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Abstract: The conserved cyanobacterial protein PipX is part of a complex interaction network
with regulators involved in essential processes that include metabolic homeostasis and ribosome
assembly. Because PipX interactions depend on the relative levels of their different partners and of
the effector molecules binding to them, in vivo studies are required to understand the physiological
significance and contribution of environmental factors to the regulation of PipX complexes. Here, we
have used the NanoBiT complementation system to analyse the regulation of complex formation in
Synechococcus elongatus PCC 7942 between PipX and each of its two best-characterized partners, PII
and NtcA. Our results confirm previous in vitro analyses on the regulation of PipX-PII and PipX-NtcA
complexes by 2-oxoglutarate and on the regulation of PipX-PII by the ATP/ADP ratio, showing
the disruption of PipX-NtcA complexes due to increased levels of ADP-bound PII in Synechococcus
elongatus. The demonstration of a positive role of PII on PipX-NtcA complexes during their initial
response to nitrogen starvation or the impact of a PipX point mutation on the activity of PipX-PII
and PipX-NtcA reporters are further indications of the sensitivity of the system. This study reveals
additional regulatory complexities in the PipX interaction network, opening a path for future research
on cyanobacteria.

Keywords: NanoLuc; PII; NtcA; nitrogen regulation; energy regulation; protein-fragment
complementation assays; PCAs; complementation reporter; environmental factors; 2-oxoglutarate

1. Introduction

Cyanobacteria, phototrophic prokaryotes that perform oxygenic photosynthesis, con-
stitute an ecologically important phylum that is responsible for the evolution of the oxygenic
atmosphere and are the main contributors to marine primary production [1,2]. In addi-
tion, their photosynthetic lifestyle and ease of cultivation make them ideal production
systems for a number of high-value compounds, including biofuels [3]. Cyanobacteria have
developed sophisticated regulatory systems to adapt to the challenging environmental
conditions that they face [4,5].

The cyanobacterium Synechococcus elongatus PCC 7942 (hereafter S. elongatus) is a
model system used to address fundamental questions concerning the phylum’s photo-
synthetic lifestyle. S. elongatus is, so far, the only photosynthetic organism for which the
contribution of each gene to its fitness has been evaluated [6,7]. Despite important break-
throughs in the genetic analysis of cyanobacteria, there are still remarkable proportions of
genes of unknown functions and of unique genes, many of which are presumably involved
in functions relevant to the biology of cyanobacteria. One of these unique cyanobacterial
proteins is PipX (PII interacting protein X), identified by its ability to form complexes with
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PII (encoded by glnB) and NtcA [8,9], two 2-oxoglutarate (2-OG) sensors which have critical
roles in carbon/nitrogen homeostasis [10–13].

PII regulates the activity of the proteins involved in nitrogen and carbon metabolism
in bacteria and plants through direct protein–protein interactions [11] and perceiving
metabolic information through the competitive binding of ATP or ADP and the synergistic
binding of ATP and 2-OG [14–16]. The first PII targets identified in cyanobacteria were
NAGK (N-Acetyl Glutamate Kinase) and PipX, detected by yeast two-hybrid approaches
in S. elongatus [8,9,17,18]. Their interactions with PII have recently been quantified in vitro,
with unprecedented sensitivity, using Split NanoBiT technology [19].

In response to nitrogen limitations, PipX coactivates the regulon of the cyanobacterial
global transcriptional regulator NtcA [20–25]. The PipX-NtcA complex consists of one
active (2-OG-bound) NtcA dimer and two PipX molecules, each binding to a NtcA sub-
unit [26]. PipX stabilizes the conformation of NtcA which is transcriptionally active and
probably helps local recruitment of RNA polymerase. The binding of PipX to PII or NtcA is
antagonistically tuned by 2-OG levels; while high levels of 2-OG favour the interaction of
PipX with NtcA, they prevent the PipX-PII interactions [8,9,26,27].

PipX uses the same surface to bind to either 2-OG-bound NtcA, stimulating DNA
binding and transcriptional activity, or to 2-OG-free PII. The PII sequestration of PipX at low
2-OG renders PipX unavailable for NtcA binding and activation, reducing the expression
of NtcA-dependent gene targets [26–32]. In addition, the interaction between PII and PipX
is highly sensitive to fluctuations in the ATP/ADP ratio, and thus the energy state of the
cells [33,34].

Different studies have suggested that PipX forms part of an extended regulatory net-
work beyond PII and NtcA [35–39]. PlmA, a transcriptional regulator found exclusively in
cyanobacteria, was identified as a member of the PipX interaction network by yeast three-
hybrid searches using PipX-PII as bait [37]. Gradient profiling by sequencing (Grad-seq)
showed that PipX co-localizes with either the metabolic regulators PII, NtcA and PlmA or
with the RNA–protein complexes involved in transcription, RNA metabolism and transla-
tion initiation [40]. A synteny analysis in cyanobacteria connected PipX with additional
proteins [39], one of which was the ribosome-assembly GTPase EngA, whose binding to
PipX and regulatory connections in S. elongatus have already been demonstrated [36,41].

