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Abstract: To assess the impact of Enchytraeidae (potworms) on the functioning of the decomposer
system, knowledge of the feeding preferences of enchytraeid species is required. Different food
preferences can be explained by variations in enzymatic activities among different enchytraeid
species, as there are no significant differences in the morphology or anatomy of their alimentary
tracts. However, it is crucial to distinguish between the contribution of microbial enzymes and the
animal’s digestive capacity. Here, we computationally analyzed the endogenous digestive enzyme
genes in Enchytraeus albidus. The analysis was based on RNA-Seq of COI-monohaplotype culture
(PL-A strain) specimens, utilizing transcriptome profiling to determine the trophic position of the
species. We also corroborated the results obtained using transcriptomics data from genetically
heterogeneous freeze-tolerant strains. Our results revealed that E. albidus expresses a wide range
of glycosidases, including GH9 cellulases and a specific digestive SH3b-domain-containing i-type
lysozyme, previously described in the earthworm Eisenia andrei. Therefore, E. albidus combines
traits of both primary decomposers (primary saprophytophages) and secondary decomposers (sapro-
microphytophages/microbivores) and can be defined as an intermediate decomposer. Based on
assemblies of publicly available RNA-Seq reads, we found close homologs for these cellulases and
i-type lysozymes in various clitellate taxa, including Crassiclitellata and Enchytraeidae.

Keywords: potworms; decomposers; transcriptome; cellulase; digestive lysozyme; COI-monohaplotype
culture

1. Introduction

The 1975 article by J. M. Anderson, “The Enigma of Soil Animal Species Diversity”,
highlighted the high species richness found in soils and emphasized the unknown mecha-
nisms contributing to this diversity [1]. Despite several new hypotheses, the mechanisms
driving species richness in soils have remained largely elusive [2,3]. The relationship
between ecosystem characteristics and the number of trophic levels in food webs has been
debated, with some studies suggesting that the number of trophic levels increases with
productivity and resource availability [4], while others propose that nutrient-poor systems
have more trophic levels due to a large number of interactions between species [5]. Over the
past decade, researchers have also hypothesized that the high species richness observed in
small quantities of soil is related to the high heterogeneity found at very fine scales within
the soil [2]. However, the enigma of how large numbers of soil animal species occupying
the same trophic level, such as decomposers, can coexist in one food web remains an open
question. Traditional research methods often provide only limited information on feeding,
leaving the trophic status of many soil invertebrate groups uncertain or theoretical [6–8].
Feeding is a complex process that involves food choice, ingestion, digestion, assimilation,
and retention. Traditional research methods, which include direct observation of feeding
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behavior, gut content analyses, enzymatic analyses of whole-body homogenates, cultivation
on different nutrient sources, or choice tests, typically address only one or a few component
processes and are unable to provide comprehensive information about the exact source
and components digested and assimilated from the ingested food bolus [7,9]. Significant
advancements in the understanding of the diets and trophic interactions of soil animals in
recent years have been made possible through more sophisticated methods such as stable
isotope analysis [9]. This technique provides estimates of the retention of atoms from basal
food resources and allows for the indication of the trophic level of the analyzed group
of animals in the food web. However, bulk natural stable isotopes provide only rough
information about the basal resources used by the analyzed animals, rarely allowing for the
reconstruction of species-specific feeding interactions in soil [7]. Distinguishing between
bacterial and fungal feeding, as well as feeding on different taxa of microorganisms, is chal-
lenging and often impossible using stable isotope analysis alone [8,10]. Moreover, several
ontogenetic, physiological, and biochemical factors can affect the isotopic composition of
animal tissues [6,11]. Another challenge is the dietary flexibility exhibited by many soil
animals, which can vary depending on available food sources and may result in these
animals operating on more than one trophic level [8,12]. Furthermore, the contribution of
microbial enzymatic apparatus to the invertebrate digestion process cannot be overlooked.
The enzyme activity of microbiota or food-associated microorganisms can significantly
affect the host’s digestive capabilities [13,14]. Therefore, while stable isotope analysis is
currently a leading method in trophic ecology studies, it should be used in conjunction
with other complementary approaches, given its limitations. Recently, these combined
multi-methodological approaches have successfully revealed the multidimensional trophic
niche of springtails (Collembola) [7].

Among the major groups of soil invertebrates, Enchytraeidae, also known as pot-
worms, are no exception when it comes to the uncertainty of their trophic position. Despite
being a widely distributed family of small annelids, their trophic status within the soil
food web remains unsolved, even after several studies have used stable isotope analy-
sis [11,15–17]. It is still unclear whether they should be classified as primary or secondary
decomposers. Detailed studies on the food preferences of enchytraeids have only been
conducted in a few species [18]. The conclusions drawn from these findings are also limited
by the high level of cryptic diversity within the family [19–21], as cryptic species may differ
in their specific ecological and physiological properties [22,23].

Enchytraeids share the general body plan of oligochaetes and represent a relatively
simple and uniform group [24,25]. There are no significant differences in the anatomy of the
alimentary tract or highly specialized morphological structures that could clearly indicate
the feeding strategy of most potworm species (but cf. Aspidodrilus kelsalli or Pelmatodrilus
planariformis [26]; these two unique species with some flattened body regions are ectocom-
mensals that have adapted to living on earthworms). Different food preferences could be
explained by varying enzymatic activities among different enchytraeid species. However,
this hypothesis requires support from genetic methods to investigate the endogenous
expression of digestive enzyme genes and distinguish the contribution of the microbiota
to this process. Traditional biochemical assays are not sufficient for this purpose, as it is
challenging to separate enzyme activity originating from the animal itself from activity
related to exogenous sources, such as microbiota or food-associated microorganisms [8].

An alternative and more sophisticated approach to traditional biochemical meth-
ods in trophic ecology studies, which complements stable isotope analysis, involves the
use of RNA sequencing and transcriptome profiling. Transcriptomics provides access to
transcriptome-wide gene expression data, enabling the characterization of an organism’s
limitations and capacities for various traits [27], including the repertoire of digestive en-
zyme genes. Although RNA-Seq is commonly used to predict the digestive capacity of
economically important species of crustaceans [28–30], fish [31], and insects [32,33], this
approach has not been widely adopted in trophic ecology studies. Despite using other
molecular methods, such as molecular gut content or meta-barcoding microbiome analyses
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to understand better the trophic links between species and their diets in soil food webs, the
potential of RNA-Seq in this field remains largely untapped.

The white worm, Enchytraeus albidus, is an economically and scientifically important
species of Enchytraeidae. It can be found in both terrestrial and marine littoral habitats [20].
To date, E. albidus or any other member of the Enchytraeidae has not been the subject of
molecular studies regarding its digestive capacity. In the last published review dedicated
to the food preferences of enchytraeids [18], a classification of trophic types was proposed
for the most commonly studied genera in relation to food preferences and feeding behavior.
Enchytraeus spp., including E. albidus, were assigned to the secondary decomposer group. In
the present study, we determined the trophic position of E. albidus based on RNA-Seq data.
We obtained raw reads and performed de novo transcriptome assembly for the E. albidus
PL-A strain originating from a COI-monohaplotype culture. We conducted a transcriptome
screening, identified the expressed genes involved in digestive enzyme production in E.
albidus, and performed in silico characterization of the sequences. Moreover, we compared
and cross-checked the obtained data with transcriptomics data related to the freeze-tolerant
German (G) and Greenlandic (N) strains of E. albidus [34]. Given that primary decomposers
are species that primarily feed on litter material that is little colonized by microorganisms,
while secondary decomposers mainly feed on microorganisms and/or plant residues that
are partially degraded due to microbial activity, we tested the following two hypotheses:
(1) E. albidus does not exhibit endogenous expression of the enzyme genes from the cellu-
lase group, and (2) E. albidus exhibits endogenous expression of digestive enzyme genes
involved in the digestion of bacteria or fungi (e.g., peptidoglycan hydrolases or chitinases).
These hypotheses, consistent with the last review’s postulation that E. albidus belongs to
the secondary decomposer group, were confronted with the repertoire of digestive enzyme
genes in this species, as revealed by transcriptomics data.

2. Results
2.1. RNA-Seq, Transcriptome Assembly, and Annotation Results

To decipher the genes expressed and responsible for digestive enzyme production,
and given the absence of a reference genome for E. albidus, we conducted transcriptome
sequencing using the RNA-Seq method and performed de novo transcriptome assembly.
RNA sequencing was performed on a single sample, comprising four PL-A strain specimens
of E. albidus originating from a single cocoon. A total of 118,210,442 reads were generated,
resulting in a cumulative read base of 17.8 gigabases (Gb). The GC content of the raw
data was determined to be 44.96%. Furthermore, quality assessment indicated that the
percentage of bases with a Phred quality score ≥ 30 (Q30) was 93.42%, while the percentage
of bases with a Phred quality score ≥ 20 (Q20) was 97.57%.

As a technical side note pertaining to the quality assessment of RNA samples des-
ignated for RNA-Seq, with potential relevance for readers, it should be mentioned that
in E. albidus the 28S ribosomal RNA undergoes fragmentation into two subparts under
heat-denaturing conditions due to a so-called hidden break. Consequently, when analyzing
the integrity of rRNA, samples exhibited an atypical profile in the Bioanalyzer electrophero-
gram, characterized by a nearly dominant peak at the 18S position and the absence of a
typical peak at the 28S position, resulting in a low rRNA ratio (e.g., 0.1) (for more details,
see [35,36]). Nonetheless, as described above, the generated reads were of good quality.

The BUSCO assessment of de novo-assembled transcriptomes for enchytraeid species
revealed that E. albidus is currently the only species with a transcriptome in the Sequence
Read Archive (SRA) that can be considered complete (see Table 1). A comparison of KEGG-
annotated transcriptomes for available E. albidus strains (refer to Table 2) demonstrates
that, despite a roughly 30% difference in the number of assembled sequences, our PL-A
strain transcriptome, derived from a single run, exhibits a striking similarity in the count of
assigned non-redundant KOs (KEGG Orthology identifiers) for metabolic enzymes when
compared to the other transcriptomes. However, it should be noted that the lower number
of assembled sequences can be attributed to the high genetic homogeneity of our sample, as
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it was derived from a pure COI-monohaplotype culture, as well as the much lower number
of specimens used for RNA-Seq library preparation.

Table 1. Transcriptomes available in the SRA repository for enchytraeid species, and their completeness.

BUSCO

Species SRR Run(s)
for Assembly

Complete
Single-Copy

Complete
Duplicated Fragmented Missing

BUSCO
Groups

Complete
Representation

Guaranidrilus sp. SRR10997448 7.55% 18.66% 15.72% 58.07% 26.21%

Grania simonae SRR10997449 12.40% 30.30% 11.0% 46.30% 42.70%

Mesenchytraeus armatus SRR10997443 16.98% 43.08% 17.72% 22.22% 60.06%

Mesenchytraeus pedatus SRR10997442 10.27% 64.99% 11.43% 13.31% 75.26%

Mesenchytraeus solifugus SRR10997441 12.58% 64.99% 10.38% 12.05% 77.57%

Enchytraeus crypticus SRR10997417 15.93% 44.97% 18.76% 20.34% 60.90%

Enchytraeus albidus
German strain

SRR5633671,
SRR5633673,
SRR5633674,
SRR5633678,
SRR5633679,
SRR5633680

7.86% 86.48% 3.98% 1.68% 94.34%

Enchytraeus albidus
Nuuk strain

SRR5633669,
SRR5633670,
SRR5633672,
SRR5633676,
SRR5633677,
SRR5633681

7.55% 87.95% 3.04% 1.47% 95.50%

Enchytraeus albidus
PL-A strain (this study) SRR24185061 29.45% 67.51% 1.47% 1.57% 96.96%

Table 2. Comparison of the KEGG-annotated transcriptomes of different E. albidus strains. The table
summarizes the number of sequences (entries) and their classification into functional categories by
GhostKOALA.

