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Abstract: Obesity, type 2 diabetes mellitus (T2DM) and osteoporosis are serious diseases with an
ever-increasing incidence that quite often coexist, especially in the elderly. Individuals with obesity
and T2DM have impaired bone quality and an elevated risk of fragility fractures, despite higher
and/or unchanged bone mineral density (BMD). The effect of obesity on fracture risk is site-specific,
with reduced risk for several fractures (e.g., hip, pelvis, and wrist) and increased risk for others (e.g.,
humerus, ankle, upper leg, elbow, vertebrae, and rib). Patients with T2DM have a greater risk of
hip, upper leg, foot, humerus, and total fractures. A chronic pro-inflammatory state, increased risk
of falls, secondary complications, and pharmacotherapy can contribute to the pathophysiology of
aforementioned fractures. Bisphosphonates and denosumab significantly reduced the risk of vertebral
fractures in patients with both obesity and T2DM. Teriparatide significantly lowered non-vertebral
fracture risk in T2DM subjects. It is important to recognize elevated fracture risk and osteoporosis in
obese and T2DM patients, as they are currently considered low risk and tend to be underdiagnosed
and undertreated. The implementation of better diagnostic tools, including trabecular bone score,
lumbar spine BMD/body mass index (BMI) ratio, and microRNAs to predict bone fragility, could
improve fracture prevention in this patient group.

Keywords: obesity; type 2 diabetes mellitus; osteoporosis; adipose tissue; bone tissue; BMD; fracture
risk; treatment

1. Introduction

Obesity, type 2 diabetes mellitus (T2DM), and osteoporosis represent a currently grow-
ing health problem, as their prevalence is escalating and they are associated with increased
morbidity, mortality, and health expenditures, mostly in older individuals. According to
the World Health Organization (WHO), obesity is considered an excessive accumulation
of fat that can have a detrimental effect on health. For the general population, a body
mass index (BMI) greater than or equal to 30 kg/m2 is defined as obesity. However, for
Asians, obesity is defined as a BMI greater than or equal to 25 kg/m2. It is predicted
that by 2030, 20% of women, 14% of men, and more than 1 billion people will be living
with obesity [1–3]. Obesity is the most important risk factor for T2DM, which is char-
acterized by chronic hyperglycemia, insulin resistance, and inefficient insulin secretion
and action. T2DM may be diagnosed based on plasma glucose criteria, either the fast-
ing plasma glucose value (≥126 mg/dL; ≥7.0 mmol/L) or the 2 h plasma glucose value
(≥200 mg/dL; ≥11.1 mmol/L) during an oral glucose tolerance test, and/or based on
glycated hemoglobin (HbA1C) criteria (≥6.5%; 48 mmol/mol). The global prevalence of
T2DM is expected to be 592 million by 2035 [4–6]. The WHO defined osteoporosis as a
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disease of low bone mass with bone mineral density (BMD) equal to or less than −2.5
standard deviations (SD) of the mean value for young, healthy people (a T-score ≤ − 2.5
SD). Disrupted bone microarchitecture and elevated risk of fragility fractures are typical
for this disease. The worldwide prevalence of osteoporosis has been reported at 18.3%;
in particular, the prevalence in Africa and Europe is much higher. More than 30 million
people in Europe are expected to be affected by osteoporosis by 2050 [7–9].

Considering osteoporosis, gender must be taken into account. In women, primary
osteoporosis is classified based on aging as either type 1 (postmenopausal osteoporosis) or
type 2 (senile osteoporosis). Senile osteoporosis usually develops after the age of 70 and is
determined at a ratio of 2:1 in women and men [10,11]. Men experience delayed bone loss
compared to women due to a slower rate of decline in testosterone and estradiol. Therefore,
fractures occur about 10 years later in men than in women [12]. Secondary osteoporosis
results from secondary causes of bone loss, which can include various clinical and lifestyle
factors. In men, secondary osteoporosis has a higher frequency. Two thirds of older men,
over 50% of premenopausal women, and 30% of postmenopausal women are reported to
suffer from secondary osteoporosis [13,14].

There is some overlap between factors influencing obesity, T2DM, and osteoporosis.
Age-related bone loss, reduced hematopoiesis, and increased adipogenesis are considered
hallmarks of aging and are associated with impaired bone quality and health [15]. However,
metabolic disturbances in an organism, such as obesity and T2DM, can accelerate harmful
alterations in bone homeostasis and contribute to the early onset of osteoporosis [9]. In ad-
dition, secondary causes of osteoporosis, including T2DM, glucocorticoids, and immobility,
are related to bone marrow adiposity. Both bone remodeling and adiposity are regulated
by the hypothalamus and the sympathetic nervous system. The cross-talk between adipose
and bone tissues is mediated by adipocytes, osteoblast- and osteoclast-derived factors, and
vitamin D. Ultimately, adipocytes and osteoblasts derive from a common progenitor [16,17].