The regulatory complexity of the PipX interaction network challenges investigations
into its physiological significance and the contribution of environmental factors to the
formation and regulation of the different PipX complexes. Complex formation depends
on the relative levels of the different PipX partners and of the effector molecules that may
bind to them [42], but these are not always known. In this intricate context, keeping the
intracellular environment as untouched as possible should help to address the relevant
questions about the PipX interaction network.

The NanoBiT complementation system [43], based on the reconstitution of the small- and
high-output bioluminescence enzyme NanoLuc, has been used in both mammalian [44–46]
and bacterial [47–49] cells to demonstrate the specificity of protein interactions in their
natural environment. Very recently, it has been used to study the effect of metabolic
fluctuations on interactions mediated by the cyanobacterial PII protein in an E. coli host [49].
However, detailed studies of the regulation of complex formation in model systems have
not been reported.

Here, we use the NanoBiT complementation system to analyse the regulation of com-
plex formation within the S. elongatus interaction network. Our results, in full agreement
with the information generated by previous analyses of PipX-PII or PipX-NtcA interactions,
reveal additional regulatory complexity. This work constitutes a breakthrough in the field
of the signalling and interaction networks in cyanobacteria.
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2. Results and Discussion
2.1. Reporter Constructs and Strains Used to Analyse PipX-PII and PipX-NtcA Interactions in
S. elongatus

The constructs used here to co-express the NanoBiT-based fusion proteins in S. elonga-
tus and additional controls are shown in Figure 1.
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fused to the SmBiT fragment (PipX-SmBiT), while PII and NtcA were fused to the LgBiT 
fragment (PII-LgBiT or NtcA-LgBiT). Flexible linkers of 16 or 8 amino acids, respectively, 
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Figure 1. NanoBiT constructs and strategy used to analyse the PipX-PII and PipX-NtcA interactions
in S. elongatus. (A) The NSI region and derivatives containing the C.S3 selection marker and the
corresponding gene fusions are schematically illustrated, with the relevant products depicted to the
right. * refers to PipX or PipXY6A. (B) Schematic representation of the pipX and glnB alleles. (C) Left
panel: PCR analysis indicating the primers, depicted as black arrows, in (A,B) and the size of bands
at the left and right, respectively. M: λ EcoRI/HindIII size marker. Right panel: strains analysed. See
text for additional details.

The design of protein fusions was guided by previously validated NanoBiT fusions
for in vitro assays using the PipX or PII proteins from Synechocystis sp. PCC6803 [19].
PipX was fused to the SmBiT fragment (PipX-SmBiT), while PII and NtcA were fused to
the LgBiT fragment (PII-LgBiT or NtcA-LgBiT). Flexible linkers of 16 or 8 amino acids,
respectively, were introduced at the C-terminus of PipX or of PII and NtcA. A total of three
NSI-derivative insertions containing PipX-SmBiT fusions alone, or in combination with PII-
LgBiT or NtcA-LgBiT, were generated. To allow for physiological control of the levels of the
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interacting proteins during environmental changes, the pipX, glnB or ntcA derivatives were
expressed from their corresponding promoter. To facilitate the introduction of reporters into
the neutral site I (NSI) of the S. elongatus chromosome by allelic replacement, a Streptomycin-
resistant marker cassette (C.S3) was included within the NSI insertions. The NSI-carrying
plasmid pUAGC280 was used as a vector to obtain derivatives containing the relevant
insertions, generating plasmids pUAGC1160, pUAGC1161 and pUAGC1163 (Table 1). For
simplicity, we will refer hereafter to the NSI derivatives as PipX, PipX-PII or PipX-NtcA
constructs or, more specifically, as the PipX control and PipX-PII or PipX-NtcA reporters.

To analyse the impact of a PipX point mutation (Y6A), known to impair contact
between PII and NtcA [26], PipXY6A-PII and PipXY6A-NtcA reporters were also generated.
The plasmids pUAGC1161 and pUAGC1163 were used to obtain, respectively, the plasmids
pUAGC1162 and pUAGC1164 (Table 1).

To minimise the interference of endogenous proteins with the activity of the NanoBiT
reporters and unwanted recombination events in S. elongatus, pipX and pipXglnB null
derivatives of S. elongatus were chosen as host strains for the PipX or PipX-NtcA constructs
and the PipX-PII reporter, respectively (Table 2). Although glnB is essential in S. elonga-
tus, it can be inactivated in a pipX background [28,29,31] and, importantly, the pipX and
pipXglnB null mutants show no significant growth defects under constant standard culture
conditions [33,50]. In contrast, ntcA is essential in S. elongatus in both wild-type [6,51] and
pipX backgrounds, prompting us to use the pipX mutant as the default strain for PipX-NtcA
reporter analyses. It is worth noting that the potential for interference is greatest for PII
due to its abundance [52], its high affinity for PipX [8,26,28,29,31,33,34] and its trimeric
structure, circumstances that would allow it to bind to PipX-SmBiT and/or PII-LgBiT, to
the detriment of the luciferase signal.

