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Abstract: In the global pandemic scenario, dengue and zika viruses (DENV and ZIKV, respectively),
both mosquito-borne members of the flaviviridae family, represent a serious health problem, and
considering the absence of specific antiviral drugs and available vaccines, there is a dire need to
identify new targets to treat these types of viral infections. Within this drug discovery process, the
protease NS2B/NS3 is considered the primary target for the development of novel anti-flavivirus
drugs. The NS2B/NS3 is a serine protease that has a dual function both in the viral replication process
and in the elusion of the innate immunity. To date, two main classes of NS2B/NS3 of DENV and
ZIKV protease inhibitors have been discovered: those that bind to the orthosteric site and those that
act at the allosteric site. Therefore, this perspective article aims to discuss the main features of the use
of the most potent NS2B/NS3 inhibitors and their impact at the social level.

Keywords: dengue virus; zika virus; NS2B/NS3 serine protease; antiviral agents; orthosteric and
allosteric inhibitors

1. Introduction

In the global pandemic scenario, dengue virus (DENV) diffusion has become a serious
health problem in the current years with an estimated number of cases of about 100–400
million annually [1]. Dengue is endemic in more than 100 countries belonging to Africa,
America, Eastern Mediterranean, South-East Asia, and Western Pacific; it is classified
among the Neglected Tropical Diseases (NTDs) [2].

DENV infection, also known as “bone-break fever”, could be characterized by a
broad spectrum of clinical symptoms, including uncomplicated fever (dengue fever), that
normally begin 4–10 days after infection, such as headache, lethargy, muscle and joint pains,
nausea, vomiting, confusion or, in a few cases, more serious clinical complications like
dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), which are potentially
fatal for the patient [3].

Zika virus (ZIKV) infection, not officially categorized as an NTD, was firstly identified
in Uganda in 1947, and since 2007, outbreaks of ZIKV disease were recorded in Africa,
America, and Asia [4]. The ZIKV infection typically develops common symptoms 2–7 days
after infection, like fever, headache, muscle pain, and conjunctivitis [5]. No hemorrhagic
events were associated with ZIKV fever that, as discussed before, are typical of dengue.
The most serious complication of this infection is the Guillain-Barrè syndrome (GBS),
a demyelinating disease of the peripheral nervous system, able to induce devastating
paralysis [5]. An infection during pregnancy can lead to early miscarriages, intrauterine
fetal demise, impaired fetal growth, and placental dysfunction. Moreover, in kids born
from ZIKV-infected mothers during pregnancy, it was possible to observe congenital zika
syndrome (CZS): microcephaly and other congenital malformations in the infant, including
limb contractures, eye abnormalities, and hearing loss [5].
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Both viruses are transmitted by the mosquitoes Aedes albopictus and Aedes aegypti that
recently are prevalent also in the temperate climate zone, starting from 2010 leading to
dengue transmission in continental Europe, such as France and Croatia, with 1043 cases
of DENV infection diagnosed in Italy from 2010–2021. Currently, there are no vaccines or
antiviral drugs available for these viral infections.

2. NS2B/NS3 DENV and ZIKV Protease: Structures and Functions

DENV is a mosquito-borne flavivirus infection, mainly transmitted by Aedes aegypti
and Aedes albopictus mosquitoes, and after the mosquito bite, the virus lays down on skin
epidermis encountering keratinocytes and Langerhans cells, which are highly permissive
to virus entrance [5].

There are four serotypes of DENV, which are antigenically classified as DENV-1,
DENV-2, DENV-3, and DENV-4 [3]. DENV belongs to the flaviviridae family, it is an RNA
virus, and its genome is formed by a positive-sense single-stranded RNA (+ssRNA), with a
size of about 11 Kb [2]. The viral genome encodes for three structural proteins, the precursor
membrane (prM), the envelope proteins (E), and the capsid (C), and seven non-structural
proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The whole genomic RNA is
translated into a single large precursor polyprotein that is cleaved by the viral NS2B/NS3
serine protease and by host proteases into functional proteins.

The three structural proteins, i.e., prM, E, and C, are crucial to form the viral particles:
the C protein takes part in the composition of the viral icosahedral capsid, while the M
and E proteins form transmembrane helices that help the viral particles to anchor on
the membrane surface. The E protein is the principal viral protein involved in host cell
membrane fusion during the interaction with the host receptor [5]. The seven non-structural
proteins, essential for viral replication and maturation, are the viral protease (NS2B/NS3),
the helicase (NS3), the methyltransferase (NS5), the RNA-dependent RNA polymerase
(NS5), NS1 and NS2 that are involved in the viral replication, while NS4 is involved in
the membrane alteration [6]. The most important non-structural protein involved in the
pathogenesis of dengue viral infections is NS1 [3].

The NS2B/NS3 is a trypsin-like serine protease showing a dual function both in the
viral replication process and in innate immunity. The NS3 protease has a catalytic triad
composed by His51/Asp75/Ser135 residues, located in a cleft between the β-barrels [2].
The NS2B protein acts as a cofactor of the NS3 protease, undergoing a conformational
change during the binding to NS3, necessary to activate the protease [7]. NS2B is a large
membrane protein of 130 amino acids and consists of three hydrophobic domains and a
central hydrophilic domain, where its C-terminal portion is responsible for the recognition
site [8]. NS2B/NS3 protease is also implicated in immune invasion through cleavage of the
human mediator of activation of interferon regulatory factor-3 activator (IRF-3) [9].