In general, obesity and T2DM are linked to normal or higher BMD; however, para-
doxically, both aforementioned conditions are associated with an elevated risk of fragility
fractures at specific sites. In the case of obesity, this phenomenon is denoted by the term
“obesity paradox” [1,2]. The aim of this review was to summarize the interactions among
obesity, T2DM, and osteoporosis, considering bone as a target organ. Most scientific studies
specifically address only the relationships between obesity and osteoporosis, and T2DM
and osteoporosis. However, since almost all individuals with T2DM are obese (interac-
tions between adipose and bone tissues are also relevant in individuals with T2DM) and
increased bone fragility occurs in both obesity and T2DM, the links between these three
diseases were presented in our review. Furthermore, in both obesity and T2DM, biologi-
cally active molecules responsible for impaired bone quality were characterized, as well
as pharmacotherapy in connection with reducing the incidence of fragility fractures and
also shortcomings in the diagnosis of bone damage. In this context, microRNAs have been
described as promising prognostic biomarkers for predicting not only the occurrence of
aforementioned diseases but also bone fragility. Therefore, such an overview is much more
comprehensive and provides the most up-to-date knowledge in the given field. In connec-
tion with the aging of an increasingly obese population, understanding the links among
obesity, T2DM, and osteoporotic fractures becomes an urgent need in order to reduce the
societal and individual costs of treating these diseases and their secondary complications.

2. Interactions between Adipose Tissue and Bone Tissue

Current studies suggest that adipose tissue can negatively affect bone health, chal-
lenging the traditional paradigm that increased fat mass is beneficial for the skeleton. In
general, adipose tissue is made up of adipocytes distributed in the organism, especially
in the subcutaneous and visceral fat. The function of adipose tissue varies from organs
as energy storage sites to endocrine organs secreting various factors that can influence
different organ systems and regulate energy metabolism [3,18]. In the context of obesity
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and T2DM, intramuscular fat and bone marrow adipose tissue also play a significant role
in skeletal homeostasis and bone fragility [4,9].

It should be noted that in connection with aging, there is a redistribution of adipose
tissue with a decrease in subcutaneous fat and an increase in visceral fat, intramuscular fat,
and bone marrow adipose tissue. It is associated with greater bone fragility, increased risk
of falls and fractures, and it is similar to the redistribution caused by obesity. As a result, its
harmful effects are elevated in elderly and obese patients [19].

The distribution of adipose tissue in specific regions, namely, subcutaneous and
visceral fat, has been shown to be an excellent indicator of bone health compared to overall
adiposity. It is known that subcutaneous and visceral fat share a common gene pool;
however, their distinct structures and functions differ, leading to different physiological
consequences [20,21]. For example, visceral adipocytes show increased insulin resistance
compared to subcutaneous adipocytes, have a more active metabolism profile, and higher
lipolysis toxicity [22]. Subcutaneous adipocytes show higher expression of adiponectin and
leptin compared to visceral adipocytes [17,23]. Moreover, subcutaneous and visceral fat
induce various inflammatory conditions [24]. In any case, visceral fat has been shown to
be more detrimental to bone health [20,25]. The visceral reservoir releases adipocytokines
that stimulate hepatic release of acute phase response proteins such as C-reactive protein
(CRP) and are related to macrophages that secrete inflammatory cytokines including
interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), plasminogen activator inhibitor-1,
and monocyte chemotactic protein-1 [26]. IL-6 can stimulate osteoclasts to elevate the rate
of bone resorption, while higher levels of circulating CRP are linked to higher levels of
N-terminal telopeptide of type 1 collagen (NTx), a marker of bone resorption and lower
bone mass [27].

Most research studies pointed to a link between increased visceral fat and damaged
bone structure. In a study by Bredella et al. [28], overweight and obese men with high
visceral fat were shown to possess worse bone microarchitecture and mechanical properties
versus those with low visceral fat. Kim et al. [29] revealed that femoral neck BMD was
significantly reduced in individuals with metabolic syndrome. Waist circumference (WC,
an indicator of visceral fat mass) was the most important component of this negative
association, indicating that visceral fat may lead to bone loss. Similarly, in a study by Gilsanz
et al. [30], visceral fat negatively correlated with most parameters of bone microstructure
and with strength in adult women, suggesting that visceral fat serves as a unique pathogenic
fat reservoir. Conversely, subcutaneous fat had a favorable effect on these bone parameters.
A protective impact of subcutaneous fat on bone health (femoral neck BMD in elderly
women) was also determined by Marquez et al. [31]. On the other hand, Wang et al. [32]
failed to discern any detectable association between subcutaneous fat and lumbar spine
BMD. Regarding visceral fat, a negative correlation between this fat and lumbar spine
BMD was noted in both perimenopausal and postmenopausal women [33]. However,
Liu et al. [34] found a positive association between visceral fat and BMD of the radius
and tibia, although this association lost significance after adjustment for body weight
or BMI. Zhang et al. [35] did not identify a significant correlation between visceral fat
and lumbar spine BMD. According to Ng et al. [25], the relationship between visceral
and subcutaneous fat depots and bone health is more complex and is specific for age,
gender, menopausal status, bone compartment, and adipose depot. Lin et al. [18] revealed
a negative association between subcutaneous fat and lumbar spine BMD. On the other
hand, a non-linear (U-shaped) relationship between visceral fat and BMD was determined.
Therefore, individuals exhibiting a certain range of visceral adiposity along with increased
subcutaneous fat face an increased susceptibility to osteoporosis. Thus, research findings
have supported the claim that the association between adipose tissue and bone tissue
exhibits variation dependent on the specific type of fat. In a study by Hind et al. [36],
visceral and total adiposity were significant predictors of prevalent vertebral fractures in
postmenopausal women.
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Overall, intramuscular fat content is elevated in obesity and may be linked to impaired
muscle function and strength, which is termed “sarcopenic obesity”. In sarcopenic obesity,
intramuscular lipids and their derivatives accumulate both inter- and intra-myocellularly
and induce mitochondrial dysfunction, reduced mitochondrial mass, impaired energy
production, and increased oxidative stress [37,38]. Poor muscle function could lead to
falls, fall injuries, and fractures, and there is evidence to suggest an excess of falls in obese
people [4,39]. Therefore, intramuscular fat can serve as an independent predictor of falls
and subsequent fractures in older adults [40,41]. Lang et al. [42] found an association
between impaired muscle function and 6-year hip fractures. Overall, sarcopenic obesity
has negative impacts on bone and predisposes worse bone microarchitecture compared to
obese people of the same BMI without sarcopenia [3]. The mechanism leading to impaired
muscle dysfunction in obesity remains unclear. However, it has been demonstrated that
pro-inflammatory cytokines present in muscles (e.g., TNFα and IL-6), which are increased
in obesity, can be reduced by exercise [43].