Table 1. Plasmids.

Plasmid Description, Relevant Characteristics Reference or Source

pUAGC280 Ptrc into NSI, ApR SmR [53]
pUAGC1160 (PpipX:pipX:FL:SmBiT) into NSI, ApR SmR This work
pUAGC1161 (PpipX:pipX:FL:SmBiT PglnB:glnB:FL:LgBiT) into NSI, ApR SmR This work
pUAGC1162 (PpipX:pipX16ta>gc:FL:SmBiT PglnB:glnB:FL:LgBiT) into NSI, ApR SmR This work
pUAGC1163 (PpipX:pipX:FL:SmBiT PntcA:ntcA:FL:LgBiT) into NSI, ApR SmR This work
pUAGC1164 (PpipX:pipX16ta>gc:FL:SmBiT PntcA:ntcA:FL:LgBiT) into NSI, ApR SmR This work

PII-ST-FL-LgBiT PterR:PII-StrepTag-FL-LgBiT [19]
pUAGC126 pipX replaced with cat, ApR CmR [38]

pPM128 CK2 (+) into glnB, KmR [54]

Km, kanamycin. Sm, streptomycin. R, resistance. Cm, chloramphenicol. cat, chloramphenicol acetyltransferase.

A total of seven strains combining one NanoBiT construct at their NSI site with the
inactivation alleles for pipX or pipX and glnB at their original loci were generated during
this study (Table 2). In each case, independent streptomycin-resistant clones from each
transformation were PCR-analysed to confirm the complete segregation of the modified
NSI alleles in S. elongatus and three validated clones were selected for additional analysis.
For simplicity, the PCR analyses carried out to verify the construction of the strains used
in this work have been combined in Figure 1C, and those from Y6A-derivative strains,
indistinguishable from their wild-type counterparts, have been omitted.
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Table 2. Strains.

Strain Genotype, Relevant Characteristics Reference or Source

E. coli XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ proAB lacIqZ∆M15
Tn10 (TetR)] [55]

E. coli TOP10 F− mcrA ∆(mrr-hsdRMS-mcrBC) φ80lacZ∆M15 ∆lacX74 nupG recA1
araD139 ∆(ara-leu)7697 galE15 galK16 rpsL (StrR) endA1 λ−

Invitrogen

WT Wild-type S. elongatus PCC7942 Pasteur Culture Collection
pipX ∆pipX::cat, CmR [38]

pipXglnB ∆pipX::cat glnB::CK.2, CmR KmR [33]
pipX 1SPipX-SmBiT ∆pipX::cat NSI::(PpipX:pipX:FL:SmBiT), SmR CmR This work

pipXglnB 1SPipX-SmBiT ∆pipX::cat glnB::CK2 NSI::(PpipX:pipX:FL:SmBiT), SmR KmR CmR This work
pipXglnB

1SPipXSmBiT-PIILgBiT
∆pipX::cat glnB::CK2 NSI::(PpipX:pipX:FL:SmBiT PglnB:glnB:FL:LgBiT),

SmR CmR KmR This work

pipXglnB
1SPipXY6ASmBiT-

PIILgBiT

∆pipX::cat glnB::CK2 NSI::(PpipX:pipX16ta>gc:FL:SmBiT
PglnB:glnB:FL:LgBiT), SmR CmR KmR This work

pipX
1SPipXSmBiT-NtcALgBiT

∆pipX::cat NSI::(PpipX:pipX:FL:SmBiT PntcA:ntcA:FL:LgBiT),
SmR CmR This work

pipX 1SPipXY6ASmBiT-
NtcALgBiT

∆pipX::cat NSI::(PpipX:pipX16ta>gc:FL:SmBiT PntcA:ntcA:FL:LgBiT),
SmR CmR This work

pipXglnB
1SPipXSmBiT-NtcALgBiT

∆pipX::cat glnB::CK2 NSI::(PpipX:pipX:FL:SmBiT PntcA:ntcA:FL:LgBiT),
SmR CmR KmR This work

2.2. PII-LgBiT and PipX-SmBiT Retain Their Regulatory Features in S. elongatus

Since PipX’s levels in S. elongatus are impaired by mutations decreasing its binding to
PII or by environmental conditions disrupting PipX-PII complexes [28,31,56], the prediction
is that, in the absence of PII, the levels of PipX would be significantly impaired. To test
this idea, while seeking evidence that our NanoBiT derivatives maintain their regulatory
features, we next asked whether the presence of either PII or PII-LgBiT have a positive
effect on the levels of PipX-SmBiT.