The cleavage of the protease involves the nucleophilic attack of the Ser135–O-nucleophile,
generated by His51 basic catalysis, on the carbonyl group at the P1 position, generating the
tetrahedral intermediate stabilized in the oxyanion hole via H-bond interactions with Gly153
residue (Figure 1-I). This tetrahedral intermediate decomposes and results in C-terminal
cleavage, releasing an amine fragment (Figure 1-II). Differently, the N-terminal fragment
remains covalently connected to the protease via an ester bond, which is hydrolyzed by
a water molecule. At this point, His51 acts as a base in order to increase the nucleophilic
character of the water molecule (Figure 1-III), and therefore, the N-terminal fragment is
released by deprotonation of the carboxylic acid, leading to the beginning of a new catalytic
cycle (Figure 1-IV) [2].
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Figure 1. Catalytic cycle of the serine protease NS3pro has a functional catalytic triad comprising 
the His51, Asp 75, and Ser135 amino acid residues. Then, the cleavage of peptidic substrates begins 
by a Ser135 -nucleophilic attack to the carbonyl group at the P1 position. Due to the inherent poor 
nucleophilicity of the hydroxyl group from the Ser135, it should be previously activated by the ac-
tion of an adjacent His51 residue, generating the Ser135–O− nucleophile (I). Subsequently, the sta-
bilization of this complex into the oxyanion hole via H-bond interactions with Gly 153 residue favors 
the formation of a tetrahedral intermediary (II). This tetrahedral state is decomposed and results in 
the C-terminal cleavage, releasing an amine fragment. The N-terminal fragment remains covalently 
connected to the protease via an ester bond, which is posteriorly hydrolyzed by the action of a water 
molecule. In this step, His 51 acts as a base in order to increase the nucleophilic character of this 
water molecule (III). Finally, the N-terminal fragment is released by reprotonation of the carboxylic 
acid, beginning a new catalytic cycle (IV). 

NS3 is also one of the major viral proteins showing an enzymatic function; it is a 69 
kDa protein, and it possesses two main domains with different enzymatic functions: a 
trypsin-like serine protease domain situated within the N-terminal with 180 amino acid 
residues, while the C-terminal domain has the activities of an RNA-helicase [2]. Due to 
these functions, the NS2B/NS3 serine protease represents a promising target for the de-
velopment of new agents for the treatment of DENV infections. 

ZIKV is a mosquito-borne infection, and the principal way of transmission is through 
mosquito bites by Aedes aegypti and Aedes albopictus. The ZIKV contains a +ssRNA genome, 
with about 10800 nucleotides, that encodes for a precursor polyprotein that is processed 
by proteases into the three structural proteins, i.e., the capsid (C), the premembrane/mem-
brane (prM), and the envelope protein (E), and seven non-structural proteins (NS1, NS2A, 
NS2B, NS3, NS4A, NS4B, and NS5) [5]. 

The ZIKV NS3 is a multifunctional protein with two functionally distinct domains: a 
176-residue N-terminal domain with protease activity and a 444-residue C-terminal do-
main with helicase, nucleoside 5′-transferase (NTPase), and 5′-terminal RNA triphospha-
tase (RTPase) activities. The NS2B polypeptide cofactor plays a key role, like for DENV, 
for NS3 catalysis.  

The ZIKV NS2B/NS3 sequence shows high homology with other flavivirus proteases 
including DENV NS2B/NS3; the main difference consists in two residues: Glu/Ala 153 and 
Lys/Asp 139 in DENV and ZIKV proteases, respectively [10]. 

ZIKV NS3 is a serine protease containing a catalytic triad of serine, histidine, and 
aspartate (His51/Asp75/Ser135) in its binding site, and it requires NS2B as cofactor domain 
[11]. In the active form, the C-terminal part of NS2B wraps around the active site of NS3, 
so that it could form a β-hairpin to create the S2 and S3 pockets of NS3 protease [11]. Many 
studies from the literature showed that the protease can adopt two conformations: “open” 
and “closed”; in the closed state that is catalytically active, NS2B is fully bound around 

Figure 1. Catalytic cycle of the serine protease NS3pro has a functional catalytic triad comprising
the His51, Asp 75, and Ser135 amino acid residues. Then, the cleavage of peptidic substrates begins
by a Ser135 -nucleophilic attack to the carbonyl group at the P1 position. Due to the inherent poor
nucleophilicity of the hydroxyl group from the Ser135, it should be previously activated by the
action of an adjacent His51 residue, generating the Ser135–O− nucleophile (I). Subsequently, the
stabilization of this complex into the oxyanion hole via H-bond interactions with Gly 153 residue
favors the formation of a tetrahedral intermediary (II). This tetrahedral state is decomposed and
results in the C-terminal cleavage, releasing an amine fragment. The N-terminal fragment remains
covalently connected to the protease via an ester bond, which is posteriorly hydrolyzed by the action
of a water molecule. In this step, His 51 acts as a base in order to increase the nucleophilic character
of this water molecule (III). Finally, the N-terminal fragment is released by reprotonation of the
carboxylic acid, beginning a new catalytic cycle (IV).