Obesity and T2DM significantly influence microstructural changes in bone marrow
and contribute to the disruption of bone homeostasis, resulting in a higher risk of fragility
fractures [28]. An altered cellular landscape and molecular networks within the bone
microenvironment lead to an increase in bone marrow adipose tissue volume. It is induced
by an increase in the size and/or number of adipocytes and may cause a restriction
of space for other cells that are required for normal skeletal homeostasis, such as bone
marrow stromal cells, hematopoietic cells, or osteoblastic cells [44]. Moreover, factors
that are secreted by bone marrow adipocytes (e.g., adipokines, pro-inflammatory and
immunoregulatory cytokines, and receptor activator of nuclear factor kappa beta ligand
(RANKL)) may also contribute to altered skeletal homeostasis after bone marrow adipose
tissue expansion [9,45]. In addition, accumulation of senescent cells and elevated levels of
oxidative stress in the bone microenvironment in obesity and T2DM are among factors that
may participate in bone marrow stromal cell dysfunction and cause a shift in bone marrow
stromal cell differentiation phenotype that favors adipogenesis over osteogenesis [2]. The
expansion of bone marrow adipose tissue was observed in bone biopsies from obese elderly
men [46]. According to Tencerova et al. [47], bone marrow stromal cells obtained from obese
men showed an increased adipocyte differentiation and accelerated senescence phenotype
that might contribute to skeletal fragility in obesity. Interestingly, bone marrow adipose
tissue was elevated in women with anorexia nervosa, who have very low levels of visceral
and subcutaneous fats. Moreover, bone marrow fat was inversely correlated with BMD [48].
This suggests that while other fat stores tend to be highly correlated, bone marrow adipose
tissue has a different pattern, suggesting separate control mechanisms [49]. As bone marrow
fat increases, saturated lipids appear to elevate over unsaturated lipids [50]. It is known
that magnetic resonance spectroscopy (MRS) of bone marrow lipid profiles from peripheral
skeletal sites may be a promising tool for identifying individuals with osteoporosis or at
risk of developing osteoporosis [51,52]. Figure 1 shows both the positive and negative
effects of fat deposits in relation to bone health in obesity.
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Figure 1. Positive (�) and negative (✗) impacts of fat depot actions in relation to bone health in
obesity (created with BioRender.com; accessed on 5 March 2024). Abbreviations: CNS—central
nervous system.

3. Biologically Active Molecules Responsible for Impaired Bone Quality in Obesity
and T2DM

Adipose tissue is considered an endocrine organ with a decisive role in energy home-
ostasis. Various molecular pathways by which adipose tissue communicates with bone
tissue have been proposed. This interplay is active, dynamic, and involves multiple factors
such as hormones (e.g., leptin, adiponectin, and resistin), pro-inflammatory cytokines
(e.g., TNF-α, IL-6, and CRP), and vitamin D. In addition, bone tissue influences metabolic
parameters, including body weight control through bone-derived factors (e.g., osteocalcin
and osteopontin) [53]. In general, biochemical markers of bone turnover are reduced in
obese individuals [54]. However, López-Gómez et al. [55] reported age-related differences
in the levels of bone turnover markers in postmenopausal obese women, where markers of
bone formation were reduced especially at younger ages and markers of bone resorption
were increased at older ages.