Western blots with anti-PipX or anti-PII antibodies were carried out using the PipX
control or PipX-PII reporter constructs in S. elongatus and its mutant derivatives. As shown
in Figure 2, both PipX-SmBiT and PII-LgBiT were detected in the pipXglnB double mutant
carrying the PipX-PII reporter construct. While PII-LgBiT was detected at roughly the same
levels as PII in the WT strain, the signal detected for PipX-SmBiT was about 15% that of
PipX in the WT strain, suggesting that the SmBiT fragment decreases the levels of PipX
and/or its affinity for the anti-PipX antibody. Importantly, PipX-SmBiT was detected in the
pipX strain but not in the pipXglnB strain, thus providing direct evidence of the importance
of PII for PipX levels in S. elongatus.

Although we cannot rule out that the SmBiT tag interferes with the recognition of
PipX-SmBiT by the anti-PipX antibody, it is reasonable to assume that the SmBiT tag and/or
the ectopic location of the pipX gene derivative result in comparatively lower levels of
PipX-SmBiT in S. elongatus. According to this, the PipX-PII reporter strain engineered
here would provide informative results with luminescence levels that could potentially
be higher.
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indicated. Relative PipX and PII levels were normalized by the PlmA signal and referred to the WT.
Data are presented as means and error bars (standard deviation) from three biological replicates.

2.3. PipX-PII and PipX-NtcA Reporters Respond in Opposite Ways to a Drop in the Intracellular
ATP Levels in S. elongatus

To test the sensitivity of the NanoBiT PipX-PII and PipX-NtcA reporters to real-
time changes in energy levels, the intracellular ATP/ADP ratio was decreased by adding
DCCD (N, N-dicyclohexylcarbodiimide), a specific inhibitor of FoF1-ATP synthase [57],
to S. elongatus cultures growing in standard nitrate medium. The results are shown in
Figure 3A alongside schematic illustrations of the relevant players in the PipX partner
swapping in the analysed strains. These carried PipX-PII or PipX-NtcA reporters into
pipXglnB or pipX backgrounds, respectively.

Exponentially growing cultures expressing the PipX-PII reporter in the pipXglnB back-
ground were divided into two before adding DCCD to half of them to record luminescence
and intracellular ATP in real time, at 5 min intervals for up to 20 min (Figure 3A, left). The
luminescence values increased (10-fold induction) while a sharp drop in ATP, to approx.
20% of the previous level, took place in the DCCD-containing cultures in less than 5 min
after their addition. Since the luminescence and ATP values remained unaltered in the
PipX control cultures, the results confirm the sensitivity of the PipX-PII reporter to the
intracellular ATP/ADP ratio.

In the case of the PipX-NtcA reporter, the DCCD-containing cultures showed a very
fast and strong decrease in luminescence and ATP levels that responded equally to DCCD,
dropping to approx. 20% of the previous level (Figure 3A, right). It is worth noting
that NtcA does not bind nucleotides and thus the disruption of PipX-NtcA complexes
associated with the drop in the ATP/ADP ratio is necessarily indirect. Since it coincides
with the drastic increase in luminescence from the PipX-PII reporter, the results reflect
strong competition for PII under these conditions, titrating PipX to the detriment of the
PipX-NtcA complexes.
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Figure 3. Real-time responses of PipX-PII and PipX-NtcA reporters to changes in energy levels
and nitrogen sources. Reporter strains are indicated, and relevant proteins illustrated on top of
the corresponding results. (A) Bioluminescence signals (black scale and curves) and normalized
ATP levels (red scale and curves) from cultures grown with BG11 in the presence or absence of
200 µM DCCD. (B) Bioluminescence signals after transfer to the indicated nitrogen regimens. Data in
(A,B) are presented as means with error bars (standard deviation) due to the indicated number of
biological replicates (top rectangles) performed in each case. Wilcoxon rank-sum tests between the
indicated comparisons produced p-values < 0.05 (*). (a–c) refer to the indicated nitrogen conditions.

In summary, the results shown in Figure 3A clearly reflect the direct, positive and indi-
rect, negative regulations of a low ATP/ADP ratio on PipX-PII and PipX-NtcA complexes,
respectively. This is fully consistent with the higher abundance of PII and its very high
affinity for PipX, further suggesting that the binding of PipX to its additional targets may
also be significantly regulated by the energy levels in S. elongatus.

2.4. PipX-PII and PipX-NtcA Reporters Respond in Opposite Ways to the 2-OG Levels in
S. elongatus

Complex regulation was next analysed under different culture conditions represen-
tative of different intracellular levels of the PII effector 2-OG [58,59]. To obtain low, in-
termedium and high intracellular 2-OG levels we adjusted the nitrogen source, adding,
respectively, ammonia, nitrate or no nitrogen source to the culture media. Nitrate cultures
growing in an exponential phase were subjected to routine washing protocols before being
transferred to fresh media containing either ammonia, nitrate or no added combined nitro-
gen source. Luminescence was recorded at different timepoints after the media transfer for
up to 240 min. The results of this analysis are shown in Figure 3B.