PL-A German Nuuk

Raw dataset entries 84,423 125,364 113,553
Clean dataset entries (after decontamination) 72,044 103,077 96,427
Clean dataset annotated entries (after decontamination) 34,412 (47.8%) 50,473 (49.0%) 48,234 (50.0%)
Protein families: genetic information processing 7451 10,394 9995
Environmental information processing 4424 6026 5953
Genetic information processing 4321 7063 6701
Protein families: signaling and cellular processes 4049 5957 5348
Cellular processes 2784 4114 3872
Protein families: metabolism 2062 2887 2824
Organismal systems 1696 2399 2361
Carbohydrate metabolism 1190 2016 1984
Human diseases 1117 1460 1493
Lipid metabolism 1030 1567 1605
Unclassified: metabolism 747 1175 1094
Glycan biosynthesis and metabolism 723 1076 974
Amino acid metabolism 698 976 925
Nucleotide metabolism 488 717 651
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Table 2. Cont.

PL-A German Nuuk
Unclassified: signaling and cellular processes 411 650 514
Energy metabolism 401 743 749
Metabolism of cofactors and vitamins 397 620 583
Metabolism of other amino acids 239 397 376
Metabolism of terpenoids and polyketides 86 92 111
Unclassified: genetic information processing 44 62 63
Xenobiotics biodegradation and metabolism 28 39 38
Number of assigned non-redundant KOs for metabolic enzymes 1948 1959 1962
Number of assigned redundant/non-redundant KOs for
glycosidases (EC 3.2.1) 39/38 41/39 45/42

2.2. Integrative Annotation of Glycosidase Genes in E. albidus Strains

Using microbial-decontaminated data for our COI-monohaplotype PL-A specimens,
and corroborated by information from two intraspecifically heterogeneous freeze-tolerant
strains of E. albidus, we identified over 1900 functional orthologs for metabolic enzymes.
From these orthologs, around 40 KO identifiers were assigned to glycosidases by KEGG-
GhostKOALA. Additional glycoside hydrolase candidates (i.e., lysozyme and mannan
endo-1,4-β-mannosidases) for digestive enzyme genes that were unannotated in the initial
GhostKOALA dataset were identified through PANNZER2 and KofamKOALA annotations
using adjusted thresholds. Collectively, we pinpointed 30 digestive gene candidates encod-
ing glycosidases and assessed the number of unique sequence variants for them across E.
albidus strains (Table 3). These selected expressed genes could be further roughly grouped
into (1) starch- and glycogen-digesting enzymes (α-amylase I/II, maltase-glucoamylase,
maltase-glucoamylase intestinal-like isoform/intestinal-like isoform X2), (2) cellulose- and
lichenan-digesting enzymes (endo-β-1,4-glucanase I/II, endo-1,3(4)-β-glucanase), (3) chitin-
digesting enzymes (chitinase I/II, di-N-acetylchitobiase/di-N-acetylchitobiase isoform X1,
and formally lysozyme, which is mainly a peptidoglycan-degrading enzyme), (4) xylan-
digesting enzymes (β-glucosidase/xylosidase I–V), and (5) other specific carbohydrate-
digesting enzymes (β-galactosidase, β-glucuronidase, α-L-fucosidase I–IV, β-mannosidase,
and mannan endo-1,4-β-mannosidase I–IV). It is worth mentioning that no endogenous
sequence for α,α-trehalase (α,α-trehalose glucohydrolase, EC 3.2.1.28) was found (only
microbial) in the transcriptomes of E. albidus and other enchytraeid species, which suggests
that enchytraeids lack this enzyme, similar to earthworms [37,38].
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Table 3. Digestive enzyme gene candidates identified among annotated glycosidases from transcriptomics data of E. albidus.

Gene Name Enzyme Commission
(EC) Number

GH Family
Classification

KEGG Orthology
(KO) Identifier

Recovered in Strain Total Number of
Protein Variants

Predicted
Localization

Notes
PL-A German Nuuk

1 α-Amylase I 3.2.1.1 GH13_24 K01176 + + + 6 Extracellular Reported in [39].

2 α-Amylase II 3.2.1.1 GH13_24 K01176 + + + 6 Extracellular Reported in [39]. It might exhibit additional
transglycosylation activity (EC 2.4.1.25).

3 Maltase-glucoamylase,
intestinal 3.2.1.3; 3.2.1.20 GH31_1 K12047 + + + 6 Cell

membrane
Because maltase-glucoamylase and sucrase-isomaltase
share a common ancestry and striking structural
similarities, an alternative EC annotation with dbCAN3
indicates sucrase-isomaltase (EC 3.2.1.48; EC 3.2.1.10).

4 Maltase-glucoamylase,
intestinal-like isoform 3.2.1.20 GH31_1 K01187 Partial + + 7 Extracellular

5 Maltase-glucoamylase,
intestinal-like isoform X2 3.2.1.20 GH31_1 K01187 + + + 5 Extracellular

6 Lysosomal α-glucosidase 3.2.1.20 GH31 K12316 + + + 8 Extracellular Analyses with DeepLoc 2.0 and BUSCA are in agreement
regarding the extracellular localization of the protein.

7 Endo-β-1,4-glucanase I 3.2.1.4 GH9 K01179 + + + 7 Extracellular
Homologous endoglucanases were reported for the
earthworms Metaphire hilgendorfi [40], Eisenia fetida [41],
and E. andrei [42], as well as for the polychaetes Perinereis
brevicirris [43] and P. aibuhitensis (Acc. ANR02619).8 Endo-β-1,4-glucanase II 3.2.1.4 GH9 K01179 + + + 14 Extracellular

9 Endo-1,3(4)-β-glucanase 3.2.1.6 GH81 K01180 + + + 6 Extracellular

Based on transcriptomics data, complete homologous
sequences were recovered for Eisenia andrei
(SRR11091733–SRR11091735), Lumbricus castaneus
(SRR7287337), L. rubellus (SRR10752881), and Hrabeiella
periglandulata (SRR10997424), while a partial sequence
was found for Enchytraeus crypticus (SRR10997417).

10 β-Glucosidase/xylosidase I 3.2.1.21; 3.2.1.37 GH3 K05349 + + + 10 Extracellular

Analysis using dbCAN3 revealed additional EC
assignments for these proteins, i.e., EC 3.2.1.55, EC
3.2.1.6, and EC 3.2.1.73.

11 β-Glucosidase/xylosidase II 3.2.1.21; 3.2.1.37 GH3 K05349 + + + 7 Extracellular

12 β-Glucosidase/xylosidase III 3.2.1.21; 3.2.1.37 GH3 K05349 Partial + + 3 Extracellular

13 β-Glucosidase/xylosidase IV 3.2.1.21; 3.2.1.37 GH3 K05349 + + + 5 Extracellular

14 β-Glucosidase/xylosidase V 3.2.1.21; 3.2.1.37 GH3 K05349 + + + 7 Extracellular

15 Chitinase I 3.2.1.14 GH18 K01183 + + + 6 Extracellular This is a homolog to a novel digestive chitinase from
Eisenia andrei [44] and E. fetida [45].

16 Chitinase II 3.2.1.14 GH18 K01183 + + + 3 Extracellular This is a divergent paralog of chitinase I that possesses
an additional catalytic domain.

17 Di-N-acetylchitobiase 3.2.1.- GH18 K12310 + + + 6 Extracellular -
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Table 3. Cont.

Gene Name Enzyme Commission
(EC) Number

GH Family
Classification

KEGG Orthology
(KO) Identifier

Recovered in Strain Total Number of
Protein Variants

Predicted
Localization

Notes
PL-A German Nuuk

18 Di-N-acetylchitobiase isoform
X1 3.2.1.- GH18 K12310 + + + 3 Extracellular -

19 Lysozyme (i-type) 3.2.1.17 GH22i N/A + + Partial 7 Extracellular

This is a close homolog to a novel i-type digestive
lysozyme from Eisenia andrei (Acc. QBC73604) reported
in [46]. The annotation of the destabilase domain also
indicates isopeptidase (EC 3.5.1.44) activity. GH
classification was assessed based on the WebLogo
sequence signature from [47].

20 β-Galactosidase 3.2.1.23 GH35 K12309 + + + 6 Extracellular Nielsen [37] reported β-galactosidase activity in
enchytraeids and earthworms.

21 β-Glucuronidase 3.2.1.31 GH2 K01195 + + + 7 Extracellular -

22 α-L-fucosidase I 3.2.1.51 GH29 K01206 + + + 3 Extracellular Putative homologous sequences were identified by
BLASTp in other annelids (Owenia fusiformis, Ridgeia
piscesae, Capitella teleta), as well as in some mollusk and
echinoderm species.

23 α-L-fucosidase II 3.2.1.51 GH29 K01206 + + + 8 Extracellular

24 α-L-fucosidase III 3.2.1.51 GH29 K01206 + + + 6 Extracellular

25 α-L-fucosidase IV 3.2.1.51 GH29 K01206 + + + 13 Extracellular -

26 β-Mannosidase 3.2.1.25 GH2 K01192 Partial + + 8 Extracellular -

27 Mannan
endo-1,4-β-mannosidase I 3.2.1.78 GH5_10 K19355 + + + 5 Extracellular -

28 Mannan
endo-1,4-β-mannosidase II 3.2.1.78 GH5_10 K19355 Partial + + 6 Extracellular -

29 Mannan
endo-1,4-β-mannosidase III 3.2.1.78 GH5_10 K19355 Partial + + 8 Extracellular -

30 Mannan
endo-1,4-β-mannosidase IV 3.2.1.78 GH5_10 K19355 + + + 7 Extracellular This is a close homolog to endo-1,4-β-mannanase from

Eisenia fetida (Acc. BBB35836), reported in [48].



Int. J. Mol. Sci. 2024, 25, 4685 8 of 35

2.3. Integrative Annotation of Protease Genes in E. albidus Strains

Sequence analysis and annotation of E. albidus transcriptomics data revealed that
enchytraeids do not have close homologs of classical trypsin and chymotrypsin enzymes,
similar to earthworms [49]. Earthworms possess proteases with trypsin-like and
chymotrypsin-like activities, which are involved in the digestion of protein and peptides in
food and are mainly localized in the crop, gizzard, and anterior intestine [50–52]. These
serine proteases, collectively known as lumbrokinases, exhibit fibrinolytic activity and
relatively broad substrate specificities [50]. Some of these enzymes can be in glycosylated
form [53].

Based on the transcriptomics data for E. albidus, we identified at least four fibrinolytic
serine protease genes for which the transcripts were initially KEGG-annotated as trypsin,
chymotrypsin, and elastase sequences (Table 4). These fibrinolytic serine proteases share
significant identity and similarity with sequences of fibrinolytic enzymes from enchytraeid
Enchytraeus japonensis, as well as earthworms’ lumbrokinases, as cataloged in GenBank. In
E. albidus, these serine proteases constitute a related protein cluster, presenting sequence
and structural parallels that complicate precise BLASTp identification of the potential single
closest homolog, at least outside the taxonomic family. Moreover, we identified ten different
genes comprising a total of 52 unigenes for carboxypeptidase A/B-like (EC 3.4.17.1; EC
3.4.17.2), and three different genes comprising a total of 14 unigenes for aminopeptidase N
(EC 3.4.11.2), shared across the E. albidus strains (Table 5).

2.4. Integrative Annotation of Digestive Lipases in E. albidus Strains

Before nutritional fat can be transported within the body for storage in adipose tissues
or direct energy production, it must first undergo hydrolysis by lipolytic enzymes [54]. We
identified four candidates for bile salt-stimulated lipase (CEL) genes and one distinct gene
candidate for digestive secretory phospholipase A2. The identified lipolytic enzyme genes
are presented in Table 6. Among the four expressed CEL genes identified in E. albidus, bile
salt-stimulated lipase IV was not recovered from the assembled transcripts for the PL-A
strain. Nonetheless, a BLASTn search on the raw reads (SRX19982531), using the German
strain sequence as a query, confirmed the presence of a short fragment (70 amino acids) of
identical C-terminal end of the lipase in the data. This indicates that the gene is indeed
expressed in the PL-A strain but was not recovered in subsequent steps of transcriptome
assembly and protein prediction.