Leptin, which is elevated in obese individuals, has a dual effect on bone. It acts on the
hypothalamus to activate the sympathetic nervous system and inhibit bone formation (neg-
ative impact), but it also acts directly on osteoblasts to stimulate bone formation (positive
impact). The negative effect seems to outweigh the positive one [56,57]. Adiponectin is re-
duced in obese subjects. It stimulates osteoblastogenesis and suppresses osteoclastogenesis
(both osteoblasts and osteoclasts express adiponectin receptors). However, adiponectin
concentrations are inversely proportional to pro-inflammatory cytokine levels (e.g., CRP,
TNF-α, and IL-6), which serve as potent inhibitors of adiponectin expression [53,58]. Re-
sistin, which is increased in obese patients, has a controversial effect on bone. It appears to
promote osteoblast proliferation but also supports osteoclast proliferation and the release
of pro-inflammatory cytokines [59,60]. In obese individuals, serum levels of vitamin D
are significantly lower compared to non-obese subjects. However, obese individuals have
higher BMD, suggesting that a low vitamin D level may not be related to adverse bone
outcomes [61,62]. Osteocalcin (OC), which is lower in obese subjects and is considered a
bone formation marker, improves glucose intolerance, obesity, and insulin expression by
controlling gene expression in β-cells and adipocytes. In addition, it stimulates adiponectin
secretion [11,63]. Osteopontin is elevated in obese individuals and is involved in physiolog-
ical and pathological bone mineralization. Its expression is strongly upregulated in adipose
tissue in obesity. Antibody-mediated neutralization of osteopontin action was found to
significantly reduce insulin resistance in obesity [64,65].

Both obesity and T2DM are associated with oxidative stress and inflammation. Ox-
idative stress is induced by reactive oxygen species (ROS), which increase with aging or
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the onset of an inflammatory state and can harmfully affect bone homeostasis. There is
evidence that ROS (e.g., superoxide and hydrogen peroxide) are important for a wide vari-
ety of different signaling pathways, including the regulation of mitogen-activated protein
kinases (MAPKs), transcription factors, and intracellular Ca2+ levels [66]. In general, ROS
are decisive components that regulate osteoclast formation in a process mediated by the
interaction between RANKL and receptor activator of nuclear factor kappa beta (RANK).
Osteoprotegerin (OPG), which is a soluble decoy receptor for RANKL, prevents binding
of RANKL to RANK. Therefore, the RANK/RANKL/OPG pathway is a key mediator of
osteoclastogenesis [67,68]. Moreover, ROS induce apoptosis of osteoblasts and osteocytes
by activating many signaling pathways. In this process, MAPKs (e.g., JNK and ERK) are
involved. ROS also reduce osteoblast activity and differentiation, and thus, mineralization
and osteogenesis [69,70]. In this context, it is important to mention that the Wnt/β-catenin
signaling pathway is essential for bone formation [71]. β-catenin is a crucial transcription
co-activator that regulates transcription of several target genes, including runt-related
transcription factor 2 (Runx2), which is responsible for osteoblast differentiation [72].

Obesity is also related to chronic low-grade inflammation resulting in insulin resis-
tance and, ultimately, T2DM [73]. It is more pronounced in central and visceral adiposity
and characterized by higher levels of pro-inflammatory markers (e.g., IL-6, TNF-α, and
CRP) and pro-resorptive factors (e.g., RANKL and tartrate-resistant acid phosphatase 5b
(TRAP5b)). Obesity is also linked to the activation of peroxisome proliferator-activated re-
ceptor γ (PPAR-γ), the nuclear factor kappa light chain enhancer of activated B cells (NF-κB),
and CCAAT/enhancer-binding protein α (C/EBPα) pathways [53]. Activation of PPAR-γ
promotes the differentiation of mesenchymal stem cells into adipocytes rather than os-
teoblasts [74]. NF-κB activation is required for osteoclast differentiation [75]. C/EBPα is crit-
ical for osteoclast differentiation and activity [76]. Moreover, adipokines (e.g., adiponectin,
leptin, and resistin) produced in adipocytes have an inverse relationship with fat mass [77]
and variably influence bone mass [78].

There are some similarities between impaired bone quality in obesity and T2DM, but
T2DM has more deleterious effects on the skeleton. Many studies suggest that due to
chronic hyperglycemia, the formation of ROS may be associated with collagen glycation,
which is an important factor [4,5]. Overall, bone damage in T2DM can be caused by
multiple mechanisms: accumulation of advanced glycation end products (AGEs) [79],
increased levels of pro-inflammatory cytokines (e.g., IL-6, TNF-α) [80], sclerostin [81],
leptin [80], lower levels of OC [11,82]), procollagen I N-terminal propeptide (P1NP) [83,84],
parathyroid hormone (PTH) [85], and impairment of osteoblastogenesis [86]. The status of
low bone turnover in T2DM is also reflected in lower levels of bone resorption markers
(e.g., TRAP5b and C-telopeptide of type I collagen (CTx)) [82,85]. In addition to elevated
oxidative stress, hyperglycemia is related to decreased osteoblast function, inhibited bone
mineralization, enhanced adipogenesis, and downregulation of vitamin D receptors. All
aforementioned conditions lead to a disturbance of bone metabolism, worse bone quality,
higher fracture risk [47,87–90], and osteoporosis [91]. According to Zhang et al. [71], the
insulin-like growth factor (IGF)-1/β-catenin signaling axis plays an essential role in the
pathogenesis of osteoporosis in T2DM, as IGF-1 is involved in both bone and glucose
metabolism and IGF-1 signaling regulates the Wnt/β-catenin signaling pathway. Figure 2
illustrates the involvement of individual molecules, responsible for bone damage, in obesity
and T2DM. Given that obesity is a risk factor for T2DM, it would be difficult to separate
the impact of obesity on bone health from that of T2DM. Therefore, this figure represents
their simultaneous effect on bone fragility and fracture risk.
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Figure 2. Schematic representation of the action of individual molecules responsible for bone fragility
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Abbreviations: AGEs, advanced glycation end products; CRP, C-reactive protein; IGF-1, insulin-like
growth factor 1; IL-6, interleukin-6; NF-κB, nuclear factor kappa light chain enhancer of activated
B cells; OPG, osteoprotegerin; PPAR-γ, peroxisome proliferator-activated receptor gamma; RANK,
receptor activator of NF-κB; RANKL, receptor activator of NF-κB ligand; ROS, reactive oxygen
species; Runx2, runt-related transcription factor 2; T2DM, type 2 diabetes mellitus; TNF-α, tumor
necrosis factor alpha.

