between the atoms
of a simulated structure and a reference structure over time, providing insight into the
overall structural stability. Figure 10a illustrates that this value is fairly stable for the
studied systems, except for the last 5 ns of 2′-methylthiamine simulation, where the RMSD
noticeably increases. Thiamine and oxythiamine destabilize the transporter structure more
strongly than 2′-methylthiamine, as confirmed by the statistics in Table S1, showing a higher
standard deviation and coefficient of variation for 2′-methylthiamine and oxythiamine than
for thiamine. The noticeable increase in RMSD for 2′-methylthiamine in the last phase of
the simulation could imply an intensified interaction with the receptor, potentially due
to steric obstacles along the trajectory. This suggests that RMSD analysis does not rule
out the possibility of mechanical blockage for 2′-methylthiamine. Additionally, for the
OCT1–thiamine complex, it indicates a higher degree of unrestricted movement compared
to 2′-methylthiamine.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 16 of 26 
 

 

esis, monitoring fluctuations in the dynamics of complexes formed by the OCT1 trans-
porter with specific ligands is crucial for gaining deeper insights into protein and docked 
complexes under biological conditions. The 100 ns simulations started from the best 
docking positions as detailed earlier, with base trajectory parameters for each ligand 
shown in Figure 10. To draw more accurate conclusions regarding the transportation 
mechanism, elementary descriptive statistics were gathered in Table S1 in the Supple-
mentary Materials. The Root Mean Square Deviation (RMSD) measures the average dis-
tance between the atoms of a simulated structure and a reference structure over time, 
providing insight into the overall structural stability. Figure 10a illustrates that this value 
is fairly stable for the studied systems, except for the last 5 ns of 2′-methylthiamine sim-
ulation, where the RMSD noticeably increases. Thiamine and oxythiamine destabilize the 
transporter structure more strongly than 2′-methylthiamine, as confirmed by the statistics 
in Table S1, showing a higher standard deviation and coefficient of variation for 
2′-methylthiamine and oxythiamine than for thiamine. The noticeable increase in RMSD 
for 2′-methylthiamine in the last phase of the simulation could imply an intensified in-
teraction with the receptor, potentially due to steric obstacles along the trajectory. This 
suggests that RMSD analysis does not rule out the possibility of mechanical blockage for 
2′-methylthiamine. Additionally, for the OCT1–thiamine complex, it indicates a higher 
degree of unrestricted movement compared to 2′-methylthiamine. 

 
Figure 10. Basic parameters of 100 ns trajectories of the Organic Cation Transporter 1 (OCT1) for 
the unliganded form (APO) and three complexes (T—thiamine, OT—oxythiamine, and 
MT—2′-methylthiamine): (a) root mean square deviation (RMSD) for backbone C atoms; (b) solvent 
accessible surface area (SASA); (c) radius of gyration (Rg); (d) root mean square fluctuation (RMSF) 
values for each residue averaged over the entire simulation. 

SASA (Solvent Accessible Surface Area) measures the surface area of a biomolecule 
accessible to a solvent, providing insights into specific regions’ accessibility to solvent 
molecules, which is essential for understanding binding interactions. Changes in SASA 
values may indicate conformational changes or alterations in the molecule’s environment 
during simulations or between different conformations. As depicted in Figure 10b, the 
ligands fall into the following two categories: thiamine and oxythiamine increase SASA 
compared to the apoform, while 2′-methylthiamine decreases it. A comparison of stand-
ard deviations reveals similar instability levels for thiamine and 2′-methylthiamine, while 
oxythiamine exhibits notably greater stability with a smaller standard deviation than the 
apoform. Changes in the SASA during the simulation vary, with 2′-methylthiamine 
showing an increase of around 30 ns, unlike the other systems. These findings support 

1.2

1.7

2.2

2.7

3.2

3.7

4.2

4.7

5.2

5.7

0 20 40 60 80 100

RM
SD

 [Å
]

Time [ns]

Apo

T

MT

OT

(a)

24,500

25,000

25,500

26,000

26,500

27,000

27,500

0 20 40 60 80 100

SA
SA

 [Å
2 ]

Time [ns]

APO

T

MT

OT

(b)

26.5

27

27.5

28

28.5

29

0 20 40 60 80 100

Rg
 [Å

]

Time [ns]

APO

T

MT

OT

(c)

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600

RM
SF

 [Å
]

Residue

APO

T

MT

OT

(d)

Figure 10. Basic parameters of 100 ns trajectories of the Organic Cation Transporter 1 (OCT1) for the unli-
ganded form (APO) and three complexes (T—thiamine, OT—oxythiamine, and MT—2′-methylthiamine):
(a) root mean square deviation (RMSD) for backbone C atoms; (b) solvent accessible surface area
(SASA); (c) radius of gyration (Rg); (d) root mean square fluctuation (RMSF) values for each residue
averaged over the entire simulation.