NS3 is also one of the major viral proteins showing an enzymatic function; it is a
69 kDa protein, and it possesses two main domains with different enzymatic functions: a
trypsin-like serine protease domain situated within the N-terminal with 180 amino acid
residues, while the C-terminal domain has the activities of an RNA-helicase [2]. Due
to these functions, the NS2B/NS3 serine protease represents a promising target for the
development of new agents for the treatment of DENV infections.

ZIKV is a mosquito-borne infection, and the principal way of transmission is through
mosquito bites by Aedes aegypti and Aedes albopictus. The ZIKV contains a +ssRNA genome,
with about 10800 nucleotides, that encodes for a precursor polyprotein that is processed by
proteases into the three structural proteins, i.e., the capsid (C), the premembrane/membrane
(prM), and the envelope protein (E), and seven non-structural proteins (NS1, NS2A, NS2B,
NS3, NS4A, NS4B, and NS5) [5].

The ZIKV NS3 is a multifunctional protein with two functionally distinct domains: a
176-residue N-terminal domain with protease activity and a 444-residue C-terminal domain
with helicase, nucleoside 5′-transferase (NTPase), and 5′-terminal RNA triphosphatase
(RTPase) activities. The NS2B polypeptide cofactor plays a key role, like for DENV, for NS3
catalysis.

The ZIKV NS2B/NS3 sequence shows high homology with other flavivirus proteases
including DENV NS2B/NS3; the main difference consists in two residues: Glu/Ala 153
and Lys/Asp 139 in DENV and ZIKV proteases, respectively [10].

ZIKV NS3 is a serine protease containing a catalytic triad of serine, histidine, and
aspartate (His51/Asp75/Ser135) in its binding site, and it requires NS2B as cofactor do-
main [11]. In the active form, the C-terminal part of NS2B wraps around the active site of
NS3, so that it could form a β-hairpin to create the S2 and S3 pockets of NS3 protease [11].
Many studies from the literature showed that the protease can adopt two conformations:
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“open” and “closed”; in the closed state that is catalytically active, NS2B is fully bound
around NS3 in the active site, while in the “open” state, that is the inactive conformation,
NS2B is partially bound to NS3 [12]. In the closed conformation, the NS2B wraps around
NS3 as the active form, while in the “open conformation”, the NS2B chain turns and binds
the portion behind the active site, thus inducing its inactivation [13].

3. Interaction of Flavivirus NS2B/NS3 with Cellular Proteins

The flaviviral RNA tends to replicate on the membrane of the replication site for DENV,
leading to the constitution of a replication complex, where NS2B/NS3 takes part in the
maintenance of the same complex. The DENV NS3 protein redirects the fatty acid synthase;
in fact, it has been demonstrated that DENV-infected cells showed an increased synthesis
of fatty acids during infection [14].

Furthermore, it was reported that the DENV NS3 interacts with glyceraldehyde-3-
phosphate dehydrogenase (GADPH), thus leading to an increased ATPase activity and to
a reduced glycolytic activity. Also, the interaction between NS3 and GADPH may result
in the unwinding of double-stranded RNA and in the vesicle formation needed for virion
assembly [15–17].

Currently, it seems that the NS3 proteases of DENV and ZIKV caused the cleavage of
FAM134B (a host cell restriction factor involved in cells in the process of reticulophagy),
thus leading to an enhanced viral replication [18].

The ZIKV NS2B/NS3 protease is also implicated in interactions with many other
cellular proteins, which include the cleavage of the cytoskeletal factor, septin-2, resulting in
slow cell division, enhanced apoptosis, and delayed cytokinesis in the neural progenitor
cells (NCPs). These modifications produced microencephalopathy [19]. Mitochondrial-
associated membranes (MAMs) are also known to play an important role in several pro-
cesses that are crucial for viral replication; so, DENV NS2B/NS3 protease interacts with
mitochondria and results in the cleavage of MAMs, leading to the fragmentation of the
mitochondria, which contributes to disease pathogenesis [20].

4. Crystal Structures of DENV and ZIKV NS2B/NS3 Protease

Several crystal structures of flavivirus proteases in the presence or in the absence of
inhibitors were determined [21–29]. All these structures are based on proteins obtained by
recombinant DNA missing from the NS2B transmembrane domains, and the folding of
full-length NS2B requires the presence of detergent micelles as membrane systems [30–33].
For DENV protease, a cofactor region of about 40 residues taken from NS2B and NS3
protease domain (NS3pro) connected via a glycine-rich linker was taken into consideration
in the structural studies [34].

In DENV and ZIKV NS2B/NS3 protease structures, the folds of NS3 in several X-
ray structures are almost identical. The N-terminal domain of NS3 is a serine protease
containing two β-barrels, and each barrel consists of six β-strands. The catalytic triad is
composed by His, Asp, and Ser residues and is totally conserved among these proteases [21].
Considering that the active site is negatively charged, this favors molecular interactions
with positively charged residues, for example, Lys and Arg (Figure 1) [35].