4. Relationships between Obesity and Osteoporosis

In recent years, complicated interaction between obesity and osteoporosis has attracted
considerable attention, as adiposity has been shown to have a fundamental function in
bone metabolism [92]. Consequently, there has been an increasing trend of studies to
assess their relationship, which may differ mainly depending on the indicators of obesity
used (e.g., BMI, WC, and waist-to-hip ratio (WHR)) [93,94] and/or assessment methods
for BMD (e.g., dual energy X-ray absorptiometry (DEXA), high-resolution peripheral
quantitative computed tomography (HR-pQCT), trabecular bone score (TBS), and lumbar
spine BMD/BMI ratio (LS BMD/BMI ratio)) [19,60].

In general, fat distribution and body composition can vary significantly between
individuals with identical BMIs due to different percentages of fat mass or muscle mass [3].
Therefore, WHR or fat mass index (FMI) may serve as a better screening tool to predict
body fat percentage [95,96]. According to Ross et al. [97], a combination of WC and BMI
can identify the highest-risk phenotype of obesity much better than each of these indicators
individually. In this context, Khan et al. [98] reported that WHR had the most robust
association with adiposity-mortality risk compared to BMI and FMI; therefore, it may serve
as the most appropriate obesity indicator.
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Since osteoporosis is no longer considered solely a disease of low BMD, other factors
including bone turnover, microarchitecture, and geometry that contribute to bone strength
and/or are linked to osteoporotic bone must be taken into account. BMD is a useful
diagnostic tool; however, it reflects only one component of bone strength [99]. This reality
is also confirmed by several studies indicating that fragility fractures are identified even in
individuals with a T-score > −2.5 SD [100–105]. Generally, osteoporosis is characterized by
a deficit in either bone quantity, bone quality, or both [99]. Bone quantity can be measured
using DEXA or quantitative ultrasound (QUS). However, these instrumental methods
cannot analyze the quality of bones. In general, HR-pQCT, TBS, and LS BMD/BMI ratio
are used for this purpose. The latter assessment methods are, thus, more reliable and better
than DEXA or QUS in evaluating complex bone health [60].

In obese individuals, BMD is known to be increased and/or unchanged, but elevated
BMD and soft tissue thickness may introduce precision error in DEXA measurement
through assumptions about abdominal thickness and beam stiffening effects [4,106]. In
this context, Blake et al. [107] mentioned that individuals with a lower spine T-score had a
significantly higher vertebral marrow fat content. Therefore, the ability of DEXA scans to
determine fracture risk may be explained in part by the effect of increased vertebral marrow
fat on BMD. According to Ruosi et al. [74], BMD was normal but the spine deformity index
(SDI) showed reduced bone quality, and vertebral compression fractures were observed in
87.5% of obese patients. Romagnoli et al. [108] reported that obesity negatively affected
TBS, despite unchanged BMD. TBS was inversely related to BMI, indicating that increases
in BMI adversely influenced bone quality. Moreover, the impact of WC on TBS was more
significant than that of BMI. Eller-Vainicher et al. [109] stated that TBS and LS BMD/BMI
ratios were nearly always reduced more than BMD in obese individuals. Since several
studies have revealed a greater site-dependent fracture risk in obese individuals [110–112],
TBS and LS BMD/BMI ratio may provide a better perspective for determining the risk of
fragility fractures in obese subjects.

In the past, it was assumed that individuals most at risk of fractures were non-obese
women. A lower BMI has been suggested to elevate the risk of osteoporosis [113,114].
This initial belief was mainly supported by a positive relationship between BMI and
BMD [113,115]. Cherif et al. [116] pointed to an overall high BMD in postmenopausal
obese women. Hammoud et al. [117] found that the severity of obesity did not affect BMD
values in premenopausal obese women. A meta-analysis by Qiao et al. [118] revealed
a positive association between obesity (determined based on BMI) and femoral neck
BMD, and between obesity and lumbar spine BMD, in adults. Therefore, a negative
correlation between obesity and osteoporosis was established. Similarly, in a meta-analysis
by Liu et al. [119], general obesity (measured by BMI) was associated with lower odds
of developing osteoporosis. However, central obesity (measured by WC) showed no
association with osteoporosis. On the contrary, Pamganamamula et al. [120] in their
meta-analysis found that patients in the obese BMI category had a higher incidence of
osteoporosis compared to other relevant groups (overweight, normal, and underweight),
suggesting that a higher BMI does not reflect a protective role against osteoporosis (BMD
was determined in the lumbar spine and femoral neck).