Int. J. Mol. Sci. 2024, 25, 4359 16 of 25

SASA (Solvent Accessible Surface Area) measures the surface area of a biomolecule
accessible to a solvent, providing insights into specific regions’ accessibility to solvent
molecules, which is essential for understanding binding interactions. Changes in SASA
values may indicate conformational changes or alterations in the molecule’s environment
during simulations or between different conformations. As depicted in Figure 10b, the
ligands fall into the following two categories: thiamine and oxythiamine increase SASA
compared to the apoform, while 2′-methylthiamine decreases it. A comparison of standard
deviations reveals similar instability levels for thiamine and 2′-methylthiamine, while
oxythiamine exhibits notably greater stability with a smaller standard deviation than
the apoform. Changes in the SASA during the simulation vary, with 2′-methylthiamine
showing an increase of around 30 ns, unlike the other systems. These findings support the
hypothesis of a stronger blocking by 2′-methylthiamine of OCT1 protein folding, thereby
impairing its transport functions.

The radius of gyration (Rg) measures the overall size and compactness of a biomolecu-
lar structure, providing insights into the protein folding state and conformational dynamics.
Calculated as the root mean square distance of atoms from their common center of mass,
monitoring changes in Rg helps us understand structural variability and compactness
over time. Initially, the presence of the ligand has little impact on Rg for approximately
the first 50 nanoseconds, as depicted in Figure 10c. However, beyond this point, the Rg
of the complex with 2′-methylthiamine notably decreases, indicating protein contraction
and volume reduction, potentially interfering with its cation transporter function. Such a
decrease is not observed for the other systems, indicating the specificity of this derivative.

By measuring the deviation of each residue’s position from its average during the sim-
ulation, the Root Mean Square Fluctuation (RMSF) reveals residue flexibility and stability
within a protein structure. Figure 10d illustrates RMSF variability for the systems studied.
The average values (Table S1) show minimal deviation from the apoform for thiamine and
oxythiamine of about 1.4–1.5 Å. However, the complex with 2′-methylthiamine exhibits a
notable decrease (1.25 Å), indicating increased protein folding. Notably, RMSF for residue
470 (Serine), which interacts directly with the ligand via a hydrogen bond, is the lowest for
2′-methylthiamine (0.57 Å). This result suggests decreased ligand mobility, which is con-
sistent with previous investigations. In summary, this analysis highlights ligand-induced
changes in residue dynamics with decreased RMSF, indicating a more stable protein–ligand
complex, as observed with 2′-methylthiamine.

Apart from the SASA for the entire protein–ligand complex, its per ligand value
is also pertinent to transportation abilities. The surface area accessible to the solvent
serves as an indicator of the ligand’s exposure to the environment. A higher SASA may
suggest increased movement through the environment or interactions with other molecules,
potentially facilitating diffusion through cell membranes or other biological structures. For
this reason, it is reasonable to suspect that in the cases considered here, the average value
of SASA will be the lowest for the complex with 2′-methylthiamine. Indeed, as can be seen
from Figure 11, the 2′-methylthiamine ligand exhibits the smallest SASA for most of the
simulation, which is also confirmed by its lowest average.