2.5. Phylogenetic Analysis of Selected Digestive Enzymes

The collected data (Supplementary Data S1), including transcriptomics data with
varying sequencing depths and BUSCO completeness, enabled us to conduct an analysis
and construct phylogenetic trees for putative cellulase (endo-β-1,4-glucanase, EC 3.2.1.4)
and digestive i-type lysozyme proteins identified in E. albidus and among other members
of Clitellata. This robust dataset underpins our phylogenetic inferences, providing insights
into the evolutionary relationships of these enzymes.
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Table 4. Putative digestive fibrinolytic proteases identified among trypsin-like and chymotrypsin-like sequences from transcriptomics data of E. albidus and their in
silico characterization.

GhostKOALA-KofamKOALA Annotation All Data SignalP 6.0 DeepTMHMM DeepLoc 2.0 Swiss Model BLASTp
SMART

and
InterPro

Enzyme KO Gene

Total
Number of

Protein
Variants

Signal
Peptide

Transmembrane
Region and
Topology
Prediction

Subcellular
Localization
Prediction

and
Probability

Possible
Template, Its
Origin, and
Accession
Number

Identity
[%] GMQE

Hit and GenBank
Accession
Number

Identity
[%]

Predicted
Domain

and
Family

1 Trypsin (EC
3.4.21.4) K01312 PRSS1/2/3 9 Yes Globular +

signal peptide
Extracellular

(0.94)

Fibrinolytic
enzyme Ej-FEI-1;

Enchytraeus
japonensis; Uniprot

ID H1A7B3

83–84 0.90

Fibrinolytic
enzyme

Enchytraeus
japonensis Ej-FEI-2;

BAL43183

84

Tryp_SPc;
Peptidase
S1A, chy-

motrypsin
family

2 Chymotrypsin
(EC 3.4.21.1) K01310 CTRB 14 Yes Globular +

signal peptide
Extracellular

(0.95)

Fibrinolytic
enzyme

component B;
Eisenia fetida; PDB

ID 1ym0.1.A

48–50 0.68–0.69

Fibrinolytic
enzyme

Enchytraeus
japonensis

Ej-FEIII-2b;
BAL43192

49

3 Trypsin (EC
3.4.21.4) K01312 PRSS1/2/3 1 Yes Globular +

signal peptide
Extracellular

(0.96)

Cationic trypsin;
Bos Taurus; PDB

ID 4xoj.1.A
29 0.61

Fibrinolytic
protease 0 Eisenia
fetida; ABG68022

53

4

Pancreatic
elastase 1/2

(EC 3.4.21.36)
(EC 3.4.21.71)

K01326
K01346

CELA1/
CELA2 15 Yes Globular +

signal peptide
Extracellular

(0.95)

Fibrinolytic
enzyme Ej-FEI-1;

Enchytraeus
japonensis; Uniprot

ID H1A7B3

74–86 0.87–0.90

Fibrinolytic
enzymes

Enchytraeus
japonensis
BAL43184,
BAL43186,
BAL43182,
BAL43188

74–85
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Table 5. Putative carboxypeptidase A/B-like and aminopeptidase N gene candidates annotated for E. albidus using transcriptomics data.

Recovered in Strain All Data SignalP 6.0 DeepTMHMM DeepLoc 2.0

Enzyme and (Pre-)Protein Length PL-A German Nuuk Total Number of
Protein Variants Signal Peptide Transmembrane

Region and Topology Prediction
Subcellular
Localization

Carboxypeptidase A/B-like I
(502) + + + 5 Yes Globular + signal peptide Extracellular

Carboxypeptidase A/B-like II
(505) + + Partial 4 Yes Globular + signal peptide Extracellular

Carboxypeptidase A/B-like III
(467) + + + 5 Yes Globular + signal peptide Extracellular

Carboxypeptidase A/B-like IV
(431) + + + 1 Yes Globular + signal peptide Extracellular

Carboxypeptidase A/B-like V
(424) + + + 2 Yes Globular + signal peptide Extracellular

Carboxypeptidase A/B-like VI
(425) + + + 12 Yes Globular + signal peptide Extracellular

Carboxypeptidase A/B-like VII
(432) + + + 6 Yes Globular + signal peptide Extracellular

Carboxypeptidase A/B-like VIII
(422) + + + 4 Yes Globular + signal peptide Extracellular

Carboxypeptidase A/B-like IX
(446) + + Partial 6 Yes Globular + signal peptide Extracellular

Carboxypeptidase A/B-like X
(429) + + + 7 Yes Globular + signal peptide Extracellular

Aminopeptidase N I
(968) + + + 5 No Alpha TM Cell membrane

Aminopeptidase N II
(968) + + + 3 No Alpha TM Cell membrane

Aminopeptidase N III
(1006) + + + 6 No Alpha TM Cell membrane
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Table 6. Putative lipase gene candidates annotated for E. albidus from transcriptomics data.

GhostKOALA Annotation Recovered in Strain Data SignalP 6.0 DeepTMHMM DeepLoc 2.0 Panther InterPro

Enzyme and
Pre-Protein Length KO Gene PL-A German Nuuk

Total
Number of

Protein
Variants

Signal
Peptide

Transmembrane
Region and Topology

Prediction

Subcellular
Localization Panther Hit Predicted Domain

Bile salt-stimulated
lipase I

[EC 3.1.1.3 3.1.1.13]
(631)

K12298 CEL Partial + + 6 Yes Globular + signal
peptide Extracellular

Bile
salt-activated

lipase

Carboxylesterase
type B

Bile salt-stimulated
lipase II

[EC 3.1.1.3 3.1.1.13]
(636; 638)

K12298 CEL + Partial Partial 5 Yes Globular + signal
peptide Extracellular

Bile
salt-activated

lipase

Carboxylesterase
type B

Bile salt-stimulated
lipase III

[EC 3.1.1.3 3.1.1.13]
(636)

K12298 CEL Partial + + 5 Yes Globular + signal
peptide Extracellular Carboxylesterase Carboxylesterase

type B

Bile salt-stimulated
lipase IV

[EC 3.1.1.3 3.1.1.13]
(638)

K12298 CEL - + + 3 Yes Globular + signal
peptide Extracellular

Bile
salt-activated

lipase

Carboxylesterase
type B

Secretory
phospholipase A2

[EC 3.1.1.4]
(237; 236)

K01047 PLA2G,
SPLA2 + + + 8 Yes Globular + signal

peptide Extracellular RH14732P Phospholipase A2
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2.5.1. Phylogenetic Analysis of Cellulases (Endo-β-1,4-Glucanases)

Reciprocal BLASTp analyses of endo-β-1,4-glucanase I/II protein sequences primarily
obtained from Clitellata revealed significant similarity to previously characterized and
closely related cellulases (GH9 family) from earthworms such as Metaphire hilgendorfi [40]
and Eisenia spp. [41,42]. All hits to these sequences had an E-value of 0, indicating a
high-quality match (Supplementary Table S1). Additionally, we identified two closely
homologous cellulases from the transcriptomics data of the terrestrial polychaete Hrabeiella
periglandulata. This species is the sole representative of Hrabeiellidae, and along with
the polychaete Aeolosoma is considered to form a sister group to Clitellata in the species
phylogeny of Annelida [55]. After rooting the tree at H. periglandulata, our phylogenetic
analysis of endo-β-1,4-glucanase I/II proteins (Figure 1) indicated that Capilloventer australis
and Phreodrilidae sp. cellulases diverged from a shared ancestor. Notably, two distinct
but homologous cellulase genes have been identified in C. australis. Furthermore, the
Capilloventer–Phreodrilidae cluster was found to be a sister to the second paralogous protein
variants from C. australis plus all remaining clitellate sequences. Within the remaining
Clitellata, two main clades were recovered with high support. The first one contains
a single sequence from the lumbriculid Lumbriculus variegatus. In the second, a single
representative of Naididae in our analysis—Pristina leydyi—was recovered as a sister to
Crassiclitellata (represented by earthworm species) plus Enchytraeidae with Randiella. The
Crassiclitellata cluster was highly resolved, but its evolutionary history appears complex,
as indicated by an independent endoglucanase duplication event in the most basally placed
Metaphire guillelmi. This paralogous copy was recovered as a sister to all other earthworm
endoglucanases, including the remaining Metaphire sequences.

The second main clade comprised all Enchytraeidae proteins sister to a single cellulase
from Randiella, with high support. The Enchytraeidae cluster was mostly well resolved.
Within Enchytraeidae, two subclusters were recovered. In the first, sequences from Gra-
nia, Guaranidrilus, and Mesenchytraeus spp. were grouped. In the second, proteins from
Enchytraeus albidus and E. crypticus were grouped together in a manner discordant with
species phylogeny. A paralogous sequence from E. crypticus was recovered as a sister to
all other proteins from E. albidus and E. crypticus. The remaining E. crypticus sequences
were recovered as nested within E. albidus. This may suggest incomplete lineage sorting, as
vertical gene flow between those species is unlikely due to physical reproductive barriers,
although horizontal gene transfer for E. crypticus was reported [56].

2.5.2. Phylogenetic Analysis of Digestive i-Type Lysozyme

Phylogenetic analysis of the putative digestive i-type lysozyme proteins found across
Clitellata reveals that the tree (Figure 2) bifurcates into two distinct clades when rooted at
C. australis. The first clade is composed of a single sequence from a member of the family
Phreodrilidae. The second clade, which is almost maximally supported, encompasses
the remaining sequences from all other analyzed clitellate families. This clade is further
divided into two clusters, each receiving very high support. The first cluster contains all
Enchytraeidae, with two members of Naididae (Pristina and Paranais) nested within it.
These Naididae members were recovered as a sister group to Mesenchytraeus spp., although
this relationship within Enchytraeidae is supported with low confidence. Interestingly, in
a highly resolved subclade containing E. crypticus and E. albidus, the sequences were not
sorted in a species-specific manner.
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Figure 1. Best-scoring maximum likelihood tree (lnL = −11,983.127) resulting from the analysis of 
mature amino acid sequences of the putative endo-β-1,4-glucanase I/II proteins in Clitellata. Most 
sequences used in the analysis were retrieved from SRA transcriptomics data assembled in Trinity. 
Sequences with identifiers prefixed by an accession number were sourced from GenBank database. 
Details of the other sources, used for acquiring additional transcriptomics data and included in the 
phylogenetic analysis, can be found in Supplementary Table S3. Green squares denote branches with 
both SH-aLRT and UFBoot values (if ≥70) at the respective nodes. Yellow squares indicate support 

Figure 1. Best-scoring maximum likelihood tree (lnL = −11,983.127) resulting from the analysis of
mature amino acid sequences of the putative endo-β-1,4-glucanase I/II proteins in Clitellata. Most
sequences used in the analysis were retrieved from SRA transcriptomics data assembled in Trinity.
Sequences with identifiers prefixed by an accession number were sourced from GenBank database.
Details of the other sources, used for acquiring additional transcriptomics data and included in the
phylogenetic analysis, can be found in Supplementary Table S3. Green squares denote branches with
both SH-aLRT and UFBoot values (if ≥70) at the respective nodes. Yellow squares indicate support
values (if ≥70) only for UFBoot, while blue squares indicate support values (if ≥70) only for SH-aLRT.
The tree was rooted at the terrestrial polychaete Hrabeiella periglandulata.



Int. J. Mol. Sci. 2024, 25, 4685 14 of 35

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 11 of 33 
 

 

values (if ≥70) only for UFBoot, while blue squares indicate support values (if ≥70) only for SH-aLRT. 
The tree was rooted at the terrestrial polychaete Hrabeiella periglandulata. 

2.5.2. Phylogenetic Analysis of Digestive i-Type Lysozyme 
Phylogenetic analysis of the putative digestive i-type lysozyme proteins found across 

Clitellata reveals that the tree (Figure 2) bifurcates into two distinct clades when rooted at 
C. australis. The first clade is composed of a single sequence from a member of the family 
Phreodrilidae. The second clade, which is almost maximally supported, encompasses the 
remaining sequences from all other analyzed clitellate families. This clade is further di-
vided into two clusters, each receiving very high support. The first cluster contains all 
Enchytraeidae, with two members of Naididae (Pristina and Paranais) nested within it. 
These Naididae members were recovered as a sister group to Mesenchytraeus spp., alt-
hough this relationship within Enchytraeidae is supported with low confidence. Interest-
ingly, in a highly resolved subclade containing E. crypticus and E. albidus, the sequences 
were not sorted in a species-specific manner. 