Most research studies suggest that the link between obesity and fracture risk is more
complex than previously thought. For example, it may be modified by the interaction
between body weight and BMD; obesity has a different effect on fracture risk at different
sites of the skeleton; and the relationship between obesity and fracture risk is dependent
on both age and sex [121–123]. According to Prieto-Alhambra et al. [111], obesity is pro-
tective against hip and pelvic fractures in postmenopausal women, but is related to an
almost 30% increased risk of proximal humerus fractures. The protective impact of obesity
against hip fractures, but a higher risk of humerus fractures, was also demonstrated by
Gnudi et al. [124]. A meta-analysis of Tang et al. [125] confirmed a negative association be-
tween obesity and hip fracture risk in adults. On the other hand, Sadeghi et al. [112] found a
positive relationship between these two indicators (obesity and hip fractures). According to
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Compston et al. [110], the risk of wrist and hip fractures was reduced, while the risk of ankle
and upper leg fractures was elevated in postmenopausal obese women. The authors found
a 27% prevalence of the last two fractures mentioned in older obese women, who were also
more likely to have experienced early menopause and reported two or more falls (obese in-
dividuals most often fall backwards or sidewards, while non-obese subjects most often fall
forwards) in the past year. An increased risk of ankle and upper arm fractures and a lower
risk of wrist fractures in obese patients were also observed by Ong et al. [126]. According to
Tanaka et al. [127], vertebral fractures occurred more frequently in postmenopausal obese
women, while femoral neck fractures and long-bone fractures were less common. Similarly,
Liu et al. [128] established an elevated risk of vertebral fractures in postmenopausal obese
women, but obesity served as a protective factor for pelvic fractures. Kaze et al. [129] found
that obesity reduced the risk of vertebral fractures in men but not in women, suggesting
possible gender-related differences. Johansson et al. [130] in their meta-analysis revealed
that obesity was a risk factor for humerus and elbow fractures in adult women, while low
BMI was a risk factor for hip fractures and all osteoporotic fractures. In a meta-analysis by
Turcotte et al. [131], postmenopausal obese women were found to have a 60% higher risk
of ankle fracture than non-obese women. On the contrary, risks of hip and wrist fractures
were reduced by 25% and 15%, respectively, in obese women. In older men, obesity was
associated with a reduced risk of clinical fracture of the spine, hip, pelvis, and wrist, and an
increased risk of multiple rib fractures [132]. In this case, obesity-induced hypogonadism
may contribute to bone fragility, as obese men have been shown to have low testosterone
levels [133]. Surprisingly, Premaor et al. [134] demonstrated an unaccountably high (28%)
prevalence of obesity in postmenopausal women with a low-trauma fracture, most of whom
had normal BMD (measured by DEXA). Figure 3 shows higher and lower site-specific
fracture risk in obese adults.
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It is widely known that bone turnover and bone resorption are reduced in obese
individuals. Therefore, the question of whether anti-resorptive treatment is effective
in preventing fractures in obesity is relevant [135]. A study by McClung et al. [136]
demonstrated that denosumab reduced the risk of vertebral fractures in both obese and non-
obese postmenopausal women independent of BMI, although a decrease in non-vertebral
fractures was identified only in those without obesity. Treatment with bisphosphonates (e.g.,
zoledronic acid) caused a greater reduction in vertebral fracture risk in postmenopausal
women with BMI ≥ 25 kg/m2 versus those with BMI < 25 kg/m2, but had no significant
effect on non-vertebral fractures [137]. These data indicate that higher doses of anti-
resorptive drugs may be required in obese patients to maintain effectiveness against non-
vertebral fractures [138]. In addition, obese women with a fracture were found to be more
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frequently undertreated than non-obese women (27% vs. 41%) due to higher BMD and
specific “non-osteoporotic” fractures (e.g., ankle) [110]. In any case, further research should
be conducted in this area.

5. Relationships between T2DM and Osteoporosis

Both T2DM and osteoporosis are influenced by lifestyle changes and aging and quite
often coexist, especially in the elderly. There is a complex pathophysiological interaction
between the two diseases: T2DM directly affects bone strength and bone metabolism,
some antidiabetic medications influence bone metabolism, and there is a link between
T2DM-related complications and the risk of falls and subsequent fractures [139,140]. A
meta-analysis of Si et al. [141] revealed 44.8% and 37.0% prevalence of osteoporosis in
diabetic women and men, respectively. According to Wang et al. [142], the incidence of
osteoporosis was 20.6% in older women with T2DM and 5.0% in older men with T2DM. A
current meta-analysis by Liu et al. [91] determined a 27.67% prevalence of osteoporosis in
T2DM patients worldwide, which could be a reason to implement osteoporosis control in
diabetic patients.