For a deeper understanding of the ligand transportation mechanism, the polar interac-
tion ability of the investigated ligands was assessed by quantifying the number of hydrogen
bonds between OCT1 and the ligands over a 100 ns simulation period. Emphasizing the
crucial role of hydrogen bonds in mediating molecular recognition and binding, these re-
sults provide insights into the potential bonding and capabilities of the transporter protein.
Dynamic interactions are not fundamentally different from static ones. The main con-
tacts identified involve serine, particularly SER-470 (for thiamine and 2′-methylthiamine),
and tyrosine (THR-245) for oxythiamine. Thiamine and 2′-methylthiamine consistently
interacted with SER-470, forming hydrogen bonds exclusively with this residue at the
start of the MD simulations. In contrast, oxythiamine showed a different pattern, with
interactions constituting only a small percentage (less than 1%) of all contacts. As seen
from Figures 8 and 9, the simulation’s starting points differ for oxythiamine compared



Int. J. Mol. Sci. 2024, 25, 4359 17 of 25

to thiamine and 2′-methylthiamine, leading to noticeable trajectory differences. The sig-
nificant involvement of SER-470 binding supports the assertion of slower movement of
2′-methylthiamine by OCT1 compared to other inhibitors. According to Table 6, oxythi-
amine transport appears to be the most efficient.
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Figure 11. The SASA of ligands for 100 ns trajectories of the three Organic Cation Transporter 1
(OCT1) complexes (T—thiamine, OT—oxythiamine, and MT-2′—methylthiamine).

Table 6. The list of hydrogen bonds between the inhibitors investigated and residues of OCT1. The
interaction type specifies whether the ligand functions as a donor (D) or an acceptor (A).

Residue, Type (D/A)
Occupancy %

Thiamine Oxythiamine 2′-Methylthiamine

SER 470 (D) 39.2 2.3 62
SER 470 (A) 0.2
TYR 36 (A) 11 2.4

GLN 241 (A) 2.3 0.3 0.1
GLN 447 (D) 4.9 0.2 0.4
THR 443 (D) 1.5
THR 443 (D) 0.8
GLU 386(A) 6.1 0.4
THR 245 (A) 10.3
LYS 124 (D) 5.8

3. Materials and Methods
3.1. General Information on the Synthesis of 2′-Methylthiamine

Acetamidine hydrochloride, sodium ethoxide solution, Raney Nickel, and NaBH4
were purchased from commercial suppliers and used as received. The reactions were
carried out under an argon atmosphere. 2,4-Dimethyl-5-(2-hydroxyethyl)thiazole was
prepared according to the described procedure [27]. All the solvents were used after
fractional distillation. IR spectra were acquired on Nicolet 6700 with a Smart Orbit pickup
spectrophotometer using ATR (ν cm−1). NMR experiments were performed in a Bruker
Advance 400 spectrometer. 1H and 13C NMR chemical shifts (δ) are reported in parts per
million (ppm), and they are relative to TMS (0.0 ppm). The data are reported as follows:
the chemical shift (the number of hydrogen atoms, multiplicity, and coupling constants,
where applicable). The abbreviations are as follows: s (singlet), d (doublet), t (triplet), m
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(multiplet). The coupling constant (J) is quoted in Hz to the nearest 0.1 Hz. The spectra of
the obtained compounds (S1–S10) are presented in the Supplementary Materials.

3.1.1. 4-Amino-2-Methylpyrimidine-5-Carbonitrile (1) [56]

To the solution of 1 g acetamidine hydrochloride (10.58 mmol) in 20 mL of absolute
ethanol, 3.95 mL of sodium ethoxide (21% solution) was added and the reaction mixture
was stirred for 1 h at room temperature, during which time the solution turned turbid
white. After filtration, 1.343 g of the ethoxymethylenemalononitrile (10.58 mmol) was
added in portions and the obtained mixture was stirred overnight. Thereafter, the solvent
was evaporated, and the obtained residue was dissolved in glacial acetic acid and cooled.
Following this, ammonium solution was added until it became neutral. The precipitated
product was filtered, washed with copious amounts of cold water, and then dried to yield
1.007 g (68%) of a yellow solid. Mp = 236–237 ◦C lit. 246–248 ◦C (crist EtOH); IR (ATR) ν
max cm−1 3377, 3334, 2221, 1673; 1H NMR (400 MHz, CD3OD) δ/ppm: 8.41 (s, 1H), 2.46 (s,
3H), 13C NMR (100 MHz, CD3OD) δ/ppm: 171.8, 164.4, 161.3, 115.7, 88.9, 25.9.