The structures of free DENV NS2B/NS3 exist in an open inactive conformation [28,29,36],
in which the C-terminal region of the NS2B cofactor is positioned away from the active
site. The amino acids of the C-terminal portion of NS2B form a β-hairpin structure through
molecular interactions with the substrate [37,38].

On the contrary, the crystal structure of free ZIKV NS2B–NS3 protease reveals that the
protease adopts the closed active conformation [24], even though this conformation might
be observed in the X-ray studies due to crystal packing. Several NMR studies demonstrated
that the closed conformation of the protease is predominant in the solution and should be
used in structure-based drug design [39].
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5. NS2B/NS3 Protease Inhibitors
Allosteric Inhibitors

Starting from the lead compound 1, a library of new proline-based inhibitors was tested
on ZIKV and DENV NS2B/NS3 protease [40]. The lead compound 1 was the first inhibitor
reported; it shows a 2-aminobenzothiazole ring linked to a proline residue, functionalized
with a 4-nitrophenylsulsulfonyl moiety. Starting from its structure, several structural
changes were carried out with the aim to improve the antiviral activity (Figure 2) [40].
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Figure 2. Structure of the lead compound 1.

In compound 2 (Figure 3), the proline has been replaced by a 2-hydroxybenzoic
acid that establishes an ether bridge with a hydroxyl-substituted naphthalene ring. This
compound shows activity against DENV and ZIKV proteases expressed by IC50 values of
4.2 ± 0.44 µM and 1.41 ± 0.16 µM, respectively.

Thus, maintaining the unchanged benzothiazole moiety, the benzamide portion was
replaced with a R configured proline residue, where the amino acid NH was benzoyl-
substituted, thus obtaining compound 3 endowed of a slight increase in activity against
ZIKV (IC50 = 0.94 ± 0.22 µM), while it is inactive against DENV [40]. On the contrary, as
shown in compound 4, the replacement of the hydroxyl group with the nitro group leads
to a general decrease in activity. In this molecule, we can observe a decrease in the activity
due to the substitution of the OH groups both in the case of the R-enantiomer of proline
(ZIKV IC50 = 21.9 ± 0.9 µM and DENV IC50 = 33.9 ± 0.6 µM) and for the S-enantiomer of
proline of the compound 4 (ZIKV IC50 = 44% and DENV IC50 = 41%).

Other active proline-based inhibitors are compounds 5 and 6 in which the N-benzoyl
substituent has been replaced with a chloro- or methoxy-substituted phenyl sulfonyl
group, respectively, thus obtaining the best results with (S)-5 endowed with an IC50 of
0.93 ± 0.06 µM and (R)-6 with an IC50 of 0.86 ± 0.15 µM against ZIKV protease, respectively.

Then, in compounds (R)-7 and (S)-7, a nitro group was introduced on the phenyl ring
linked to the proline residue via a sulfonyl bridge, investigating at the same time the role of
the configuration on the proline residue [40].

The results of this structure–activity relationship (SAR) investigation clearly show that
the introduction of the nitro group is fruitful, since a slight increase in the antiviral activity
has been observed (ZIKV, IC50 = 0.86 ± 0.15 µM for (R)-6 versus 0.32 ± 0.05 µM for (R)-7).

Concerning the role of the stereochemistry at the proline residue, an improved activity
of the R-enantiomer with respect to the S-counterpart in ZIKV was observed, while in the
case of DENV, the S-enantiomer resulted to be most active.

Inhibitors based on the replacement of proline with a piperidine moiety in both R
and S configurations were also developed (e.g., compounds (R)-8 and (S)-8, Figure 3). The
results of this investigation clearly highlight that in the case of ZIKV protease, piperidine
is preferred to proline, with an improved activity for the S-enantiomer. Differently, in the
case of DENV protease, the S-configured piperidine gave better results.
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Figure 3. Structure and activity against ZIKV and DENV2 proteases of proline-based allosteric
inhibitors 2–8.

Subsequently, allosteric inhibitors without a proline residue were developed, like
compounds 9 and 10 (Figure 4). Both share the presence of an indole ring linked via a
carbonyl group to an aromatic ring bearing two methoxy and a hydroxy group. Compound
9 presents an indole ring, where there is a COOMe group at position 2, while at position
5 a chlorine atom, and the heterocycle is connected via a carbonyl group to an aromatic
ring that bears two methoxy and a hydroxyl group. On the contrary, compound 10 differs
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from compound 9 due to the presence of a bromine instead of a chlorine [40]. When tested
against NS2B/NS3 protease, the most active was compound 10, with an IC50 value against
ZIKV protease of 33 µM compared to compound 9, whose IC50 value is 15.8 ± 0.9 µM. These
inhibitors were, in addition, tested on ZIKV-infected Huh-7 cells, where it was observed
that the most active compound was 9, with an EC50 value of 13.9 ± 0.4 µM compared to
that of compound 10, whose EC50 value was 16.2 ± 0.6 µM.