For the PipX-PII reporter, during the first half hour after its transfer to the different
media (that is, NH4

+, NO3 or -N), its luminescence values remained below the levels of
pre-transfer in all three cultures. Its luminescence values significantly increased afterwards,



Int. J. Mol. Sci. 2024, 25, 4702 8 of 17

particularly in the ammonium and nitrate cultures, reaching a maximum at the 60′ time-
point, after which they decreased slowly. In contrast, the basal luminescence levels obtained
with the PipX control were not affected by the nitrogen source (Figure S1A). Therefore,
after an initial period of adaptation (see below), the cultures showed the expected inverse
correlation between the inferred intracellular carbon to nitrogen ratio (2-OG levels) and
PipX-PII binding.

The luminescence of the PipX-NtcA reporter increased after the 15′ timepoint in nitrate
and, to a greater extent, in nitrogen-deprived cultures, with maximal values obtained at
around the 60′ timepoint. As expected, while the basal luminescence levels obtained with
the PipX control were not affected by the nitrogen source (Figure S1B), reporter cultures
showed a direct correlation between nitrogen scarcity (high 2-OG levels associated with
the different N regimes) and PipX-NtcA activity, particularly for their maximal luciferase
values. In addition, the oscillation of the reporter signal under conditions in which 2-
OG accumulates intracellularly (Figures 3B and S2) is compatible with the existence of a
negative feedback loop counteracting the overactivation of NtcA by PipX.

The results shown so far (a) indicate that a comparison of the real-time luminescence
signals from each of the two reporters in each of the three media generated the expected
correlations between reporter activity and intracellular 2-OG levels, (b) confirm the reliabil-
ity and great sensitivity of the NanoBiT system for comparative in vivo assays and (c) also
revealed additional complexities that are further discussed in the following sections.

2.5. PipX Levels Decrease in the Absence of Combined Nitrogen in S. elongatus

While the correlations between reporter activity and the intracellular levels of 2-OG
shown in Figure 3 reflect the previous knowledge on PipX-PII and PipX-NtcA complexes,
the low values of luciferase at the start of the experiment suggested additional regulatory
complexity. For instance, the reporter signals were always very low after the transfer
of cultures to fresh media, indicating that the culture manipulations performed during
the washing protocol clearly disrupted PipX-PII complexes and additionally delayed the
formation of new PipX-PII and PipX-NtcA complexes.

Because it is now clear that binding to PII plays a positive role on PipX levels ([56],
Figure 2), it appears that the disruption of PipX-PII complexes due to high levels of 2-OG
during the washing steps may also impair PipX levels. To test this idea, we performed
similar washing steps using either nitrogen-free (BG110) or nitrate-containing (BG11) media
in parallel and subsequently determined the levels of PipX in S. elongatus. To explore the
possible effect of the transfer to fresh media, we also included a control in which the pellets
were resuspended in the same BG11 supernatant.

As shown in Figure 4A, while using the same or new media during the washing
protocol appeared irrelevant to PipX levels, these were significantly lower in the cultures
washed with BG110 than in those washed with BG11. Thus, the results further confirm the
importance of PipX-PII complexes in maintaining PipX levels in S. elongatus.

In summary, the low interaction signals obtained after the transfer of cultures to fresh
media and the delay in reaching maximal bioluminescence signals from both PipX-PII and
PipX-NtcA reporters is consistent with the requirement of a de novo synthesis of PipX.
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privation. (A) Representative immunodetection and relative levels of PipX (PipX) from S. elongatus
cultures after two centrifuge/washing steps with BG110 (-N), BG11 (Fresh) or the same BG11 su-
pernatant (Used), normalised to the intensity shown in the same blot by endogenous PlmA, and
respective to the “Used” values. Data are presented as means and error bars (standard deviation)
from five biological replicates of two independent experiments. Wilcoxon rank-sum test produced
p-values < 0.05 (*) (B) Real-time comparison of bioluminescence signals under the indicated nitrogen
regimens at different times between the pipX (∆) and pipXglnB (#) strains. Data are presented as
means and error bars (standard deviation) from two biological replicates. Other details as in Figure 3.

2.6. The PipX Point Mutation Y6A Drastically Impairs PipX-PII and PipX-NtcA Complexes in
S. elongatus

To provide additional evidence of the sensitivity of the NanoBiT constructs used here,
we next analysed the impact of the Y6A mutation on reporter activity. Tyr6 is at the PipX
surface and is involved in PipX’s contact with PII and NtcA [26], and its mutation to Ala
impairs PipX toxicity, NtcA coactivation [31] and PipX levels [56].