3.1.2. 4-Amino-2-Methylpyrimidine-5-Carbaldehyde (2) [57]

Raney Nickel (0.25 g of 50% slurry with water) was added to a solution of 1 (0.34 g,
2.5 mmol) in 80% formic acid (2 mL) and the reaction mixture was refluxed for 2 h. Next,
the reaction mixture was filtered and washed with 10 mL formic acid. The filtrate and
washings were collected and concentrated under a reduced pressure. The resulting residue
was purified by column chromatography (dichloromethane–methanol, 50:1 v/v) to obtain
202 mg (59%) of 2 as an off-white solid. Mp = 198–204 ◦C; IR (ATR) ν max cm−1 3373, 3133,
1677; 1H NMR (400 MHz, CD3OD + CDCl3) δ/ppm: 9.79 (s, 1H), 8.49 (s, 1H), 2.49 (s, 3H);
13C NMR (100 MHz, CD3OD + CDCl3) δ/ppm: 191.3, 171.6, 163.1, 161.1, 110.2, 25.7.

3.1.3. (4-Amino-2-Methylpyrimidin-5-yl)Methanol (3) [58]

NaBH4 (0.084 g, 2.21 mmol) was added to a cold methanolic solution of 2 (0.202 g,
1.48 mmol) and the reaction mixture was stirred at room temperature for 3.5 h. After
which, the clear reaction mixture was concentrated to dryness and a pale white residue was
obtained. After stirring in an additional 3 mL of cold water, the precipitate was observed
and subsequently refrigerated for 12 h to obtain the solid. Following filtration and washing
with 2 mL of cold water, the solution was dried to obtain 0.185 g (90%) of 3 as a white solid.
Mp = 193–195 ◦C; IR (ATR) ν max cm−1 3362, 3151, 1662, 1421; 1H NMR (400 MHz, CD3OD)
δ/ppm: 7.95 (s, 1H), 4.49 (s, 1H), 2.40 (s, 3H); 13C NMR (100 MHz, CD3OD) δ/ppm: 166.1,
162.4, 152.1, 113.8, 58.4, 23.4.

3.1.4. 2-[3-[(4-Amino-2-Methylpyrimidin-5-yl)methyl]-2,4-dimethyl-1,3-thiazol-3-ium-5-yl]
ethanol (2′-Methylthiamine)

To the solution of 100 mg of 3 (0.72 mmol) in glacial acetic acid, 1.55 mL of HBr (30% in
CH3COOH) was dropped, and white precipitate appeared. The mixture was then stirred at
60 ◦C until the starting material disappeared. After azeotropic evaporation to dryness, the
residue was dissolved in excess of 2,4-dimethyl-5-(2-hydroxyethyl)thiazole (4) in an argon
atmosphere. The reaction was performed for 24 h at 100 ◦C. After that time, the reaction
mixture was cooled to room temperature and chromatographic purification was performed
(methanol–water, 100:2 v/v). The crude product was precipitated by treating it with diethyl
ether to obtain 63 mg of 2′-methylthiamine as a white solid (20%). Mp = 211–214 ◦C; IR
(ATR) ν max cm−1 3314, 3118, 3028, 1653, 1598; 1H NMR (400 MHz, D2O) δ/ppm: 7.32
(s, 1H), 5.51 (s, 2H), 3,92 (t, J = 5.6 Hz, 2H), 3.19 (t, J = 5.6 Hz, 2H), 2.97 (s, 3H), 2.61 (s,
3H), 2.45 (s, 3H); 13C NMR (100 MHz, D2O) δ/ppm: 173.5, 166.1, 164.4, 144.8, 143.3, 135.5,
110.5, 63.0, 48.7, 31.7, 24.0, 18.2, 14.1; ESI-HRMS m/z: calcd for [M-HBr-Br-]2+ 279.1274,
found 279.1279.
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3.2. In Vitro Cell Culture and Cytotoxicity Test