According to the Lipinski’s rule of five, these two inhibitors were predicted to have a
good oral absorption. In a mouse model of ZIKV infection, it has been demonstrated that
compound 9 prevents brain damage caused by the viral infection [40].
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Compound 11 showed a very low inhibition at 20 µM (13% for ZIKV and 16% for
DENV2) of NS3/NS2B, whereas the corresponding aniline derivate 12 led to an improve-
ment in the antiviral activity, with IC50 values of 5.48 ± 0.35 µM and 9.95 ± 0.34 µM for
ZIKV and DENV, respectively.

In this situation, aromatic substituents seem to be preferred; thus, inhibitor 13 (Figure 5)
incorporating a rigid N-phenyl peptoid structure showed a slight decrease in activity against
DENV NS3/NS2B (56% of inhibition at 20 µM) and an improved antiviral activity towards
ZIKV (IC50 = 2.07 µM), whereas compound 14 (Figure 6) that contains a 2,2-diphenylacetic
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acid showed a submicromolar IC50 value against ZIKV (IC50 = 0.95 ± 0.13 µM) and an IC50
value in the micromolar range against DENV protease (IC50 = 11.12 ± 0.49 µM).
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Further allosteric inhibitors, without a proline residue, were developed with the aim
to improve the antiviral activity, and the selectivity towards DENV and ZIKV proteases
was consistent for all tested inhibitors, based on the nature of the various substituents [41].

All these compounds are characterized by the presence of a benzothiazole ring vari-
ously decorated with hydroxyl groups; this nucleus, by means of an amide or a thiourea
bond, binds to an aromatic ring with various substituents such as iodine, chlorine, methyl
atoms, etc.

Compound 15 (Figure 6) that has no substituents on the aromatic ring showed an
activity in the micromolar range for ZIKV and DENV proteases (IC50 = 9.19 ± 0.33 µM and
IC50 = 26.95 ± 1.61 µM, respectively). Among all the substitutions on the phenyl ring, the
best one is the insertion of an iodine atom, i.e., 16 (Figure 7), which led to a submicromolar
activity against ZIKV (IC50 = 0.67 ± 0.32 µM) and to a micromolar activity against DENV2
(IC50 = 4.38 ± 0.38 µM, respectively).
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As the SAR optimization strategy, further replacements were made, leading to a
variety of inhibitors characterized by a heterocyclic structure, which were evaluated for
their inhibitory properties towards the NS2B/NS3 proteases [41].

These compounds share the presence of a heterocycle connected via a carbonyl group
to a linker that binds an aniline, where the linker of these structures could be a proline
residue or a pipecolic acid (Figure 7). Compound 17 bears two hydroxyl groups on
the benzothiazole ring linked via a carbonyl group to a (S)-proline residue that binds a
benzamide substituent. The compound 18 differs from compound 17 due to the lack of
a proline residue, and the results of this investigation clearly highlight that this linker is
crucial for the inhibitory properties.

The replacement of the benzothiazole ring with a benzothiophene nucleus, i.e., 19–
20, led to an increase in the antiviral activity. However, the best replacement of the
benzothiazole nucleus was proven to be the benzofuran ring, which led to the most active
inhibitors of the NS2B/NS3 protease.

Compound 23 (Figure 8) is an allosteric inhibitor without a proline residue, and it
was shown to be a broadly active inhibitor of flavivirus proteases endowed with a high
selectivity [12]. Its structure is completely different with respect to the previously described
compounds, and in fact, it presents a pyrazine connected via an ether bridge to a piperidine
nucleus, and furthermore, the pyrazine nucleus is characterized by the presence of two
substituents, i.e., at the position 5 a 4-phenyl methyl amino substituent and at the position
6 a 4-(furan-3-yl) phenyl group. Compound 23 resulted to be a broad spectrum flavivirus
NS2B/NS3 protease inhibitor since it inhibited the serine protease of ZIKV and DENV
serotype-2 and 3 (ZIKV IC50 = 0.20 ± 0.01 µM, DENV2 IC50 = 0.59 ± 0.02 µM, DENV3 IC50
= 0.52 ± 0.06 µM) [12].
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Inhibitor 23 exhibited a significant in vivo activity, since when administered in ZIKV-
infected C57BI/6 mice, it was able to reduce 98% of ZIKV RNA copies in both plasma and
brains, thus inhibiting its replication in vivo.

6. Orthosteric Inhibitors
Dengue NS2B/NS3 Protease Inhibitors

Orthosteric inhibitors are a class of active compounds against DENV and ZIKV
NS2B/NS3 proteases that bind to the active site of the enzyme, differently from the al-
losteric inhibitors [27,36,42–44]. All inhibitors bear two basic residues (arginine, lysine, or a
mimetic) to address the dibasic substrate recognition motif [2,45].

The first inhibitors reported in the literature were developed as covalent ligands and
are characterized by the presence of two basic aminoacidic residues linked to an elec-
trophilic moiety, such as trifluoromethyl ketone, [46] aldehyde, [47], and boronic acid [48],
able to covalently trap the catalytic serine. However, if ligands do not show a reactive
warhead, they can non-covalently bind to the active site.