The second cluster consists of members of Lumbriculidae, Crassiclitellata, and two 
members of Naididae (Bathydrilus and Potamothrix), which are grouped mostly in a non-
family-specific and highly discordant manner. Interestingly, these two naidid species be-
long to the subfamilies Phallodrilinae and Tubificinae, and are therefore grouped sepa-
rately from members of the same family, Paranais and Pristina, which belong to the sub-
families Naidinae and Pristininae (the latter was previously included in Naidinae). Incon-
gruent positioning of the lysozyme from the lumbriculid Trichodrilus strandi within the 
Crassiclitellata proteins, and not with Lumbriculus variegatus, might be attributed to low 
sampling of the Lumbriculidae. In contrast, the separate grouping of lysozyme sequences 
from different members of Naididae suggests a rather complex evolutionary history of 
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Clitellata can be divided into three groups: (1) Capilloventridae–Phreodrilidae (as se-
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Figure 2. The best-scoring maximum likelihood tree (lnL = −3611.212) resulting from the analysis of 
mature amino acid sequences of the putative digestive i-type lysozyme in Clitellata. Only closely 
Figure 2. The best-scoring maximum likelihood tree (lnL = −3611.212) resulting from the analysis of
mature amino acid sequences of the putative digestive i-type lysozyme in Clitellata. Only closely
homologous sequences, distinct from those of other i-type lysozymes/destabilases, were used in the
analysis. These sequences were retrieved from SRA raw transcriptomics data assembled in Trinity. A
reciprocal BLASTp search for queries (Supplementary Table S2) revealed a match with the digestive
i-type lysozyme from Eisenia andrei (Acc. QBC73604), with an E-value lower than 2 × 10−90. This
sequence was used as the reference. Blue squares denote branches with both SH-aLRT and UFBoot
values (if ≥70) at the respective nodes. The exact values for the selected branches are given below.
The tree was rooted at Capilloventer australis.

The second cluster consists of members of Lumbriculidae, Crassiclitellata, and two
members of Naididae (Bathydrilus and Potamothrix), which are grouped mostly in a non-
family-specific and highly discordant manner. Interestingly, these two naidid species belong
to the subfamilies Phallodrilinae and Tubificinae, and are therefore grouped separately
from members of the same family, Paranais and Pristina, which belong to the subfamilies
Naidinae and Pristininae (the latter was previously included in Naidinae). Incongruent
positioning of the lysozyme from the lumbriculid Trichodrilus strandi within the Crassiclitel-
lata proteins, and not with Lumbriculus variegatus, might be attributed to low sampling of
the Lumbriculidae. In contrast, the separate grouping of lysozyme sequences from different
members of Naididae suggests a rather complex evolutionary history of lysozyme proteins
in the family.

Based on the performed phylogenetic analysis, digestive i-type lysozyme proteins
in Clitellata can be divided into three groups: (1) Capilloventridae–Phreodrilidae (as
sequences from these two families were grouped together before rooting the tree), (2)
Enchytraeidae–Naididae I, and (3) Crassiclitellata–Lumbriculidae–Naididae II.

2.6. Sequence Analysis, Domain Architecture, and Three-Dimensional Models of
Selected Glycosidases

To elucidate the functional implications of the phylogenetic relationships, we per-
formed a detailed structural analysis of the glycosidases, focusing on endo-β-1,4-glucanases
(EC 3.2.1.4) and the digestive i-type lysozyme (3.2.1.17).
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2.6.1. Digestive i-Type Lysozyme (Ealb-iLys)

Our examination of digestive i-type lysozyme from E. albidus (referred to here as
Ealb-iLys) using InterProScan and SMART uncovered the presence of an invertebrate-
type lysozyme domain, commonly referred to as destabilase [57]. The classification of
this protein into the subfamily GH_22i was based on the InterProScan search and the
identification of the signature sequence (L/D/Y/N)SCGPYQIK, as reported by Wohlkönig
and co-workers [47]. Destabilase-lysozyme proteins (i-type lysozymes) are known to
have both muramidase and isopeptidase activities. The muramidase activity, typical of
lysozyme, involves hydrolysis of the glycosidic bond between N-acetylmuramic acid and
N-acetylglucosamine in the peptidoglycan layer of bacterial cell walls. Its function as
a destabilase, an endo-ε(γ-Glu)-Lys isopeptidase, is related to the specific hydrolysis of
isopeptide bonds between the γ-carboxamide group of glutamine and the ε-amino group
of lysine (i.e., bonds between the side-chains of Glu and Lys) [58]. The predictive analysis
identified a signal peptide of 19 amino acids, MQAAVLFVFLSV(T/A)LPAALA, with the
cleavage site ALA-DIT. All pre-protein variants of Ealb-iLys were 230 amino acids long,
resulting in 211 residues for the mature protein. The domain architecture of Ealb-iLys was
found to encompass the destabilase-lysozyme domain and the SH3b domain (Figure 3A),
the latter being easily distinguishable in the tertiary structure model as densely packed
anti-parallel beta-sheets and situated upstream of the destabilase domain (Figure 3C). These
two domains are linked by a short region with low compositional complexity (linker). The
SH3b domain in Ealb-iLys consists of seven tightly packed beta-strands arranged as a
β-barrel-like fold. The last strand is interrupted by a turn of the 310 helix (η1) located
between the β6 and β7 strands. The SH3b domain is zipped by the α1-helix positioned
toward the C-terminal end and contains a cysteine residue that forms a potential disulfide
bridge with another cysteine residue of the β1-strand (Figures 3 and 4). The destabilase-
lysozyme domain of Ealb-iLys consists of two parts, which can be roughly distinguished.
The first part, called a subdomain, is formed by an α-helix (α2), two anti-parallel β-strands
(β8 and β9) forming a β-sheet, and two relatively short α-helices (α3 and α4). This part
is interconnected with another part by a long α-helix, leading to a second α-helix-based
subdomain formed by two α-helices (α5 and α6) interrupted by two 310-helices. Both
parts of the destabilase-lysozyme domain form an active site cleft. In the destabilase from
the leech Hirudo medicinalis (UniProt ID: Q25091), which lacks the SH3b domain in the
enzyme structure, an additional 310-helix is located after the first α-helix, while the β-sheet
is formed by three anti-parallel β-strands, rather than two.

The conserved amino acids in Ealb-iLys for muramidase activity, glutamic acid, and
aspartic acid [57] are located in the first subdomain; more precisely, Glu103 is located in the
α2-helix and Asp115 in the β8-strand. In a study dedicated to a closely homologous i-type
lysozyme from the earthworm E. andrei by Yu et al. [46], the authors mistakenly proposed
a nearby serine (Ser118 in Ealb-iLys) as an additional third residue contributing to this
activity. In fact, this serine is considered to be a primary candidate for the nucleophile
in isopeptidase activity but not muramidase activity. Furthermore, in i-type lysozymes
from mollusks, alanine often replaces a serine residue corresponding to residue 151 in
Ealb-iLys [59]. This substitution is also observed in several clitellate species, including E.
albidus, as we have demonstrated (Figure 5). The serine residue at this site was initially
considered to be a candidate for the isopeptidase active site. However, research by Marin
and co-workers [57] revealed that this residue is deeply buried within the protein core and
lacks access to any protein cavities, contradicting its proposed role in isopeptidase activity.
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Figure 3. Three-dimensional model of mature digestive i-type lysozyme Ealb-iLys from the E. albi-
dus PL-A strain (pLDDT = 91.386): (A) The tertiary structure of Ealb-iLys predicted by Al-
phaFold2/DeepMind v0.2, with secondary structure elements visualized using the First Glance in 
Jmol tool (version 4.1) and the DSSP 2.0 algorithm. β-Strands are shown in yellow, α-helices in pink, 

Figure 3. Three-dimensional model of mature digestive i-type lysozyme Ealb-iLys from the E.
albidus PL-A strain (pLDDT = 91.386): (A) The tertiary structure of Ealb-iLys predicted by Al-
phaFold2/DeepMind v0.2, with secondary structure elements visualized using the First Glance in
Jmol tool (version 4.1) and the DSSP 2.0 algorithm. β-Strands are shown in yellow, α-helices in pink,
310-helices in magenta, turns in blue, and regions without a defined structure in white. Disulfide
bridges are indicated by thick or thin yellow rods. (B) The spatial location of predicted disulfide
bridges within the protein backbone of Ealb-iLys. The amino acid positions that form each bond were
specified. (C) SH3b domain isolated from the rest of the Ealb-iLys protein for clarity. The selected
residue numbers were labeled for reference.

The structural model of Ealb-iLys indicates the presence of twenty-two cysteine
residues that potentially form eleven disulfide bridges (Figure 3B). Within the SH3b do-
main, three disulfide bridges are expected to be formed. On the other hand, the destabilase
domain is predicted to contain eight bridges, which is one more (an extra one at the C-
terminal end) than in the H. medicinalis destabilase. Comparative analyses with homologs
of Ealb-iLys from other clitellate species (see Figure 5) spotlight two additional conserved
cysteines (positions 192 and 194) in a majority of these species. This includes the Ea-iLys
sequence from Eisenia andrei. Homology-based modeling of Ea-iLys with the AlphaFold-
predicted Ealb-iLys model as a template revealed that these two cysteines can form an
additional, twelfth disulfide bridge. However, the formation of this bond was the only one
not favored by Disulfide by Design 2.0 analysis [60]. Nevertheless, as with many other
lysozymes [59,61], the results suggest that all twenty-two cysteine residues in Ealb-iLys are
involved in the formation of disulfide bonds.
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Figure 4. Sequence alignment and secondary structure element consensus of mature digestive i-type
lysozyme Ealb-iLys allozymes from E. albidus. Secondary structure elements were predicted and
marked according to Jmol using DSSP v2.0. β-Strands are marked as arrows. The α-helices and
310-helices are displayed as higher and lower squiggles, respectively. The symbol η refers to the 310-
helix. Turns are marked as “TT” letters above the sequence. One-residue “T” segments indicate that
the β-turn overlaps a structure of higher priority (e.g., a helix). The positions of potential disulfide
bridges are marked as pairs of green digits below the alignment. Catalytic residues for muramidase
activity are highlighted in blue, whereas those for isopeptidase activity are highlighted in brown.
Strictly identical residues are shown as white characters boxed in red, while similar residues within a
group are shown as red characters.