The impact of the Y6A mutation on the activity of the PipX-PII and PipX-NtcA re-
porters was determined at the timepoints 0 and 60′ after their transfer to ammonia, nitrate
or nitrogen-free media. As shown in Figure 5, except for the PipXY6A-PII reporter in ammo-
nium, the levels of the activity of the mutant reporters in any given nitrogen regime were
indistinguishable from the basal levels obtained with the PipX control constructs. This
rather dramatic impact of the Y6A mutation on the PipX-PII and PipX-NtcA complexes is
consistent with the combined effects of impairing both the binding and protein levels of
S. elongatus and further emphasizes the sensitivity of the NanoBiT system developed here.
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2.7. PII Plays a Positive Regulatory Role on PipX-NtcA Complexes during Their Initial Response
to Nitrogen Deprivation

While it seems clear that, in S. elongatus, PII provides strong competition for PipX-NtcA
complexes in nitrate, the role of PII at more extreme 2-OG levels is always assumed to
be irrelevant or, given the intracellular abundance of PII, slightly negative. However, the
drop in PipX levels observed for BG110 cultures (Figure 4A) suggested that PII may play
a positive role in PipX-NtcA complexes during their response to nitrogen starvation. To
test this idea, we transferred nitrate-cultured cells to media with ammonium or without
a nitrogen source and determined the PipX-NtcA reporter activity in pipX and pipXglnB
backgrounds, in parallel.

As shown in Figure 4B, no significant differences in luminescence levels were observed
between the pipX and pipXglnB strains after their transfer into ammonium-containing media,
conditions under which luminescence signals are indistinguishable between the PipX-NtcA
and PipX constructs in both pipX and pipXglnB backgrounds. In contrast, the presence of
PII in nitrogen-free cultures was associated with higher luminescence levels during the first
15–45 min after the transfer, consistent with a positive, as well as transient, role of PII on
PipX-NtcA complex formation under conditions of nitrogen deprivation.

2.8. Additional Players May Affect PipX-PII and PipX-NtcA Complexes in S. elongatus

A consequence of the high sensitivity of our NanoBiT reporter analysis, combined with
the regulatory complexity and environmental sensitivity of the biological system used, was
that the absolute values of the luminescence levels obtained in S. elongatus for a given strain
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and experimental condition varied depending on which of our laboratories the experiment
was performed and also between repetitions of the same experiments on different days
under apparently identical conditions. In addition, when the bioluminescence levels were
just slightly above basal levels, as happened with the PipX-NtcA reporter, when cultures
were transferred to ammonium-containing media, the experiments producing lower levels
of luminescence were less informative (Figures 3–5, S1 and S2). However, despite all
this, the tendencies, response to treatments and the differences between the strains being
compared was remarkably reproducible. Therefore, rather than integrating data from
independent experiments, representative data with several replicates were shown in each
of the figures or tables (Tables S2–S5) of this work.

The dynamics of the PipX-PII and PipX-NtcA reporters merit additional comments.
The slow decrease in PipX-PII reporter activity after the 60′ timepoint in all three culture
conditions, shown in Figure 3, seemed to be independent of the nitrogen source and was not
accompanied by a reciprocal increase in PipX-NtcA reporter activity, as would be expected
if only PII and NtcA compete for PipX binding. Furthermore, after reaching a maximum
at the 60′ timepoint, the PipX-NtcA interaction signal decreased strongly in the nitrate-
containing cultures and, given that the 2-OG levels are known to always be higher in nitrate
than in ammonium, the phenomenon again appears independent of the nitrogen source,
suggesting the involvement of additional regulatory factors. It is thus tempting to propose
that a protein binding to PipX, perhaps one of the previously identified components of the
PipX interaction or synteny networks, may account for these observations. To address this
issue, we will construct NanoBit reporters for the interactions between PipX and candidate
proteins from PipX networks.

2.9. The NanoBit Approach in the Context of Cyanobacterial Interaction Networks

Popular genetic approaches to protein–protein interactions such yeast or bacterial
two-hybrid systems are used to probe the specificity of suspected interactions without
considering their regulatory context. Not surprisingly, false negatives are rather frequent
in yeast and bacteria two-hybrid systems [60–63], whose assays are performed in fixed
conditions, following standardized protocols [64–67]. Very much in contrast with this,
NanoBit reporters are analysed under chosen conditions in real time and thus give valuable
information about the regulation of the corresponding protein complexes by environmental
and/or genetic factors, as we have shown here for PipX-PII and PipX-NtcA reporters.

The main limitation of the NanoBit approach is that strain preparation is time-consuming,
particularly if the aim is to gain as much information as possible while identifying, avoid-
ing, or minimizing possible artifacts. These might include altered properties or artificial
regulations of the protein fusions and interference from unmodified versions of the proteins
of interest. Because of this, the comparative simplicity of two-hybrid methods may be
better indicated to address specific questions and compare multiple variants of a given
protein, as in studies of interaction determinants.

In the context of the cyanobacterial interaction networks exemplified by PipX, the
challenge is to show the physiological significance of putative interactions that have been
predicted by other methods. In terms of this challenge the NanoBit approach has no rivals.

3. Materials and Methods
3.1. Plasmid Construction

The plasmids, strains and oligonucleotides used in this work are listed in Tables 1, 2 and S1,
respectively. Cloning procedures were carried out in Escherichia coli XL1-Blue or TOP10,
using the Gibson assembly cloning method [68]. All constructs were verified using the
GATC LIGHTRUN service (Eurofins Genomics, Ebersberg, Germany).