Initially, some inhibitors based on α-ketoamide and arylcyanoacrylamide warheads
were synthesized [49–51]. Starting from α-ketoamides and arylcyanoacrylamides, several
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studies were carried out [52,53], by investigating retro, retro-inverse, semi retro-inverse,
and non-retro inverse peptides, thus identifying as the most promising peptide the retro-
tripeptide 24, characterized by the presence of a cyanoacrylamide group at the aromatic ring
of the N-benzoyl capped Arg-Lys-Nle-NH2 and endowed with a Ki value of 4.9 ± 0.3 µM
against DENV2 NS2B/NS3 protease (Figure 9). Furthermore, the Nle amino acid residue
was verified to be crucial for the selectivity of this compound.
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Dipeptides 25 and 26 were further developed against NS2B/NS3 protease of DENV2;
among these, compound 25 characterized by the Met-Pro sequence showed an excellent
activity of anti-DENV2 with IC50 and Ki values of 1.2 ± 0.4 and 4.9 µM (Figure 10), while
compound 26 showing a fused-bicyclic pyrrolidine moiety showed an EC50 value against
DENV2 NS2B/NS3 protease in the middle micromolar range (i.e., EC50 = 39.4 ± 6.2 µM,
Figure 10) [54,55].
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Several peptidomimetics characterized by a characteristic peptide sequence were screened
against DENV 1-4 NS2B/NS3 protease to evaluate the binding affinities (Ki) [56,57]. These
inhibitors showed good activities against DENV; compound Abz-Arg-Arg-Arg-Arg-His-
Leu-Cys-Trp-Tyr(NO2)-NH2 (27) revealed a good activity towards DENV1 (IC50 = 0.3 µM),
DENV3 (IC50 = 0.5 µM), and DENV4 (IC50 = 1.9 µM) NS2B/NS3 protease. The pep-
tidomimetic H-Arg-Arg-Arg-Arg-His-Trp-Cys-Trp-NH2 (28) showed an excellent activity
against DENV2 and DENV3 NS2B/NS3 protease, with Ki values of 0.3 and 0.5 µM, respec-
tively (Figure 11). Moreover, compound H-Arg-Arg-Arg-Arg-His-Leu-Cys-Trp-NH2 (29)
revealed to possess a good activity against DENV1 NS2B/NS3 protease, with a Ki value
of 0.3 µM (Figure 11). Finally, compound Ac-Arg-Arg-Arg-Arg-His-Trp-Cys-Trp-NH2 (30,
Figure 11) also presented a good activity against DENV2 NS2B/NS3 protease, with a Ki
value of 0.3 µM.
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Docking studies put in evidence that the N-terminal region of all these compounds
interacts with Asp75 in the catalytic site, the cysteine residue is turned towards His51 and
Ser135, and the two P1 and P2 residues occupy the S3 and S4 pockets.

After several studies, further promising inhibitors were developed against the DENV2
NS2B/NS3 protease [58]. These compounds are characterized by a backbone of three amino
acids coupled with a non-peptidic N-terminal group, i.e., a benzoyl group, thus leading to
compound 31, which showed IC50 and Ki values of 13.3 µM and 11.2 µM (31) (Figure 12).
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However, the most active peptide-hybrid was constituted by an Arg-Lys-Nle-NH2
sequence capped with a 2,4-thiazolidinedione moiety, thus showing an IC50 value of
2.5 ± 0.1 µM (i.e., 32) (Figure 12).

Furthermore, Ref. [59] it was observed that the replacement of C-terminal Nle residue
in compound 31 with other residues like phenylglycine (Phg) led to an increase in the
activity of the parent compound 31. Inhibitor 33 showed IC50 and Ki values of 3.32 ± 0.05
and 2.1 µM, respectively, against DENV2 NS2B/NS3 protease (Figure 12). Additionally,
the Phg analogue of compound 32 showed an IC50 value of 0.6 µM against DENV2 (34)
(Figure 12). Docking studies put in evidence that the Phg residue interacts with residues in
the S1 pocket, while Arg and Lys interact with the S2 and S4 pockets, respectively [60].

A further SAR investigation led to the synthesis of compound 35, which bears a butynyl
group linked to the 2,4-thiazolidinedione nucleus and showed the best IC50 value for this series
of compound (IC50 = 0.46 ± 0.2 µM versus 0.6 µM for 35 and 34, respectively) (Figure 12).
Docking studies revealed that Phg is located in the S1 pocket, and Arg residue in the S2.
A further SAR investigation was carried out by synthesizing thiazolidinylcarbonyl-Arg-
Lys-(OCH2C6H6(4-CF3)-Phg-NH2 (36) and bis-thiophenylcarbonyl-Arg-Lys-(OCH2C6H6(3-
OCH3)-Phg-NH2 (37), which show IC50 values of 0.018 and 0.176 µM, respectively (Figure 13).
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Both compounds were able to interact with His51, Asp75, and Ser135 amino acid
residues of the catalytic triad in the binding site [61,62].