Several studies have shown that overall fracture risk is increased in subjects with
T2DM, being higher with poor glycemic control, longer T2DM duration, and diabetic
complications [143,144]. Interestingly, high variability in fasting glucose was consistent
with an elevated risk of hip fracture [145]. Conversely, patients with impaired glucose
tolerance were not at increased risk of fracture and may in fact have a lower risk [146].
It is hypothesized that it could be related to high BMI and insulin resistance, which
are often determined in individuals with impaired glucose tolerance [147]. In general,
higher urinary Ca excretion, functional hypoparathyroidism, central hypogonadism, and
alterations in IGF-1 and vitamin D metabolism have been implicated in raising the risk of
fractures [148,149].

Despite higher and/or unchanged BMD, several authors have reported an increased risk
of hip, upper leg, foot, humerus, and total fractures in older patients with T2DM [148,150–156].
Although both women and men with T2DM appear to have an elevated risk of hip and
non-vertebral fractures [151,157], a cohort study by Napoli et al. [158] showed no difference
in the incidence of vertebral fractures between elderly men with and without T2DM.
Similarly, Dytfeld and Michalak [159] revealed that T2DM does not increase the risk of
vertebral fractures in postmenopausal women, but there were relatively few data on
vertebral fractures. On the contrary, Viégas et al. [160] found a high prevalence (23%) of
vertebral fractures among postmenopausal women with T2DM. A meta-analysis of Moayeri
et al. [156] also showed a positive association between T2DM and vertebral fractures in
adults. Moreover, fracture incidence increased with age and was higher in men with
T2DM compared to women with T2DM. Figure 3 illustrates sites at higher fracture risk in
T2DM adults.

Prolonged fracture healing has also been linked to T2DM. Overall, T2DM significantly
increases the rate of specific unfavorable effects in surgically treated lower limb fractures,
including nonunion, deep infection, and reoperation. In addition, a greater risk of nonunion
in fractures below the knee has been reported [161,162]. Post-fracture patients with T2DM
generally have higher mortality, develop more complications, and recover worse than
individuals without T2DM [4].

In older patients with T2DM, a higher risk of falls has been recorded, partly due to
elevated bone fragility, hypoglycemic events, and obesity, but also due to T2DM-related
disorders. Peripheral neuropathy may be related to poor balance and localized bone loss,
which may further elevate the risk of fall-related fractures, particularly at the foot and
ankle. Diabetic retinopathy can further compromise the patient’s safety and lead to gait
instability. Patients with diabetic nephropathy, which is associated with disorders of bone
and mineral metabolism, are prone to fractures due to renal osteodystrophy and also to
falls. Cardiovascular diseases (e.g., cardiac arrhythmia, stroke, and atherosclerosis) are
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considered common comorbidities in T2DM and can also increase the risk of collapse, falls,
and fractures [134,150,163–166].

Bone strength and fracture risk are determined by bone quantity and quality. In
T2DM patients, BMD does not seem to reflect the risk of fractures. Impaired bone qual-
ity contributes to bone fragility and elevates fracture risk independently of BMD [152].
Overall, adults with T2DM have a lower TBS compared to those with normal glycemia.
In addition, TBS predicts osteoporotic fractures and captures a greater proportion of the
fracture risk than BMD [167,168]. Using HR-pQCT, lower cortical volumetric (v)BMD and
increased cortical porosity linked to reduced bone strength, and a greater fracture inci-
dence, were reported in elderly subjects with T2DM [169,170]. In T2DM patients, cortical
resistance (an index of bone material strength) was lower and this parameter decreased
with worsening glycemic control. Accordingly, higher contents of total mineral and AGEs
were noted in subjects with T2DM, consistent with reduced bone turnover [171]. Bone
turnover in T2DM is indeed low with decreased bone formation and, to a lesser extent,
bone resorption [172,173].

Pharmacotherapy of T2DM can also modulate the risk of fractures. Metformin, sul-
fonylureas, glucagon-like peptide-1 receptor agonists, and dipeptidyl peptidase-4 inhibitors
have neutral or protective associations with fracture risk [4,139]. Thiazolidinediones (TZDs)
and the sodium–glucose cotransporter 2 (SGLT2) inhibitor, canagliflozin, are known to
elevate fracture risk [174,175]. Therefore, TZDs should not be used and SGLT2 inhibitors
should be used with caution in T2DM patients at high risk of fracture. Insulin therapy is the
preferred method to achieve glycemic control in T2DM subjects with fractures. However, it
should be used carefully to avoid hypoglycemia and elevated fracture risk [4,139]. Phar-
macological treatment of osteoporosis generally reduces the risk of fractures in patients
with T2DM. Bisphosphonates (e.g., alendronate) and selective estrogen receptor modula-
tors (e.g., raloxifene) have similar efficacy against vertebral fractures in individuals with
and without T2DM [176,177]. Denosumab significantly reduces vertebral fracture risk in
patients with T2DM and osteoporosis [178]. Teriparatide significantly lowers non-vertebral
fracture risk in subjects with and without T2DM [176,179]. According to Eastell et al. [180],
bisphosphonates and most other anti-resorptive drugs (e.g., denosumab, selective estrogen
receptor modulators, and odanacatib) have similar efficacy in reducing fracture risk in
individuals with and without T2DM.