The plasmid pUAGC1160 was obtained by assembling F1 and F2 fragments with a
linearized (SphI/BamHI) pUAGC280 vector. Fragment F1, comprising the pipX coding
sequence and 141 bp upstream, was amplified by PCR from S. elongatus genomic DNA
with primers CS3-PipX-1F/PipX-FL-1R. Fragment F2, comprising a 16 amino acid flexible
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linker (FL), as described in [19], and the coding sequence of SmBiT, was generated by PCR
using plasmid pUAGC280 as a template and primers NSI-seq/FL-SmBiT-NS1-2F.

The plasmid pUAGC1161 was obtained by assembling F3 and F4 fragments with
the linearized (BamHI) pUAGC1160 vector. Fragment F3, comprising the glnB coding
sequence and 187bp upstream, was amplified by PCR from S. elongatus genomic DNA
using primers FL-SmBiT-PII-3F/PII-FL-LgBiT-3R. Fragment F4, comprising an 8 amino
acid FL, as described in [19], and the coding sequence of LgBiT, was generated by PCR
using plasmid PII-ST-FL-LgBiT as a template and primers FL-LgBiT-4F/LgBiT-NS1-4R.

The plasmid pUAGC1163 was obtained by assembling fragments F5 with F6. Fragment
F5, comprising the ntcA coding region and 195 bp upstream, was amplified by PCR from S.
elongatus genomic DNA using primers SmBiT-PNtcA-F/NtcA-FL-LgBiT. Fragment F6 was
amplified by PCR from pUAGC1161 and primers FL-LgBiT-4F/SmBiT-2R.

The plasmids pUAGC1162 and pUAGC1164 were obtained by Quickchange site-
directed mutagenesis [69] with primers Y6A-2F/Y6A-2R, and pUAGC1161 and pUAGC1163
as templates, respectively.

3.2. Cyanobacterial Transformation and Strain Verification

Transformations were performed essentially as described in [70]. Verification of the
correct inactivation of pipX or pipXglnB was confirmed by PCR analysis with oligonucleotide
pairs PipX-126-F/PipX-5R and Glnb-1F/Glnb-1R, respectively. Verification of correct
insertions at the NSI neutral site was confirmed by PCR analysis using the oligonucleotide
pair NS1-1R/NS1-2R.

3.3. Cyanobacterial Growth and Culture Conditions

S. elongatus cultures were routinely grown in blue–green algae medium BG11 (BG110
supplemented with 17.5 mM NaNO3 and 10 mM HEPES/NaOH, pH 7.8 [71]) at 30 ◦C
under constant illumination provided by cool-white fluorescent lights, in flasks (70 µmol
photons m−2s−1; shaking: 150 rpm) or on plates (50 µmol photons m−2s−1).

For solid media, 1.5% (w/v) agar and 0.5 mM sodium thiosulfate (Na2S2O3) were
added after autoclaving. The required antibiotic/s were added at the following concentra-
tions: chloramphenicol (Cm; 3.5 µg mL−1), streptomycin (Sm; 15 µg mL−1) or kanamycin
(Km; 12 µg mL−1).

The growth of liquid cultures was monitored by measuring the optical density, at
750 nm (OD750nm), of 1 mL samples using an Ultrospec 2100 pro-UV-Vis Spectrophotometer
(Amersham Biosciences, Amersham, UK). For experiments involving the transfer of cultures
to media with different nitrogen sources, mid-exponential BG11 cultures were harvested
by centrifugation (4500× g, 5 min), washed twice with BG110 (no added nitrogen, -N) and
resuspended in 20 mL of BG11, BG11A (BG110 supplemented with 10 mM NH4Cl and
10 mM HEPES/NaOH, pH 7.8), BG110 or the same BG11 supernatant, at a final OD750nm
of 0.4.

3.4. Bioluminiscence Assays

To measure NanoBiT bioluminescence, 500 µL samples of cyanobacterial cultures were
transferred to 3.5 mL luminometer tubes, mixed with 10 µL of freshly prepared Nano-Glo
Live Cell Reagent (1:20 dilution of Nano-Glo Live Cell Substrate in Nano-Glo LCS Dilution
Buffer; Promega Corporation, Madison, WI, USA) and incubated for 5 min under the same
culture conditions (light, temperature and shaking). Their bioluminescence was quantified
in a luminometer (Junior LB9509, Berthold Technologies GmbH & Co. KG, Bad Wildbad,
Germany) using 10 s measuring times. Raw luminescence values were normalized using the
OD750 of each culture and represented in the graphs as RLUs (relative luminescence units).