Another structural variation has been carried out by introducing in compound 33 a
3-trifluoromethyl benzoyl cap to the N-terminal amino acid and by switching the P3 Arg
residue with a 4-amidino Phe, leading to compound 38 with IC50 and Ki values of 210
and 139 nM, respectively (Figure 14) [62] The new basic residue accommodates into the S2
pocket and interacts with Asp75 through electrostatic interactions [63].
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Another class of orthosteric inhibitors is represented by peptide boronates, among
which the most active inhibitor is Bz-Nle-Lys-Arg-Arg-B(OH)2 (39) that shows a Ki value
of 0.043 µM against the viral protease (Figure 15).
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The introduction of this new electrophilic warhead led to an increase in inhibitory
potency, being responsible of a 1000-fold enhancement in affinity. Another dipeptide
endowed with the boronic acid moiety is Bz-(4-CH2NH2)Phe-Arg-B(OH)2 (CN-716, 40),
which showed Ki values of 0.051 and 0.04 ± 0.06 µM against DENV2 and ZIKV proteases,
respectively (Figure 15) [27].

Successively, it was observed that aldehydes also can interact with the nucleophile
serine residue of the NS2B/NS3 protease in a covalent-reversible mode [47,49].

The first synthesized compound was Bz-Nle-Lys-Arg-Arg-H (41) (Figure 16), which
showed a Ki value of 5.8 µM. Starting from this compound, through an optimization
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process by molecular simplification, Bz-Lys-Arg-Arg-H (42) was obtained that showed an
improved inhibitory activity with a Ki value of 1.5 µM (Figure 16) [64,65].
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Lastly, the introduction of a 4-biphenylacetyl group linked to the N-terminal of a lysine
residue led to compound 43, with the sequence 4-biphenylacetyl-Lys-Lys-Arg-H, which
showed an IC50 value in the mid-micromolar range (IC50 = 12.2 ± 0.38 µM, Figure 17).
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Furthermore, additional libraries of cyclic peptides were designed to efficiently interact
with the orthosteric site of the NS2B/NS3 protease. Some of these compounds were derived
from the conotoxin class produced by Conus species. These conotoxins are composed
by a mixture of neurotoxins produced by a snail; so, it seemed that MrIA conotoxin
presents an interesting inhibitory activity with a Ki value of 9.0 ± 0.4 µM against DENV2
NS2B/NS3 [66,67]. This toxin is constituted by a 13-residue sequence H-Asn-Gly-Val-Cys-
Cys-Gly-Tyr-Lys-Leu-Cys-His-Pro(OH)-Cys-OH (44) (Figure 18); after several structural
modifications, it was observed that the seven-residue sequence of the cyclic peptide c(Cys-
Gly-Lys-Arg-Lys-Ser-Cys) (45) represented the most active compound of this series, with a
Ki value of 1.4 ± 0.1 µM. (Figure 18) [68].

Cyclic peptides represent a chemical class of molecules able to interact with biomacro-
molecules by protein–protein interactions [69,70]; among these, the macrocyclic pep-
tidomimetic compound (46) constituted by the amino acid sequence D-Pro-L-Lys-L-Arg-L-
Lys-L-Ser-L-Phe-L-Ser-D-Phe (i.e., 46) was demonstrated to be the most active derivative,
with an IC50 value of 0.95 µM (Figure 19) [71]. It was observed that the side chains of this
compound interact with hydrogen bonds with Asp129 of NS3 protease and with Asp81
and Met84 of NS2B, respectively.
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Further, it was reported in the literature that NS3 protease of Hepatitis C virus (HCV)
was moderately inhibited by N-terminal peptides derived from polyprotein cleavage
sites [72,73]. Therefore, a potent inhibitor towards DENV NS3 protease was developed
with an IC50 value in the micromolar range, showing the peptide sequence Ac-Arg-Thr-Ser-
Lys-Lys-Arg-NH2 (47) (Figure 20) [74].
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Aprotinin (AP) is a small protein developed as an inhibitor of bovine pancreatic
trypsin (BPTI); it was a potent inhibitor of NS2B/NS3 protease from DENV and ZIKV
at the nanomolar level. Furthermore, starting from the complex reported in the PDB
Aprotinin-NS2B/NS3 protease (PDB code 3U1J), a new series of cyclic peptides has been
developed [75]; however, the binding loop (BL) of the aprotinin structure was constituted
by seven residues Pro13-Cys14-Lys15-Ala16-Arg17-Ile18-Ile19.

7. Zika NS2B/NS3 Protease Inhibitors

Concerning the development of ZIKA NS2B/NS3 protease inhibitors, a potent class
is represented by peptides bearing an aldehyde warhead. Among all the synthesized
compounds, inhibitor 48 was demonstrated to interact using a covalent mode with Ser135
residue of NS3 protease, with an IC50 value of 280 nM (Figure 21) [76]. Docking studies
showed that P2 Lys and P1 Arg residues are located in the S2 and S1 sites of the protease,
while Ser135 is covalently bonded to the carbonyl group of the aldehyde and His51 binds
to the molecular complex via H-bond.
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In addition, peptidomimetic inhibitors 49–51 were structurally characterized from
three to five residues that mainly differ for the group linked to the N-terminal amino
acid, showing against ZIKV NS2B/NS3 protease IC50 values of 1.2 ± 0.14, 1.6 ± 0.14, and
1.1 ± 0.07 µM, respectively (Figure 22) [22].
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Starting from small macrocyclic peptides (>2 kDa), further cyclic inhibitors against ZIKV
were developed with the aim to improve their inhibitory potency. The most active compounds
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(52, 53) are able to covalently bind to the catalytic serine of the active site, and they showed
IC50 values of 1.32 ± 0.03 µM and 0.62 ± 0.04 µM, respectively (Figure 23) [76–78].
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8. Pharmacokinetic Properties, Antiviral Activity, and Cytotoxicity Evaluation of DENV
and ZIKV Inhibitors

Peptides are among the ideal candidates to be used as an alternative therapeutic option
to conventional drugs, in different therapeutic fields. As can be seen in this perspective
article, most of the orthosteric inhibitors show a peptide structure, and even if endowed of
a potent antiviral activity, some limitations, regarding pharmacodynamics and pharma-
cokinetics properties, restricted their applicability in the pharmaceutical market [79].