2.6.2. Endo-β-1,4-Glucanase I/II

Both identified endoglucanases (EC 3.2.1.4), referred to here as Ealb-Eg I and Ealb-Eg
II, have been classified as members of GH family 9. We initially distinguished between
these two putative genes based on their signal peptide sequences and distinct cleavage sites.
However, this distinction might be somewhat oversimplified, as we identified groups of
transcripts with three different open reading frame (ORF) lengths (1371, 1368, and 1353 bp),
and there are no available supportive genomics data for E. albidus. Notably, the Ealb-Eg
I variants from the N-strain exhibited a unique deletion of a single amino acid in the
sequence, in addition to substitutions. Despite these differences, all Ealb-Eg proteins share
a relatively high level of amino acid identity and possess conserved amino acid stretches
that are common across variants of both genes. The pairwise sequence divergence between
Ealb-Eg I and Ealb-Eg II was estimated to range from 4.1% to 30.1% (Table 7). It is also worth
mentioning that the original TransDecoder-predicted longest open reading frame (ORF) for
Ef-Eg I contains two additional start codons within the same frame as the coding sequence,
i.e., upstream start codons within an upstream open reading frame. The proper codon
site within the longest ORF was identified based on the Kozak sequence (AACATGA)
variant for Annelida, as reported by Satake and coworkers [62]. This identification was
further confirmed through signal peptide sequence analysis in SignalP 6.0. Notably, this
Kozak sequence variant is also found in previously characterized E. albidus α-amylases [39].
Conversely, a slightly distinct ATG flanking motif (AATATGA) was identified in Ef-Eg I
from the German strain.
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Figure 5. Multiple sequence alignment of i-type lysozymes containing the SH3b domain, found in
Clitellata. Mature sequences of Ealb-iLys homologs were aligned. Catalytic residues for muramidase
activity are marked with red arrows, whereas those for isopeptidase activity are marked with brown
arrows. The crossed-out arrow indicates a semi-conserved serine previously thought to be involved
in isopeptidase activity but disproven by a recent study by Marin and co-workers [57].
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Table 7. Estimates of evolutionary divergence between sequences of Ealb-Eg I and Ealb-Eg II pre-proteins. The number of amino acid substitutions per site is shown.
Standard error estimates are shown above the diagonal and were obtained by a bootstrap procedure (500 replicates). Analysis was conducted in MEGA7 using the
Poisson correction model and involved 21 amino acid sequences. All ambiguous positions were removed for each sequence pair. There were a total of 456 positions
in the final dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
G_DN291_c0_g1_i1_EG_I 1 0.005 0.023 0.012 0.011 0.017 0.011 0.012 0.009 0.011 0.021 0.018 0.015 0.019 0.015 0.026 0.020 0.023 0.018 0.015 0.015
G_DN291_c1_g1_i6_EG_I 2 0.013 0.023 0.012 0.011 0.017 0.010 0.013 0.011 0.009 0.021 0.017 0.014 0.019 0.014 0.026 0.019 0.022 0.017 0.014 0.015
PL-A_DN3132_c2_g1_i2_EG_I 3 0.234 0.228 0.022 0.023 0.021 0.023 0.025 0.026 0.026 0.023 0.025 0.026 0.024 0.026 0.014 0.024 0.021 0.026 0.027 0.027
N_DN166_c0_g2_i11_EG_I 4 0.066 0.061 0.226 0.009 0.017 0.006 0.017 0.015 0.015 0.020 0.018 0.011 0.017 0.013 0.025 0.020 0.023 0.017 0.015 0.016
N_DN166_c0_g2_i15_EG_I 5 0.054 0.054 0.243 0.034 0.017 0.009 0.016 0.014 0.014 0.021 0.018 0.012 0.017 0.010 0.025 0.019 0.022 0.017 0.015 0.014
N_DN1982_c0_g1_i20_EG_I 6 0.131 0.121 0.196 0.116 0.129 0.015 0.018 0.020 0.019 0.014 0.016 0.019 0.014 0.020 0.024 0.010 0.016 0.014 0.018 0.018
N_DN1982_c0_g1_i34_EG_I 7 0.054 0.045 0.229 0.016 0.036 0.099 0.015 0.014 0.013 0.021 0.018 0.011 0.017 0.013 0.025 0.019 0.022 0.016 0.013 0.015
G_DN291_c0_g1_i11_EG_II 8 0.069 0.083 0.283 0.120 0.118 0.148 0.108 0.008 0.009 0.019 0.019 0.013 0.015 0.014 0.023 0.015 0.020 0.016 0.013 0.014
G_DN291_c0_g1_i12_EG_II 9 0.041 0.055 0.289 0.105 0.093 0.174 0.093 0.027 0.005 0.021 0.017 0.012 0.017 0.011 0.024 0.017 0.020 0.015 0.011 0.012
G_DN291_c1_g1_i9_EG_II 10 0.055 0.041 0.283 0.100 0.093 0.164 0.083 0.041 0.013 0.020 0.016 0.011 0.016 0.011 0.024 0.016 0.020 0.014 0.010 0.011
PL-A_DN9119_c0_g1_i1_EG_II 11 0.201 0.196 0.237 0.193 0.204 0.086 0.196 0.156 0.182 0.177 0.011 0.019 0.013 0.019 0.022 0.012 0.015 0.014 0.019 0.018
PL-A_DN9119_c0_g1_i5_EG_II 12 0.143 0.133 0.269 0.148 0.153 0.128 0.151 0.156 0.125 0.115 0.055 0.016 0.016 0.016 0.024 0.015 0.018 0.011 0.016 0.015
N_DN166_c0_g2_i14_EG_II 13 0.100 0.091 0.289 0.060 0.062 0.164 0.057 0.081 0.067 0.057 0.164 0.120 0.013 0.006 0.022 0.017 0.019 0.012 0.010 0.011
N_DN166_c0_g2_i26_EG_II 14 0.161 0.151 0.260 0.141 0.133 0.081 0.133 0.100 0.125 0.115 0.081 0.123 0.076 0.014 0.020 0.009 0.014 0.013 0.013 0.013
N_DN166_c0_g2_i6_EG_II 15 0.098 0.093 0.286 0.076 0.045 0.172 0.074 0.088 0.064 0.060 0.172 0.123 0.016 0.083 0.022 0.017 0.019 0.013 0.011 0.009
N_DN166_c0_g2_i9_EG_II 16 0.277 0.272 0.081 0.277 0.260 0.234 0.269 0.229 0.237 0.232 0.209 0.243 0.204 0.177 0.204 0.020 0.015 0.021 0.024 0.023
N_DN1982_c0_g1_i11_EG_II 17 0.172 0.161 0.254 0.172 0.164 0.052 0.159 0.100 0.125 0.115 0.067 0.108 0.120 0.041 0.128 0.188 0.012 0.011 0.014 0.015
N_DN1982_c0_g1_i22_EG_II 18 0.223 0.209 0.193 0.223 0.212 0.113 0.209 0.177 0.185 0.172 0.100 0.141 0.159 0.091 0.159 0.108 0.071 0.014 0.018 0.017
N_DN1982_c0_g1_i29_EG_II 19 0.138 0.123 0.274 0.123 0.130 0.093 0.110 0.118 0.103 0.088 0.100 0.060 0.064 0.071 0.081 0.196 0.052 0.088 0.010 0.011
N_DN1982_c0_g1_i30_EG_II 20 0.108 0.093 0.301 0.093 0.096 0.138 0.086 0.079 0.064 0.050 0.153 0.110 0.045 0.071 0.062 0.232 0.081 0.143 0.050 0.007
N_DN1982_c0_g1_i32_EG_II 21 0.105 0.096 0.298 0.110 0.079 0.146 0.103 0.096 0.071 0.062 0.153 0.105 0.052 0.069 0.036 0.220 0.098 0.133 0.057 0.025
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Because our phylogenetic analysis found that Ealb-Eg I and Ealb-Eg II proteins form
a highly resolved single clade rather than separate gene-specific clusters (Figure 1), we
calculated the omega (dN/dS) ratio collectively for all mature sequences of Ealb-Eg as if for
a single gene. We estimated the ratio to be 0.21620, indicating that endo-β-1,4-glucanases
in E. albidus are under purifying selection. Therefore, changes in their coding sequences
could be detrimental.

The domain arrangements of Ealb-Eg I and Ealb-Eg II were typical of other known
GH9 endo-β-1,4-glucanases. The catalytic domain structure of Ealb-Eg proteins consists of
12 α-helices that form the (α/α)6-barrel fold, with six internal and six external α-helices.
Additionally, the overall structure includes four extra α-helices and three conserved 310-
helices. Furthermore, Ealb-Eg II, similar to Ef-EG2 from the earthworm Eisenia fetida [63],
contains five β-strands arranged as a conserved β-sheet and β-hairpin. In contrast, Ealb-Eg
I lacks a β-hairpin in its structure (Figures 6 and 7). The significance of this modification
of the structure is not known. In both modeled Ealb-Eg proteins, a single π-helix was
predicted to be located at the end of the longer α13-helix. Nonetheless, Ealb-Eg I/II proteins
were found to be very similar in structure to Ef-EG2, which allowed for homology-based
modeling and the generation of high-quality models.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 17 of 33 
 

 

G_DN291_c0_g1_i11_EG_II 8 0.069 0.083 0.283 0.120 0.118 0.148 0.108  0.008 0.009 0.019 0.019 0.013 0.015 0.014 0.023 0.015 0.020 0.016 0.013 0.014 
G_DN291_c0_g1_i12_EG_II 9 0.041 0.055 0.289 0.105 0.093 0.174 0.093 0.027  0.005 0.021 0.017 0.012 0.017 0.011 0.024 0.017 0.020 0.015 0.011 0.012 
G_DN291_c1_g1_i9_EG_II 10 0.055 0.041 0.283 0.100 0.093 0.164 0.083 0.041 0.013  0.020 0.016 0.011 0.016 0.011 0.024 0.016 0.020 0.014 0.010 0.011 
PL-A_DN9119_c0_g1_i1_EG_II 11 0.201 0.196 0.237 0.193 0.204 0.086 0.196 0.156 0.182 0.177  0.011 0.019 0.013 0.019 0.022 0.012 0.015 0.014 0.019 0.018 
PL-A_DN9119_c0_g1_i5_EG_II 12 0.143 0.133 0.269 0.148 0.153 0.128 0.151 0.156 0.125 0.115 0.055  0.016 0.016 0.016 0.024 0.015 0.018 0.011 0.016 0.015 
N_DN166_c0_g2_i14_EG_II 13 0.100 0.091 0.289 0.060 0.062 0.164 0.057 0.081 0.067 0.057 0.164 0.120  0.013 0.006 0.022 0.017 0.019 0.012 0.010 0.011 
N_DN166_c0_g2_i26_EG_II 14 0.161 0.151 0.260 0.141 0.133 0.081 0.133 0.100 0.125 0.115 0.081 0.123 0.076  0.014 0.020 0.009 0.014 0.013 0.013 0.013 
N_DN166_c0_g2_i6_EG_II 15 0.098 0.093 0.286 0.076 0.045 0.172 0.074 0.088 0.064 0.060 0.172 0.123 0.016 0.083  0.022 0.017 0.019 0.013 0.011 0.009 
N_DN166_c0_g2_i9_EG_II 16 0.277 0.272 0.081 0.277 0.260 0.234 0.269 0.229 0.237 0.232 0.209 0.243 0.204 0.177 0.204  0.020 0.015 0.021 0.024 0.023 
N_DN1982_c0_g1_i11_EG_II 17 0.172 0.161 0.254 0.172 0.164 0.052 0.159 0.100 0.125 0.115 0.067 0.108 0.120 0.041 0.128 0.188  0.012 0.011 0.014 0.015 
N_DN1982_c0_g1_i22_EG_II 18 0.223 0.209 0.193 0.223 0.212 0.113 0.209 0.177 0.185 0.172 0.100 0.141 0.159 0.091 0.159 0.108 0.071  0.014 0.018 0.017 
N_DN1982_c0_g1_i29_EG_II 19 0.138 0.123 0.274 0.123 0.130 0.093 0.110 0.118 0.103 0.088 0.100 0.060 0.064 0.071 0.081 0.196 0.052 0.088  0.010 0.011 
N_DN1982_c0_g1_i30_EG_II 20 0.108 0.093 0.301 0.093 0.096 0.138 0.086 0.079 0.064 0.050 0.153 0.110 0.045 0.071 0.062 0.232 0.081 0.143 0.050  0.007 
N_DN1982_c0_g1_i32_EG_II 21 0.105 0.096 0.298 0.110 0.079 0.146 0.103 0.096 0.071 0.062 0.153 0.105 0.052 0.069 0.036 0.220 0.098 0.133 0.057 0.025  

 
Figure 6. Three-dimensional models of mature endo-β-1,4-glucanases from the E. albidus PL-A strain 
generated by SWISS-MODEL: (A) Tertiary structure of Ealb-Eg I. (B) Tertiary structure of Ealb-Eg 
II. β-Strands are shown in yellow, α-helices in pink, 310-helices in magenta, π-helices in purple, turns 
in blue, and regions without a defined structure in white. Disulfide bridges are indicated by thin 
yellow rods. The quality of the generated models for Ealb-Eg I/II was high, with a Global Model 
Quality Estimate (GMQE) of 0.92/0.93 and a QMEANDisCo global score of 0.89. 

Figure 6. Three-dimensional models of mature endo-β-1,4-glucanases from the E. albidus PL-A strain
generated by SWISS-MODEL: (A) Tertiary structure of Ealb-Eg I. (B) Tertiary structure of Ealb-Eg II.
β-Strands are shown in yellow, α-helices in pink, 310-helices in magenta, π-helices in purple, turns in
blue, and regions without a defined structure in white. Disulfide bridges are indicated by thin yellow
rods. The quality of the generated models for Ealb-Eg I/II was high, with a Global Model Quality
Estimate (GMQE) of 0.92/0.93 and a QMEANDisCo global score of 0.89.