6. MicroRNAs as Biomarkers in Obesity, T2DM, and Osteoporosis

From the text mentioned above, it appears that diagnostic tools for identifying patients
at risk of fracture are insufficient in both obesity and T2DM. Therefore, it is necessary to
specify novel biomarkers that will help determine bone fragility in these diseases [181].
MicroRNAs (miRNAs) are currently receiving considerable attention as biomarkers for var-
ious diseases, including obesity, T2DM, and osteoporosis [182]. Based on several preclinical
studies, microRNAs with functional roles in the induction of bone/fat switch and bone
defects may become important therapeutic targets [183]. Saferding et al. [184] identified
miR-146a as a molecular checkpoint controlling age-related bone loss by limiting bone
anabolic pathways and promoting bone marrow adiposity. In postmenopausal women and
men with fragility fractures, miR-146a levels were increased. Therefore, targeting miR-146a
may be an effective means of treating bone loss in osteoporosis. Furthermore, miR-21 and
miR-133a were found to be related to BMD in postmenopausal osteoporotic women [185].
Jordan et al. [186] demonstrated that miR-143 was a positive regulator of human adipocyte
differentiation acting through ERK5 signaling. Studies by Lee et al. [187] and Yu et al. [188]
pointed out that miR-27a and miR-130a inhibited adipocyte differentiation via PPAR-γ
downregulation. According to Villard et al. [189], miR-140-5p, miR-142-3p, and miR-222
were upregulated and miR-21-5p, miR-103-5p, miR-125-5p, and miR-221-3p were downreg-
ulated in obese patients, while both miR-142-3p and miR-222 were commonly upregulated
in obese and T2DM patients. In addition, in silico analysis of targeted genes and pathways
indicated the potential role of miR-142-3p and miR-222 in the metabolic properties of both
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obese and T2DM patients. Brovkina et al. [190] found that miR-23b-3p and miR197-3p were
increased in obese patients. Moreover, miR-99b, miR-125a-5p, miR125b-5p, miR-204-5p,
and miR320a were upregulated in obese patients with T2DM. Interestingly, miR-328-3p
and miR-328 were downregulated and upregulated in obesity, respectively, and miR-328
was downregulated in sarcopenia. Plasma miR-215 was upregulated in both obesity and
sarcopenia, and miR-215-5p was also upregulated in obesity [191,192].

The findings of Heilmeier et al. [193] revealed miR-550a-5p and miR-382-3p as po-
tential candidates for indicating fragility status in postmenopausal women with T2DM,
while miR-188-3p could potentially be used as an indicator of osteoporosis-related frac-
tures. According to Jiang et al. [194], the miR-222 inhibitor could potentially be used to
accelerate bone healing in fractured STZ-induced diabetic rat model and, therefore, may be
considered as a therapeutic target. Zhang et al. [195] reported that miR-205 was involved in
osteogenic/adipogenic differentiation of bone marrow mesenchymal stem cells by targeted
inhibition of the expression of Runx2 in elderly female mice with T2DM and osteoporosis.
Therefore, miR-205/Runx2 may be a target for the treatment of patients suffering from both
T2DM and osteoporosis.

7. Conclusions

Obesity, T2DM, and osteoporosis are serious diseases with increased morbidity; mor-
tality; and various secondary complications, which often occur together in older individuals.
Despite higher and/or unchanged BMD, subjects with obesity and T2DM have poor bone
quality and an increased risk of fragility fractures at specific sites.

In general, obesity is a protective factor against hip, pelvis, and wrist fractures in
older patients. On the contrary, an increased risk of humerus, ankle, upper leg, elbow,
vertebrae, and rib fractures is determined in obese subjects. Overall, the pathophysiology
of aforementioned fractures is not fully understood, but an excess of falls, various patterns
of falling, and unfavorable impacts of adipose tissue on bone tissue can contribute to
this. Bisphosphonates and denosumab significantly reduced vertebral fracture risk in
postmenopausal obese women. It is expected that higher doses of anti-resorptive drugs may
be required in obese subjects to maintain effectiveness against non-vertebral fractures. In
older patients with T2DM, a greater risk of hip, upper leg, foot, humerus, and total fractures
was established. In addition, post-fracture patients experience an excess of falls, prolonged
fracture healing, and elevated mortality. Pharmacotherapy can also modulate the risk of
fracture in T2DM. In general, TZDs should not be used and SGLT2 inhibitors should be used
with caution in T2DM patients at high risk of fracture due to an even increased fracture risk.
Bisphosphonates, selective estrogen receptor modulators, and denosumab significantly
reduced vertebral fracture risk in patients with T2DM. Teriparatide significantly lowered
non-vertebral fractures in T2DM subjects.

It is important to be aware of elevated fracture risk and osteoporosis in patients with
obesity and T2DM, as they are currently considered low-risk and tend to be underdiag-
nosed and undertreated due to the lack of bone quality assessment by DEXA or QUS.
Therefore, implementation of better diagnostic tools to predict body fat percentage and
assess comprehensive bone health including fragility fracture risk in obese and T2DM
subjects (e.g., WC, WHR, MRS, HR-pQCT, TBS; LS BMD/BMI ratio, and miRNAs) can be
considered an important clinical and future priority that could improve fracture prevention
in this group of patients.
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