We investigated the cytotoxicity and effects of oxythiamine and 2′-methylthiamine
on fibroblast (ATCC-CRL-2106) and HeLa (the human cervical cancer cell line; CCL-2;
ATCC, Manassas, VA, USA) cell growth. Fibroblasts were at passage 5 and HeLa cells were
at passage 15. Cells were cultured under the 5% CO2 and 95% humidity in Medium199
(M4530; Sigma-Aldrich, St. Louis, MO, USA) with 10% fetal bovine serum (F7524; Sigma-
Aldrich), 50 U/mL penicillin, and 50 µg/mL streptomycin (P0781; Sigma-Aldrich) at 37 ◦C.
The media was changed every 2 days. Cells were seeded at the density of 1 × 105 cells/well
in 12-well plates one day prior to the addition of the test compounds. The control (without
antivitamins) and experimental cultures (thiamine, oxythiamine, or 2′-methylthiamine at
the concentration of 6–1500 µM) were maintained until 95–100% confluence of the control
cultures was achieved (approximately 3 days for HeLa cells and 6 days for fibroblasts). The
toxicity of oxythiamine and 2′-methylthiamine was determined by means of colorimetric
detection using the MTT test [59]. The cells were incubated for 0.5 h in 0.5 mL of PBS
with 50 µL of MTT (5 mg/mL). The medium was then removed from the wells, and
formazan crystals were dissolved in 0.5 mL of dimethyl sulfoxide (DMSO) with 0.01 mL
of Sorensen’s buffer. Absorbance was measured by means of the Lambda E plate reader
(MWG Biotech AG, Ebensburg, Germany) at a wavelength of 570 nm. The results were
expressed as a percentage of the controls. In order to assess the effect of the tested thiamine
antivitamins on the cell growth, cells were counted in an automated EVE-MT cell counter
(NanoEnTec Inc., Seoul, Republic of Korea), and the growth curves of the cultures were
plotted. Based on the results of the MTT test and cell counting, the following values have
been determined: the Gi50 (growth inhibition—concentration of the tested compound that
reduces the number of cells by half as compared to the control), the IC50 (concentration
of the tested compound that reduces the cell metabolism rate by half as compared to
the control), and the IS (the selectivity index defined as the ratio of cytotoxicity of the
compound in relation to normal cells versus cancer cells using the results of the MTT test,
according to Cui et al. 2019 [60]). The experiments were conducted in six independent
replicates for the purpose of statistical evaluation.

3.3. Molecular Docking

The molecular docking studies were conducted to better understand the mechanism
of interaction of the proposed derivatives with the enzymes and transporters using the
latest (1.2.5) version of the AutoDock Vina program [61]. The Pymol version 2.2.3 [62] and
BIOVIA Discovery Studio Visualizer version 21.1.0 [63] packages were employed for the
visualization of the results. The structures of human pyruvate dehydrogenase (PDB:3EXF,
resolution 3.00 Å [64]), human transketolase (PDB:3MOS, resolution 1.75 Å [65]), mouse
thiamine pyrophosphokinase (PDB:2F17, resolution 2.50 Å [29]), the S-component for
thiamine from an ECF-type ABC transporter (PDB:3RLB, resolution 2.00 Å [66]), and the
human Cryo-EM structure of the organic cation transporter 1 (OCT1, PDB:8ET8, resolution
3.45 Å [67]) were taken from the Protein Data Bank. The primary criterion for selecting these
structures was their origin from humans, with further consideration given to factors such
as resolution and publication date. Among the available structures, we attempted to choose
the most recent one with the highest available resolution. The model, prepared for the
docking purposes, underwent pre-treatment including the removal of embedded ligands,
solvent, and ions, along with the addition of polar hydrogen atoms and the integration
of Kollman charges [68]. A cubic box of 20 Å per edge was established to encompass the
ligands during the docking process. In order to ensure optimal accuracy by minimizing the
impact of randomness on the results, the simulations were conducted with the parameter
“EXHAUSTIVENESS” set to equal 100, surpassing the default value of 8. The objective was
to identify the optimal site for inserting the ligand into the proteins. In customary practice,
reference compounds were integrated into crystallographic structures, with their placement
indicating the location of the active center. However, in the absence of crystallographic data,
the presumed position of the active site was unknown. In order to account for variations
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in the interaction mechanisms of the ligands with the individual receptors, the analysis
encompassed the entire receptor area rather than focusing on a specific fragment. This
approach proved especially beneficial when crystallographic data were lacking, as observed
in scenarios such as in the case of the OCT1 transporter. Consequently, docking calculations
were executed using a set of grid boxes overlapping and encompassing the entire range
of variations in protein features. The box moved across the enzyme/transporter area.
The poses with the best scores were automatically identified through an in-house script,
available from the authors. That process was repeated across subsequent grid boxes,
thus ensuring the capture of the optimal ligand–receptor arrangement for all the systems
under consideration. For the sake of validation of the docking procedure, a redocking
process was carried out. The geometries of the resulting poses with the highest scores were
compared with that of the TPP from crystal structure 3EXF. As depicted in Figure 12, both
conformations show a commendable level of agreement with RMSD of 1790 Å.
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3.4. Molecular Dynamics