The catalytic domains of Ealb-Eg proteins, consistent with other GH9 endo-β-1,4-
glucanases, have two catalytic Asp residues within the conserved motif Asp-Ala-Gly-Asp
(DAGD; here corrigendum for [64]) and one Glu residue within the semi-conserved motif
Asn-Glu-Val [64], adjacent to the highly conserved Asp-Tyr-Asn-Ala (DYNA) motif of the
α16-helix (see Figure 7). The study of the crystal structure of Ef-EG2 from E. fetida [63]
underpins that there are binding sites for calcium and sodium ions. These sites exhibit
limited conservation in E. albidus Ealb-Eg I/II and hint at a nuanced evolutionary adaptation
of Ealb-Eg enzymes in ion binding, potentially reflecting distinct environmental contexts.
This was observed in other GH9 endo-β-1,4-glucanases, including the enzyme from the
higher termite Nasutitermes takasagoensis [65] (see also Supplementary Figure S1).
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ments of Ealb-Eg I/II were predicted and marked according to Jmol with the implementation of the 
DSSP v2.0 algorithm. The secondary structure elements of Ef-EG2 were annotated according to the 
updated model (version 1.2) of the crystal structure of endo-1,4-beta-glucanase (PDB ID: 3WC3) 
from E. fetida. β-Strands are marked as arrows. The α-helices and 310-helices are displayed as higher 
and lower squiggles, respectively. The η symbol refers to a 310-helix. The boxed squiggle refers to 
the π-helix. Turns are marked with the letters “TT” above the sequence. One-residue “T” segments 
indicate that the β-turn overlaps a structure of higher priority (e.g., a helix). The position of a poten-
tial disulfide bridge is marked as a pair of green digits below the alignment. A selected residue with 
an alternate conformation is marked above with a black star on top of the secondary structure ele-
ment annotation. Catalytic residues for cellulase activity are highlighted in blue. Residues involved 
in binding calcium are highlighted in gray, and those potentially involved in binding sodium are 
highlighted in brown. Strictly identical residues are shown as white characters boxed in red, while 
similar residues within a group are shown as red characters. 
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the organism [69]. These enzymes can be secreted into the lumen of the alimentary tract 
or bound to the microvilli [70]. Secreted proteins generally require a signal peptide se-
quence for proper targeting and secretion, whereas enzymes in microvilli have transmem-
brane domains that bind them to the plasma membrane or are clustered on the cell surface, 
requiring specific signals for proper localization and GPI anchoring [70–73]. These facts 
seem to have been overlooked by other authors when predicting digestive capacity based 
on transcriptomics data and functional annotation (see [29,30]). To distinguish intracellu-
lar metabolic and lysosomal enzymes from extracellular-acting digestive enzymes [74] in 
our datasets, we thoroughly analyzed the sequence features mentioned above, along with 
other features, in the recovered candidates for digestive enzyme genes. Among the 
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traeus albidus PL-A and Ef-EG2 from the earthworm Eisenia fetida. The secondary structure elements
of Ealb-Eg I/II were predicted and marked according to Jmol with the implementation of the DSSP
v2.0 algorithm. The secondary structure elements of Ef-EG2 were annotated according to the updated
model (version 1.2) of the crystal structure of endo-1,4-beta-glucanase (PDB ID: 3WC3) from E. fetida.
β-Strands are marked as arrows. The α-helices and 310-helices are displayed as higher and lower
squiggles, respectively. The η symbol refers to a 310-helix. The boxed squiggle refers to the π-helix.
Turns are marked with the letters “TT” above the sequence. One-residue “T” segments indicate that
the β-turn overlaps a structure of higher priority (e.g., a helix). The position of a potential disulfide
bridge is marked as a pair of green digits below the alignment. A selected residue with an alternate
conformation is marked above with a black star on top of the secondary structure element annotation.
Catalytic residues for cellulase activity are highlighted in blue. Residues involved in binding calcium
are highlighted in gray, and those potentially involved in binding sodium are highlighted in brown.
Strictly identical residues are shown as white characters boxed in red, while similar residues within a
group are shown as red characters.

3. Discussion
3.1. General Considerations Regarding Digestive Enzyme Gene Candidates in E. albidus

In animals, most digestive enzymes belong to hydrolases [33,66–68]. Their primary
function is to break down larger molecules from food into a form that can be absorbed by
the organism [69]. These enzymes can be secreted into the lumen of the alimentary tract or
bound to the microvilli [70]. Secreted proteins generally require a signal peptide sequence
for proper targeting and secretion, whereas enzymes in microvilli have transmembrane
domains that bind them to the plasma membrane or are clustered on the cell surface,
requiring specific signals for proper localization and GPI anchoring [70–73]. These facts
seem to have been overlooked by other authors when predicting digestive capacity based
on transcriptomics data and functional annotation (see [29,30]). To distinguish intracellular
metabolic and lysosomal enzymes from extracellular-acting digestive enzymes [74] in our
datasets, we thoroughly analyzed the sequence features mentioned above, along with
other features, in the recovered candidates for digestive enzyme genes. Among the hy-
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drolytic enzymes, glycosidases play a crucial role in the digestion of saccharides. They are
responsible for breaking down common biopolymers such as cellulose, chitin, and starch,
which are abundant in nature. Glycosidases are significant in assessing trophic positions,
as they define the digestive capabilities of animals by participating in the degradation of
plant, fungal, or bacterial materials, including cell wall components, within the decomposer
system. Moreover, glycosidases appear to be the best-characterized digestive enzymes
in Annelida [41,45,46,48,63,75,76]. Although we identified candidates for proteolytic and
lipolytic enzyme genes in E. albidus, the scope of the present study is somewhat limited, as
we restricted our analysis to only the best annotated and orthologously supported candi-
dates. Nevertheless, our findings provide initial insights into the genetics of enchytraeid
digestive enzymes, which can be further expanded upon. While fibrinolytic proteases such
as lumbrokinases are currently gathering some scientific attention, mainly for potential
medical applications [77], digestive lipases remain very challenging to study not only
in Enchytraeidae but also in the wider Annelida, as they are still a largely genetically
unexplored group of enzymes. Recently, the hormone-sensitive lipase gene, which is an
intracellular metabolic neutral lipase, was cloned and its expression was analyzed in the
leech Whitmania pigra [78]. However, to the best of our knowledge, no dedicated molecular
studies have focused on the typical digestive lipases in members of Annelida. Studies on
potential digestive lipases in this taxon are often limited to biochemical enzyme assays.
Indeed, the general activity patterns of hydrolytic enzymes, including lipases, in the diges-
tive systems of representatives of Acanthobdellida, Branchiobdellida, and Hirudinida were
studied using API ZYM tests by one of the co-authors of the present study [66].

3.2. Endogenous Expression of GH9 Cellulase Genes in E. albidus and Other Clitellates

In a review [18], the first author and colleagues proposed a classification of the trophic
types of enchytraeids from the most commonly studied genera based on food preferences
and feeding behavior reported in the available literature. According to the definition, pri-
mary decomposers in the soil food web consume plant litter prior to substantial microbial
degradation [17,79]. Thus, it is presumed that primary decomposers need to produce en-
zymes involved in breaking down major plant cell wall components. In contrast, secondary
decomposers rely on plant residues initially degraded by microflora or on microorganisms
as food sources. Enchytraeus spp. were assigned to the secondary decomposer group,
as no definitive evidence of endogenous cellulolytic capability has been provided before.
Although some cellulase activity has been detected in a few studies on Enchytraeus spp.,
there has been no attempt to determine whether these cellulases originate from the pot-
worms themselves or from microorganisms. Moreover, the results obtained by different
authors using biochemical techniques were not always consistent [37,80–82]. For example,
Nielsen [37], using enzymatic assays and chromatographic analyses, found no cellulolytic
activity in E. albidus, nor in three other enchytraeid species. In contrast, Urbášek and
Chalupský [81] detected very low to low cellulolytic activities in four species, including E.
albidus. However, these authors clearly stated that there was no attempt to differentiate
the origin of the detected enzymes. Similarly, Dash et al. [80] reported low-to-moderate
cellulolytic activity in homogenates of entire specimens of E. berhampurosus and in two
other tropical enchytraeid species. In addition to enzymatic assays, some ecohistological
studies have been performed on Enchytraeus species. Reichert et al. [83] investigated the
feeding behavior of E. coronatus on agar plates with air-dried Sambucus nigra leaves and
observed signs of leaf tissue damage and consumption. They suggested that E. coronatus
exhibited significant cellulolytic activity to pre-digest the leaves externally before ingestion.
However, Gajda et al. [18] strongly disagreed with this conclusion. They performed similar
experiments but included proper controls (plates with leaves but no animals), which were
lacking in the study of Reichert et al. [83], and demonstrated clearly that the contribution of
microbial activity to the maceration of the plant material on the experimental plate could
not be disregarded as a possible explanation.
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Considering all of the information recapitulated above, we proposed the following
research hypothesis (1): E. albidus does not exhibit endogenous expression of enzyme
genes from the cellulase group. However, our transcriptomics data analysis in this study
identified 30 digestive gene candidates encoding glycosidases, among which we annotated
cellulolytic enzymes—endo-β-1,4-glucanases (EC 3.2.1.4). Therefore, this hypothesis was
rejected. Phylogenetic and in silico structural analyses revealed that E. albidus endo-
β-1,4-glucanases are homologous to a few previously described endo-β-1,4-glucanases
(cellulases) from earthworm species such as Metaphire hilgendorfi, Eisenia fetida, and E.
andrei [40–42]. Moreover, transcriptomics data derived from other clitellate species and
integrated into phylogenetic analysis demonstrated that, in addition to the aforementioned
earthworm species, which provided initial evidence for endogenous cellulase production in
clitellates, GH9 endo-β-1,4-glucanases are present in other members of Clitellata, including
Capilloventridae, Phreodrilidae, Naididae, Lumbriculidae, and Randiellidae. Endo-β-1,4-
glucanases were found to be especially widespread in members of Enchytraeidae and
Crassiclitellata (i.e., earthworms). However, as a side note, it should be mentioned here that
the recovered sequence for Randiellidae should be treated with caution, as the only available
raw RNA-Seq reads for Randiella seem to be contaminated, at least to some degree, by other
annelid sequences, as noted in our paper related to amylases (for details, see [39]), and this
might be further indicated by the unusual result that we noticed in another study using
the same transcriptomics data (please note the extraordinarily high number of linker genes
in Randiella across all analyzed species for hexagonal bilayer hemoglobin in [84]). Apart
from clitellates, we also recovered a closely homologous endo-β-1,4-glucanase from the
terrestrial polychaete Hrabeiella periglandulata. Orthologous sequences for other polychaetes
are available for the nereids Perinereis brevicirris and Perinereis aibuhitensis. Generally, all of
these GH9 endo-β-1,4-glucanases from both Clitellata and Polychaeta share high similarity
(≥68%) and a similar length of mature protein sequences (>420 amino acids; see also [64]).
In light of this, we question the short sequence for E. andrei “cellulase 2” reported by Kim
et al. [85], as the provided sequence lacks a signal peptide, an α1-helix in its structure
and, importantly, the two catalytic Asp residues in the DAGD motif, which are essential
for cellulase activity. The provided sequence for “cellulase 2” represents a 5′ partial ORF
recovered from RNA-Seq data. This also underscores the importance of basic structural
modeling in similar studies.