For example, the low bioavailability of peptides, limited by their degradation and low
epithelial absorption, is the highest difficulty in the therapeutic application of peptides.
Another important problem is the degradation of peptides by gastric juices and by pepti-
dases present in the gastro-intestinal tract. Even if the peptides escape this degradation
route, another relevant problem to solve is the crossing of the intestine’s epithelial barrier,
since peptides have to overcome the mucosal layer (composed of glycocalyx, glycoproteins,
mucopolysaccharides, enzymes, water, and electrolytes), the brush border membrane with
microvilli, and the efflux pumps, like P-glycoprotein, that is able to pump after absorption
the peptide back into the gastro-intestinal lumen. In addition, after absorption, peptides can
face some other problems like the first-pass effect, thus reducing their bioavailability in the
systemic circulation. To overcome these problems, the peptides can be administered sub-
cutaneously, intravenously or intramuscularly. However, parenteral administration does
not guarantee that the peptides are delivered to their site of action, since the endogenous
proteases may lead in any case to proteolytic degradation [79].

The antiviral activity of the orthosteric inhibitor 37 was specifically evaluated against
Huh-7 cells infected by DENV-2, thus showing an EC50 = 3.42 µM. At the same time, the
cytotoxicity of compound 37 was evaluated, obtaining a CC50 > 100 µM and a selectivity
index SI > 25.

The discreet passive membrane permeability of compound 37 was further assessed
using the parallel artificial membrane permeability assay (PAMPA); in addition, considering
the peptidic nature of this inhibitor and its metabolic clearance, the metabolic stability of
37 was assessed using liver microsomes from rats, obtaining a half-life of 175 min. Thus,
considering its membrane permeability and its metabolic stability, compound 37 showed
improved properties in DENV cell-based assays with respect to its parent molecules [61].

The permeability of compound 32 was also assessed with PAMPA, thus obtaining a
Pe = 1.90 × 10−6 cm/s, that is a good starting point for peptide-based molecules, indicating
the ability of this compound to pass the biological membranes and enter cells [58].
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9. Conclusions and Perspectives

Proteases are generally ubiquitous in all life forms and are essential to many organisms,
such as viruses, bacteria, and protozoa, since they regulate a number of cellular processes
by catalyzing the enzymatic degradation of proteins.

Within the drug discovery process for the treatment of DENV and ZIKV infections, the
protease NS2B/NS3 is considered the primary target for the development of novel antiviral
drugs.

The NS2B/NS3 is a trypsin-like serine protease that has a dual function both in the viral
replication process and in the innate immunity; the NS3 protease acts through a catalytic
triad composed by His51/Asp75/Ser135 residues located in a cleft between the β-barrels.
The NS2B protein acts as a cofactor of the NS3 protease, undergoing a conformational
change during the binding to NS3, necessary to activate the protease.

As showed in this perspective, the aim of our work was to discuss the main features
of the most active NS2B/NS3 inhibitors. So, among the allosteric inhibitors within the
proline-based compounds, it has been highlighted that the compound 7 represents the most
active inhibitor against ZIKV protease, with an IC50 value of 0.32 µM, while compound 2
showed the best inhibition against DENV2 protease, with an IC50 value of 4.2 µM. In Vero
cells, compound 7 was proven to suppress the viral replication, thus decreasing the viral
genome copy at a concentration of 3 µM.

Within the pyrazine-based inhibitors, compound 23 showed against ZIKV, DENV2,
and DENV3 proteases with submicromolar IC50s (IC50 = 0.20 µM, 0.59 µM, and 0.52 µM,
respectively).

Concerning the orthosteric inhibitors, the most promising DENV2 inhibitor is thiazolid
inylcarbonyl-Arg-Lys-(OCH2C6H6(4-CF3)-Phg-NH2 (36), which showed an IC50 value of
18 nM, whereas compound 48 was the most active ZIKA NS2B/NS3 protease inhibitor,
with an IC50 value of 280 nM.

A central issue for the development of potent antiviral drugs is the enhancement of
the antiviral activity at the cellular level, in such a way as to overpass the discrepancy that
often may occur between the enzymatic activity and the efficacy against appropriate cell
lines infected by ZIKV and DENV.

To enhance the cell permeability, prodrug approaches, like the design of suitable
carrier-linked prodrugs, have been proposed as a tool for increasing the intracellular
uptake of inhibitors. Finally, novel technologies such as the incorporation of drugs into
liposomes or nanocarriers might offer new opportunities to develop potent NS2B/NS3
inhibitors into efficacious antiviral agents.
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