3.5. Intracellular ATP Content Determination

The ATP extraction was essentiality performed as described in [72]. Briefly, 500 µL
aliquots were flash-frozen in liquid nitrogen. ATP was extracted via three consecutive
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cycles of boiling (100 ◦C) and freezing (liquid nitrogen), followed by centrifugation at
14,000× g for 1 min at 4 ◦C. A total of 50 µL of the supernatant was mixed with 50 µL BG11
and 40 µL of a reaction solution containing 1 mM DTT, 0.25 mM Luciferin and 75 µg/mL
luciferase from Photinus pyralis. The bioluminescence was measured in black 96-well
microplates (OptiPlate-96 F HB; PerkinElmer, Waltham, MA, USA) using a VICTOR3TM
1420 Multilabel Plate Reader (PerkinElmer, Waltham, MA, USA). An ATP standard curve
was created in parallel. Each point was measured twice, the ATP content was quantified
using the standard curve, and the data were normalized to the initial time 0 value.

3.6. Protein Extraction and Immunodetection

Samples of 10 mL from mid-exponential cultures (0.5–0.7 OD750nm) were harvested via
6 min centrifugation at 7300× g (4 ◦C) and stored at 20 ◦C. The pellets were resuspended
in 60 µL of lysis buffer (25 mM Tris/HCl pH 7.5, 0.4 mM EDTA, 1 mM DTT, 0.8 mg/mL
protease inhibitor, 50 mM NaCl), and cells were disrupted with 1 spoonful of 0.1 mm
glass beads (≈30 µL), as described in [37]. Mixtures were subjected to three cycles of 60 s
at a speed of 5 m/s in a high-speed homogenizer Minibeadbeater, followed by 60 s at
4 ◦C. Samples were centrifuged (5500× g for 5 min), and their supernatant fractions (crude
protein extracts) were transferred to a new tube. Protein concentrations were estimated
via the Bradford method using the PierceTM detergent-compatible Bradford assay kit
(ThermoScientific, Waltham, MA, USA) on a VICTOR3TM 1420 Multilabel Plate Reader,
and crude protein extracts were stored at −20 ◦C until needed.

For immunodetection, 60 µg of total protein extract was loaded into a sodium dodecyl
sulphate polyacrylamide gel (SDS-PAGE; 15% polyacrylamide). Gel electrophoresis was
followed by immunoblotting onto 0.1 µm polyvinylidene fluoride membranes (from GE
Healthcare Technologies, Inc., Chicago, IL, USA), and the membranes were subsequently
blocked with Tris-Buffered Saline (TBS-Tween; 20 mM Tris/HCl pH 7.5, 500 mM NaCl,
Tween 20 0.1%) solution containing 5% non-fat dried milk for 1 h at room temperature and
then incubated overnight in TBS-Tween with 2% non-fat dried milk with the corresponding
primary antibody. Membranes were then incubated for 1.5 h at room temperature with a
1:150,000 dilution of ECL rabbit IgG and an HRP-linked F(ab’)2 fragment (from a donkey,
GE Healthcare). The signal was detected using a SuperSignal WestFemto reagent (Thermo
Fisher Scientific, Waltham, MA, USA) in a Biorad ChemiDoc Imager using the automatic
exposure mode and avoiding pixel saturation. A 1:5000 dilution of primary anti-PipX,
anti-PII or anti-PlmA antibodies was used separately. Western blot assays were performed
for three independent clones of each strain.

3.7. Computational Methods

Protein intensity levels were quantified from the Western blot images using ImageJ
software version 1.53 K. Bands were picked up using the “rectangle” function, and the area
plot corresponding to their intensity was measured using the “wand” tool. Each area from
the PipX and PII’s immunodetection was normalised using the corresponding area of PlmA
and reference against the control WT strain.

A statistical Wilcoxon rank-sum test was performed using the RStudio program [73].
p-values were adjusted using the Holms–Bonferroni method.

4. Conclusions

The purpose of this work has been to gain insight into the complexities and idiosyn-
crasy of cyanobacterial signal transduction, exemplified here by the alternative and highly
regulated association between PipX and its best-known binding partners, the signalling
protein PII and the transcriptional regulator NtcA. We have used the NanoBiT complemen-
tation system to analyse the regulation of PipX-PII and PipX-NtcA complex formation in
S. elongatus. To provide an intracellular environment that was as unperturbed as possible,
NanoBiT gene fusions maintained their upstream regulatory regions while their endoge-
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nous counterparts, except for the essential ntcA gene, were deleted to prevent interference
with the activity of the reporters.

The results obtained here match the wealth of existing information on PipX-PII and
PipX-NtcA interactions, their effectors, the relative levels of these three proteins in S.
elongatus and the effect of point mutations at PipX on these complexes. Importantly, they
bring new light to the field by showing the exquisite sensitivity of the PipX-PII and PipX-
NtcA complexes to specific changes and additional signals, suggesting the existence of
an unanticipated negative feedback loop that tunes down the overactivation of NtcA by
PipX and further revealing that PII has a transient role as a NtcA activator, stimulating
PipX-NtcA complexes during their initial response to nitrogen deprivation.

In summary, this work expands our knowledge on the complexities of the PipX
interaction network and provides, in a model cyanobacterium, proof of principle for a
powerful tool to address the intricacies of signalling and interaction networks.
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