Endo-β-1,4-glucanases belonging to glycosyl hydrolase family 9 are present among
diverse invertebrate lineages, demonstrating varied feeding strategies [64]. Unlike their
counterparts in microbes and plants, where these cellulases often possess catalytic do-
mains linked to carbohydrate-binding modules (CBMs) enabling crystalline cellulose break-
down [86], many GH9 animal cellulases lack such CBMs (but cf. [87–89]). As a result,
these enzymes exhibit limited or no activity against crystalline cellulose but break down
the amorphous fraction of the polysaccharide. Consequently, Linton [64] posited that the
capacity to hydrolyze crystalline cellulose efficiently should serve as a proper indicator for
assessing cellulases, suggesting that cellulolytic enzymes solely capable of breaking down
carboxymethylcellulose (CMC) should not be considered genuine cellulases but, rather,
enzymes digesting β-1,4-glucans. Additionally, it was raised that endo-β-1,4-glucanases in
some animals can cleave lichenan or mixed-linkage β-D-glucans at comparable or even
greater rates compared to CMC. While Linton has a point in their postulation, it is rather
not universally accepted by other authors. However, based on research on other polysac-
charides, it could also be argued that, for example, different amylose forms (e.g., amylose
A and B) can be digested by α-amylases with extremely different efficiencies [75]. Further-
more, concerning Linton’s discussion on deriving the amounts of metabolizable sugars
from cellulosic material in non-primarily herbivorous invertebrates, research on E. fetida
demonstrated that a single amino acid substitution in the sequence can dramatically change
the catalytic activity and the stability of Ef-EG2 endoglucanase mutants, impacting the
amount of hydrolysis products released from CMC [76]. Moreover, screening of Clitellata
transcriptomes in our study revealed that the endo-β-1,4-glucanases in the enchytraeid E.
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albidus and the earthworms Lumbricus spp., Eisenia andrei, and Metaphire guillelmi are highly
polymorphic. Notably, Ef-EG1 and Ef-EG2 endo-β-1,4-glucanases in E. fetida [41,90] were
originally identified as distinct genes based on cloned ORFs. However, it is likely that they
actually represent allelic variants, as the differences are only related to a single nucleotide
resulting in a single amino acid substitution. Support from genomics data analysis could
be a solution to address this issue. Despite these minimal sequence variations, purified
Ef-EG1 and Ef-EG2 proteins from the Eisenia fetida Waki strain [90] demonstrate significant
biochemical differences between each other in terms of activity and substrate specificity,
which is in agreement with the above-mentioned study of Ef-EG2 mutants [76]. In Enchy-
traeus, copy variants of endo-β-1,4-glucanases are more divergent than those in Eisenia
spp. (see Figure 1). The adaptive significance of endo-β-1,4-glucanase polymorphisms in
Clitellata could be related to broader substrate specificity; however, further molecular and
biochemical studies are needed to confirm this in E. albidus.

3.3. Endogenous Expression of Digestive i-Type Lysozyme Gene in E. albidus and Other Clitellates

Apart from hypothesis (1), related to the absence of cellulases, we postulated hypoth-
esis (2): that E. albidus demonstrates endogenous expression of enzyme genes engaged
in the digestion of microorganisms. Thus, it was presumed that secondary decomposers,
which at least partially utilize the microbial material, need to produce enzymes involved in
breaking down major bacterial and fungal cell wall components, such as peptidoglycan hy-
drolases or chitinases. To the best of our knowledge, no studies have clearly demonstrated
microphytophagous (i.e., microbivorous) behavior in E. albidus related to bacteria and fungi.
However, some reports are available for other Enchytraeus species. The first report related
to the genus was probably by Dougherty and Solberg [91], who partially succeeded in main-
taining Enchytraeus fragmentosus under monoxenic conditions with Escherichia coli growing
on a nutrient agar medium, but the growth of the animal was suboptimal. Subsequently,
Brockmeyer et al. [92] demonstrated the use of microbial protein from radiolabeled 35S-
enriched Bacillus cereus and the yeast Saccharomyces cerevisiae for Enchytraeus cf. globuliferus
and E. christenseni (syn. E. minutus). In relation to this, Reichert et al. [83] reported that
E. coronatus fed with B. cereus was in good condition, but its reproduction rate was lower
than when fed with rolled oats. The most explicit microphytophagous behavior related
to bacteria and fungi has been reported for Enchytraeus crypticus [13,93–98]. In general,
this species can use certain species of Streptomyces bacteria and microscopic fungi as its
sole nutrient source [13,94,96]. Moreover, it can preferably consume and utilize particular
species of cyanobacteria and eukaryotic microalgae [95,97].

Based on the transcriptomics data analysis of E. albidus, we identified an endoge-
nous novel digestive i-type lysozyme, named Ealb-iLys (GH22i family; EC 3.2.1.17), and
two chitinases (GH18 family; EC 3.2.1.14), referred to here as Ealb-Chit I and Ealb-Chit
II. The latter enzymes will be addressed in detail elsewhere, in a separate paper. Conse-
quently, hypothesis (2), regarding the production of enzymes involved in breaking down
major bacterial and fungal cell wall components in this enchytraeid species, was sup-
ported. In a previous review, several hypotheses were proposed concerning the capacity
of Enchytraeidae to utilize various bacterial strains as a nutrient source [18]. Notably,
the presence of β-N-acetylglucosaminidase in the intestinal epithelium of the enchytraeid
Lumbricillus lineatus, as reported by Gelder [99], raised speculation about the potential
role of this enzyme and other murein hydrolases in breaking down bacterial cell walls in
the alimentary tract of enchytraeids. Indeed, some studies on invertebrates suggest that
β-N-acetylglucosaminidase may be involved in digestion [67,100,101]. However, to the
best of our knowledge, no contribution of typical digestive β-N-acetylglucosaminidase
to microbial cell lysis has been described to date in invertebrates, at least in Annelida.
Conversely, complete coding sequences for endo-β-N-acetylglucosaminidases (EC 3.2.1.96)
recovered from transcriptomics data of E. albidus lack signal peptides, and putative pro-
teins were predicted to be localized in the cytoplasm. Therefore, these are not secretory
digestive enzymes released into the gut lumen that can contribute to trophic digestion in
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enchytraeids, despite our initial assumption based on Gelder’s results [18,99]. Another
obvious, yet at the time of review [18] rather theoretical, candidate for the enzyme involved
in microbes’ digestion in enchytraeids was lysozyme. A pivotal study that significantly
contributed to considering this enzyme was the identification and histolocalization of a
novel digestive lysozyme, Ea-iLys, from E. andrei by Yu and co-workers [46]. The anno-
tation of a homologous sequence in E. albidus posed challenges owing to the absence of
a functional ortholog for this lysozyme in the KEGG database. Therefore, we initially
recovered the homologous sequences based on the presence of a signature sequence for the
i-type lysozymes. Additionally, the assignment of the Ealb-iLys sequence as a lysozyme
had a low positive predictive value (PPV) from the PANNZER2 annotation, highlighting
the significance of annotating data using diverse methods and tools. Animal lysozymes
containing the SH3b domain, such as Ealb-iLys, have rarely been identified. The i-type
lysozyme, which contains a destabilase with the SH3b domain, was reported as HcLyso4 in
the triangle-shell pearl mussel (Hyriopsis cumingii), while the SH3b domain was also noted
after alignment in the sequence of MGL-2 lysozyme (Acc. AB298451) from the Mediter-
ranean mussel (Mytilus galloprovincialis) [61]. Additionally, we identified this domain in
the above-mentioned Ea-iLys from E. andrei [46], as it was not initially annotated in the
original study. Moreover, we recovered closely homologous (orthologous) sequences to
Enchytraeus–Eisenia-type lysozyme containing the SH3b domain from transcriptomics data
related to several clitellates, including other enchytraeid species (Enchytraeus crypticus,
Mesenchytraeus solifugus, M. armatus, and Guranidrilus sp.). Notably, the RNA-Seq reads
(SRR786598) associated with the earthworm Carpetania elisae (now C. matritensis) [102],
where we also found this novel i-type lysozyme, originated from a sample consisting of
isolated digestive tissues. This finding aligns with the observation that Ea-iLys is highly
expressed in the gut epithelium [46]. The possible role of the SH3b domain in this type of
lysozyme may be related to peptidoglycan recognition and bacterial cell wall binding [103];
however, further studies are required to confirm this hypothesis. Based on the findings
presented, we propose orthologs of Enchytraeus–Eisenia-type SH3b-domain-containing
i-type lysozymes (i.e., Ealb-iLys and Ea-iLys) as potential molecular markers of bacterivory
in clitellates.

3.4. Trophic Position of E. albidus as an Intermediate Decomposer and the Status of
Other Clitellates

Considering the tested research hypotheses related to the trophic position of Enchy-
traeus albidus, we found that this enchytraeid species expresses genes for both cellulases
and enzymes involved in the digestion of microbial cell walls, including a specialized
digestive type of lysozyme. Therefore, E. albidus combines traits of both primary and
secondary decomposers and can be defined as an intermediate type of decomposer. The
term “intermediate decomposers” was originally coined by Eisenhauer and Schädler [104]
to roughly define the position of enchytraeids and highlight the uncertain trophic posi-
tion of this taxon, which could represent a functional gradient ranging from primary to
secondary decomposers. Our transcriptomics approach, novel to trophic ecology stud-
ies, in which we determined E. albidus as an intermediate decomposer, corresponds well
with the newest findings related to E. albidus sensu lato by Korobushkin et al. [105] using
stable isotope analysis. In that most recent study (note: published when our manuscript
was under review), where trophic niches of 16 common terrestrial enchytraeid species
were determined, the analysis found them to act as primary and secondary decomposers
within three trophic guilds (epigeic, epi-endogeic, and endogeic), depending on species.
Korobushkin et al. [105] assigned epigeic enchytraeids, including E. albidus sensu lato (iden-
tified based on morphology only), among primary decomposers feeding on litter. However,
the wide ranges of ∆15N values obtained in the study also indicated the co-ingestion of
microorganisms. Thus, the revealed trophic niche of E. albidus matches with intermediate
decomposers. Furthermore, Korobushkin et al. [105] expressed the view that the classifi-
cation of individual enchytraeid species as primary or secondary decomposers requires
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further experimental intervention, incorporating multiple metrics instead of solely relying
on stable isotopic signatures. We believe that the presented transcriptomics approach could
provide a solution to this challenge.

The composition of digestive enzyme genes in E. albidus revealed by transcriptomics
analysis is in general agreement with the results of the study by Urbášek and Chalupský [81],
who analyzed enzymatic profiles from the whole-body homogenates of enchytraeids.
Enchytraeus albidus was characterized there by moderate activity of α-amylase, β-xylanase,
laminarinase, and lichenase, and low to very low activity of proteases (pH = 6.0), Cx-
cellulase (endo-1,4-β-D-glucanase, EC 3.2.1.4), and the cellulase complex (a mixture of
exo- and endo-1,4-β-D-glucanases). Moreover, our study revealed homologous sequences
for conserved cellulases and digestive i-type lysozymes in the transcriptomics data of
other clitellates, particularly for enchytraeid and earthworm species, suggesting a similar
trophic position of these animals. However, recent work by Korobushkin et al. [106] using
stable isotopes demonstrated that the trophic position of enchytraeids and earthworms
can differ based on available food sources. In their microcosm experiment, they observed
that enchytraeids (a mixture of littoral species, E. albidus sensu lato, and Lumbricillus spp.)
were preconditioning the macroalgal material, while probably grazing on bacteria as well,
making it suitable for the earthworm Eisenia fetida, which lacked direct feeding activity on
non-conditioned macroalgae. This indicates that marine littoral enchytraeids can act as
primary/intermediate decomposers, while E. fetida serves as a typical secondary decom-
poser in this specific scenario, depending on food availability. The results of the study by
Korobushkin et al. [106] are in contrast to other research that considered earthworm species
such as Lumbricus terrestris as primary decomposers in soil microcosm experiments while
assigning enchytraeids to a higher trophic level [107]. Interestingly, it was demonstrated
that L. terrestris can also function as a granivore and seedling herbivore [107]. Concerning
this species, we found that L. terrestris congeners possess both cellulases and digestive
lysozyme, similar to enchytraeids and other earthworms. The use of an enchytraeid species
mixture by Korobushkin et al. [106] prevents drawing conclusions strictly for E. albidus;
however, our study demonstrated that this enchytraeid species expresses several enzymes
(e.g., EC 3.2.1.6, EC 3.2.1.51, and EC 3.2.1.78) that could be potentially engaged in the diges-
tion of macroalgal material [108,109], which could be expected from typical marine littoral
species. Dietary flexibility, which is a known challenge in trophic ecology studies, could be
analyzed by a comparative study of enzymes of both enchytraeid and earthworm species,
as in the above example, but this requires sufficiently deep sequenced transcriptomes for all
species of interest and general molecular and biochemical knowledge of digestive enzymes.
In general, much work remains to be conducted on the trophic position of Enchytraei-
dae, as well as other clitellates and their digestive capacities. A natural progression in
research would involve studying food-dependent gene expression, molecular cloning, and
the utilization of expression vectors to further investigate the biochemical properties of the
identified digestive enzymes. Next, a more than 60-year-old dilemma related to the feeding
mechanism and exact mode of digestion in enchytraeids (pre-oral digestion or internal
digestion?) [18,24,83,93,110–114], for which there is no consensus among researchers to
date, can be analyzed by histolocalization of transcripts of selected digestive enzyme genes.
Furthermore, bacterivory in deep molecular details was recently studied in the model
nematode Caenorhabditis elegans. This includes the fate of various bacterial strains ingested,
chemical cues stimulating feeding and digestion, specific lysozyme expression, signaling
pathways regulating digestion of bacteria, and recognition of palatable and unpalatable
food ([115–117]; see also [118], preprint). These studies shed new light on somewhat
forgotten yet crucial preliminary studies conducted by Krištůfek et al. [94], which relate,
among other things, to chemoattraction in enchytraeid–bacteria interactions and primarily
demonstrated that bacteria can serve as an important source of food for enchytraeids. Fi-
nally, more advanced enchytraeid and earthworm molecular studies require support from
annotated genomics datasets. The first step in this direction was performed by Amorim and
co-workers [56], who provided raw but high-quality genomics data for Enchytraeus crypticus
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isolate CE2183. We hope that more genomics and monohaplotype-derived transcriptomics
data will be generated for enchytraeid and earthworm species in the near future. This will
significantly enhance the advancement of molecular research on the trophic ecology of
these groups of clitellates.