The simulations, conducted using the NAMD/VMD codes [69,70], were initiated with
the top poses identified in the docking experiments. The CHARMM22 force field [71] for
proteins, augmented with CMAP corrections [72], was utilized. Individual parameter files
for the ligands were generated using the Ligand Reader and Modeler tool accessible via
the CHARMM-GUI online environment (https://charmm-gui.org/?doc=input/ligandrm,
accessed on 10 February 2024) [73]. Water molecules and Na+/Cl− ions were introduced
into the system. Periodic boundary conditions were applied, with the cell size exceeding
that of the macromolecule (OCT1) by 10 Å. To enhance the stability and convergence
during the production stage, the simulation began with an initial minimization spanning
50,000 steps. Subsequently, a gradual heating from 0 to 310 K in 2 K increments was under-
taken. Following this, an equilibration phase consisting of 200,000 steps was carried out.
This phase was crucial to ensure that the system initiated the dynamics from a reasonable
starting point. The initial minimization facilitated the relaxation of the system and the
more stable atomic arrangement, while mitigating close contacts. The stabilized structures
underwent a 100-nanosecond production run with a timestep of 2 femtoseconds, repre-
senting a robust approach for studying molecular dynamics and gaining valuable insights
into system behavior [74]. The practice of saving frames every 50,000 steps is standard,
aiding in various essential tasks such as data management, analysis, simulation restarts,
validation, reproducibility, and visualization. Trajectory parameters were computed using
scripts provided by the VMD developers. To preserve a constant pressure of 1 atmosphere,
the Langevin piston method was employed with a decay period of 100 femtoseconds,
chosen to accurately simulate pressure fluctuations in real systems, thereby enhancing the
fidelity of the simulations and enabling more realistic dynamic behavior to be observed.
Additionally, constant temperature was maintained using Langevin dynamics.

3.5. Statistical Analysis

The data from six independent experiments were used for the purpose of statistical
calculations using the Statistica 13.0 software (StatSoft; Tulsa, OK, USA). The data were
assessed by means of the Shapiro–Wilk W test to check the normality of the data distribution
and Levene’s L test to check the homoscedasticity of variance. Where the data had a normal
distribution and homoscedastic variance, the differences between means were tested using
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Student’s t-test to compare means. Where the data were not normally distributed, the
significance of differences was determined using the Mann–Whitney U or Kruskal–Wallis
test at the significance level of p < 0.01 to compare medians.

4. Conclusions

In the study of cancer cell lines, we have found a significantly stronger inhibition
of the culture growth by oxythiamine as compared to 2′-methylthiamine. However,
2′-methylthiamine has the greater specificity towards cancer cells. Both tested derivatives
did not significantly affect the fibroblast growth. Summarizing the results obtained, the po-
tential we have indicated for thiamine pyrophosphokinase inhibition by 2′-methylthiamine
is such that the use of it as a cytostatic should not be categorically rejected despite the weak
effect on cancer cells noted in our experiment. In silico static and dynamic computations
provide a mechanistic explanation for that phenomenon. The molecular docking simula-
tions uncover additional non-covalent interactions, as compared to thiamine, which impede
the movement of 2′-methylthiamine within the transporter. The dynamic calculations also
suggest that the presence of an additional methyl group in the molecule creates mechanistic
blockages that decelerate the transport of that ligand. As such, solving the problem of
2′-methylthiamine transport into the cell can cause the inhibition of thiamine pyrophos-
phokinase activity. Reducing the availability of thiamine pyrophosphate will result in the
inhibition of transketolase as well as mitochondrial 2-oxoacid dehydrogenase complexes’
activity, triggering the cytotoxic effect of 2’methylthiamine. Therefore, further studies of
this interesting thiamine analogue should focus on finding alternative ways to introduce
the aforementioned derivative into cells. For this purpose, liposomes, polymer-carriers, or
conjugates of 2′-methylthiamine with compounds actively taken up by cancer cells, such as
sugars or folic acid, could be proposed [75,76].
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