4. Materials and Methods
4.1. Animal Material

The initial culture of Enchytraeus albidus was established from a stock culture purchased
on the e-commerce platform Allegro from a commercial seller, Bodzio-1234. The animals
were kept at room temperature in a plastic box with defaunized garden soil and fed fish
flakes twice weekly. Random specimens from the initial culture underwent DNA barcoding
(Acc. MK044803–MK044805) and were analyzed using PCR-RF-SSCP (PCR–restriction
fragments–single-strand conformation polymorphism) [119] of the Folmer fragment (Sup-
plementary Figure S2). A COI-monohaplotype culture (PL-A strain; Acc. MK044803) was
obtained from a single cocoon transferred and hatched on a 1% molecular grade agarose
plate. Juvenile specimens were then relocated to defaunized soil and maintained as de-
scribed earlier. The genetic purity of the established culture was confirmed by amplifying
and sequencing the COI gene fragment.

4.2. RNA-Seq Data Generation for the E. albidus PL-A Strain

In the preliminary study, the number of E. albidus specimens required for obtaining
an optimal amount of RNA was experimentally determined by extracting RNA from one
to five specimens per sample using the GeneMATRIX Universal RNA Purification Kit
(EURx, Gdańsk, Poland), following the manufacturer’s protocol. The concentration and
quality of the isolated RNA were assessed using a NanoDrop 2000 (NanoDrop Technologies,
Wilmington, DE, USA). Additionally, cDNA was synthesized by reverse-transcribing half a
microgram of RNA, primed with oligo(dT)20, according to the instructions provided with
the NG dART RT kit (EURx). Control PCR was conducted for proper nucleic acid purifica-
tion, targeting the coding sequence of α-amylase I from E. albidus (Acc. OQ830662; [39]).
Each PCR mixture, with a total volume of 50 µL, consisted of EURx Color OptiTaq PCR
Master Mix (2×) (final concentration: 1.25 U OptiTaq DNA Polymerase, 1.5 mM MgCl2,
0.2 mM of each dNTP), 0.2 µM forward AmyStrF (5′-ATGCTGTCACTGATTGTGTTTTGTC-
3′) and reverse AmyEndR (5′-TCAGACATGTAGAGCAATCATGG-3′) primers, and 1 µL
of cDNA as the template. The amplification thermal profile was set as follows: an initial
denaturation at 95 ◦C for 260 s, followed by 35 cycles of denaturation at 95 ◦C for 40 s,
annealing at 45 ◦C for 45 s, and extension at 72 ◦C for 60 s, with a final extension at 72 ◦C
for 120 s. To confirm amplification, the PCR products were run on a 1.2% agarose gel in
TBE buffer with the addition of SimplySafe (EURx).

Adult specimens of the E. albidus PL-A strain in live form, on agarose plates, were
dispatched to A&A Biotechnology (Gdańsk, Poland) for the extraction of RNA. The ex-
traction procedure involved the use of the Total RNA Mini Kit with DNase treatment
(A&A Biotechnology) and was conducted on a pooled sample of four adult specimens. The
quality/concentration of extracted RNA was analyzed by agarose gel electrophoresis and
by the NanoDrop 2000. To generate RNA-Seq reads, RNA samples were sent to Macrogen
Europe (Amsterdam, The Netherlands) via A&A Biotechnology. The cDNA library was
prepared using the TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, San Diego,
CA, USA). Subsequently, paired-end sequencing was performed on the Illumina platform
(NovaSeq 6000; 2 × 151 bp reads).

4.3. Transcriptome De Novo Assembly and Data Annotation

Sequence quality control of all raw reads was performed using FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 21 March 2024). The removal
of adapters and quality trimming were executed using the BBDuk plugin in Geneious Prime
version 2023.2.1. The settings used were as follows: adapter trimming (default settings),
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partial adapter trimming from ends with a kmer length of 11, low-quality trimming at both
ends with a minimum quality of 20, and adapter trimming based on paired read overhangs
with a minimum overlap of 24. It is important to note that we experimented with two
quality values for trimming low-quality ends, specifically, scores of 20 or 24 using Phred33.
However, we found that a quality value of 24 was overly restrictive, consequently hindering
the assembly’s effectiveness in recovering some of the digestive enzyme gene transcripts.

In addition to the generated E. albidus PL-A strain transcriptomics data, we retrieved
raw reads data (Illumina HiSeq 2500 runs) related to the freeze-tolerant German (G) and
Greenlandic (N) strains of the same species from the NCBI Sequence Read Archive (SRA:
SRP108369). Moreover, we assembled and assessed transcriptomics data available in the
Sequence Read Archive (SRA) repository for other clitellates, with special emphasis on
enchytraeid species.

Each transcriptome was assembled separately using Trinity RNA-Seq [120,121] in-
tegrated in the OmicsBox suite version 3.0.30 using the default k-mer length settings.
Assembled transcriptomes were tested for completeness using Benchmarking Universal
Single-Copy Orthologs (BUSCO) [122] analysis against the metazoan database, using a
Blast e-value threshold of 1 × 10−5. Transcriptomes were further processed using Trans-
Decoder (http://transdecoder.github.io, accessed on 21 March 2024) with default settings
to detect coding regions. TransDecoder-predicted ORFs were translated into amino acid
sequences of at least 100 amino acids in length and annotated using a combination of the
GhostKOALA/KofamKOALA automatic annotation and KEGG mapping service [123,124]
and PANNZER2 (http://ekhidna2.biocenter.helsinki.fi, accessed on 21 March 2024) [125].
The functional annotation included KO (KEGG Orthology) assignment, KEGG pathway
mapping, and prediction of gene ontology (GO) terms. Transcriptome decontamination
was carried out by removing non-animal-originating KEGG-annotated sequences with the
use of the QIIME filter fasta script [126] on the Galaxy platform [127]. The obtained clean
data were screened for hydrolases—more specifically, glycosidases, peptidases, and lipases.

4.4. In Silico Analysis of Annotated Data

The annotated sequences were analyzed by several bioinformatics tools. Sequence
similarity searches were conducted using BLASTp [128]. Prediction of signal peptides
was performed with SignalP 6.0 [129]. The potential subcellular localization was carried
out by DeepLoc 2.0 [130] and BUSCA (Bologna Unified Subcellular Component Anno-
tator) [131]. Transmembrane domains were predicted using DeepTMHMM [132]. Gly-
cosylphosphatidylinositol anchoring was predicted by NetGPI 1.1 [133]. Furthermore,
protein domain architectures were predicted using InterProScan [134] and SMART [135].
For glycoside hydrolase (GH) family assignment, especially in complex cases, the web
server for dbCAN3, an automated carbohydrate-active enzyme and substrate annotation
tool (https://bcb.unl.edu/dbCAN2/index.php, accessed on 21 March 2024), was used
with at least three available run tools [136]. For lipases, an additional HMMs search in the
PANTHER [137] library version 18.0 was performed.

4.5. Additional Data and Phylogenetic Analyses

Sequences recovered from E. albidus were supplemented with sequences obtained from
the GenBank database and the SRA repository. For the latter, additional transcriptomics
data were assembled de novo for other annelids, encompassing all enchytraeid species
referenced in Table 1. Sequencing run IDs (SRR) used for the additional data assembly are
provided in Supplementary Table S3.

Homologous sequences in GenBank were identified through a BLASTp search. The
protein sequences were aligned using either MAFFT 7 [138] with an automatic assignment
of the alignment strategy or MUSCLE [139], depending on the dataset. The resulting
alignments were visually inspected for accuracy. A web server version of IQ-TREE was
employed to estimate the best-fitting model of amino acid evolution and subsequently
construct a maximum likelihood tree. All trees were built using the model suggested by
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IQ-TREE, with 1000 replications. Ultrafast Bootstrap (UFBoot) and SH-like Approximate
Likelihood Ratio Test (SH-aLRT) support values were calculated using 1000 replicates with
default settings. The generated trees were rooted according to the previously proposed
phylogenetic hypothesis for Clitellata [55] and visualized using iTOL [140].

4.6. Sequence Analysis, Protein Modeling, Structural Alignment, and Visualization

Evolutionary divergence between sequences was assessed through the pairwise dis-
tance method with the Poisson correction model in MEGA7 [141]. The ratio of non-
synonymous to synonymous substitutions (dN/dS) was computed using the CodeML
program in the PAML 4.9 package [142], on the Galaxy platform [127]. The 3D struc-
ture of the proteins of interest was modeled using AlphaFold2/DeepMindv0.2 [143] on
the Superbio.ai platform (https://www.superbio.ai, accessed on 21 March 2024) or via
homology-based modeling using SWISS-MODEL [144]. The quality of the models was
evaluated using pLDDT confidence scores and SWISS-MODEL structure assessment meth-
ods (GMQE, QMEANDisCo, and QMEAN Z-scores), respectively. Secondary structure
alignments were initially created using ESPript [145] and modified according to the pre-
dicted structure by implementing the DSSP 2.0 algorithm in Jmol within FirstGlance in
Jmol version 4.1 (http://firstglance.jmol.org, accessed on 21 March 2024). Figures of the
tertiary structure of proteins were rendered with the same tool.

5. Conclusions

Based on RNA-Seq data, we identified cellulolytic enzymes (endo-β-1,4-glucanases)
and enzymes engaged in the digestion of microorganisms (i-type lysozymes and two chiti-
nases) in Enchytraeus albidus. Thus, E. albidus combines traits of both primary and secondary
decomposers and is defined as an intermediate type of decomposer. Through phylogenetic
and bioinformatic analyses, it was determined that the endo-β-1,4-glucanases in E. albidus
share homology with those previously described in a few species of earthworms. These
GH9 cellulases were also found in transcriptomics data of other clitellates, predominantly
enchytraeids and earthworms. Closely homologous sequences to Enchytraeus–Eisenia-type
destabilase-lysozyme, which contains the SH3b domain, were identified in transcriptomics
data from other clitellates as well. The presence of close orthologs of the Enchytraeus–
Eisenia-type SH3b-domain-containing i-type lysozyme is a potential molecular marker
of bacterivory in clitellates. Our study demonstrates that RNA-Seq, even with a single
sample but with sufficiently deep sequencing and taxonomically well-characterized input,
could be a powerful and cost-effective tool, yet it is surprisingly rarely used in trophic
ecology studies.
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