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Abstract: Prediction of binding sites for transcription factors is important to understand how the
latter regulate gene expression and how this regulation can be modulated for therapeutic purposes. A
consistent number of references address this issue with different approaches, Machine Learning being
one of the most successful. Nevertheless, we note that many such approaches fail to propose a robust
and meaningful method to embed the genetic data under analysis. We try to overcome this problem
by proposing a bidirectional transformer-based encoder, empowered by bidirectional long-short
term memory layers and with a capsule layer responsible for the final prediction. To evaluate the
efficiency of the proposed approach, we use benchmark ChIP-seq datasets of five cell lines available
in the ENCODE repository (A549, GM12878, Hep-G2, H1-hESC, and Hela). The results show that the
proposed method can predict TFBS within the five different cell lines very well; moreover, cross-cell
predictions provide satisfactory results as well. Experiments conducted across cell lines are reinforced
by the analysis of five additional lines used only to test the model trained using the others. The results
confirm that prediction across cell lines remains very high, allowing an extensive cross-transcription
factor analysis to be performed from which several indications of interest for molecular biology may
be drawn.

Keywords: capsule network; deep learning; DNA sequences; transcription factor binding sites (TFBSs)

1. Introduction

Transcription Factors (TFs) are proteins that bind to certain genomic sequences and
influence a wide range of cellular functions [1,2]. TFs bind to DNA regulatory sequences,
which are known as Transcription Factor Binding Sites (TFBSs), typically of size 4–30 bp [3–5],
where they modulate the gene transcription while playing an important role in cellular
processes [6–8]. The correct prediction of TFBSs is crucial for characterising certain func-
tional aspects of the genome as well as for explaining the organisation of specific sequence
expression in complex organisms [9–11]. High-throughput sequencing technology has
led to the generation of vast amounts of experimental data about TFBS (e.g., JASPAR [12],
TRANSFAC [13], etc.) that now motivate the adoption of methods to identify TFBSs via
deep learning approaches.

Many researchers have proposed machine learning methods to identify TFBSs. In
this regard, Wong et al. [14] put forth kmerHMM to identify TFBS, where a Hidden
Markov Model (HMM) was trained for the underlying motif representation, followed
by belief propagation to extract multiple motifs from HMM. To predict DNA binding
sites, Ghandi et al. [15] proposed gkm-SVM, which uses a tree for the calculation of the
kernel matrix. However, traditional machine learning models usually rely on manual
feature extraction, and fail to properly address large-scale datasets. Recently, a number
of deep learning models have been specifically developed for computer vision [16,17]
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and natural language processing [18]. Models of the same nature have been applied to
solve problems in computational biology and bioinformatics as well [19–21]. Deep neural
network-based methods such as DeepBind [22] and DeepSEA [23] show competitive or
better results compared to traditional methods such as Markov models, support vector
machines, hierarchical mixture models, discriminative maximum conditional likelihood,
and random forests. DeepBind [22] demonstrates the capabilities of deep learning to
assess sequence specificity from experimental data, offering a scalable, adaptable, and
integrated calculating technique for finding patterns. DeepBind is the first technology to
ever address the demand for precise modelling of protein target binding motifs. A long
short-term recurrent convolutional network called DeeperBind [24] is used to anticipate
the specificities of how proteins will bind to DNA probes. In order to effectively account
for the contributions provided by various sub-regions in DNA sequences, DeeperBind can
describe the positional dynamics of probe sequences. It can also be trained and evaluated
on datasets with sequences of different lengths. Quang et al. [25] proposed DanQ, which
combines CNNs and a bidirectional long short-term memory network (BiLSTM) to predict
binding sites. Zeng et al. [26] used multiple CNN architectures for the prediction of DNA
sequence binding using an extensive collection of transcription factor datasets. In order to
split the DNA binding sequence into overlapping pieces and predict TFBS, Farrel et al. [27]
presented an effective pentamer approach. In [28], Qin et al. proposed TFImpute to predict
cell-specific TFBS from ChIP-seq data. This method incorporates TFs and cell lines into
continuous vectors that are used as inputs to the model. DeepSNR, proposed by Salekin
et al. [29], uses a CNN-Deconvolutional model to predict transcription factor binding
locations at single-nucleotide resolution. DeepFinder [30] is an enhanced three-stage DNA
motif predictor for large-scale pattern analysis; it uses TFBS-associated deep learning
neural networks to build the motif model. For data on imbalanced DNA–protein binding
sites, Zhang et al. [31] suggested a new prediction approach. Their technique employs
a bootstrap algorithm to undersample negative data, while adaptive synthesis is used
to oversample positive data. To further capture long-term relationships between DNA
sequence motifs, DeepSite [32] uses CNN and BiLSTM. In [32], the authors considered
sequence dependencies and addressed the issue of extracting valid information from huge
amounts of data while precisely locating motif information in imbalanced data. Yang
et al. [33] used deep neural networks along with binomial distribution to enhance motif
prediction in the human genome as a way to help with TFBS identification and aid motif
prediction accuracy. In [34], Chen et al. used deep learning to develop a TF binding
prediction tool known as DeepGRN. The first part of the model is a convolutional layer,
while the BiLSTM nodes are recurrent units. Multi-scale convolution along with LSTM
(MCNN-LSTM) were chosen in [35] to accurately predict TFBS. The results showed that
MCNN-LSTM outperformed several existing TFBS predictors. Zhang et al. [36] combined
a convolutional autoencoder with a convolutional neural network (CAE-CNN) to predict
TFBS, and used a gated unit to understand the features better. Their primary contribution
is in the integration of supervised and unsupervised learning methods to predict TFBS.
In [37], Jing et al. used a metalearning-based CNN method (MLCNN) to predict TFBS.
The performance of their MLCNN was competitive with or superior to other state-of-
the-art CNN methods. A hybrid convolutional recurrent neural network (CNN/RNN)
architecture known as CRPTS was proposed in [38] to predict TFBSs by combining DNA
sequence and DNA shape features. Cao et al. [39] proposed DeepARC, which combines
a convolutional neural network (CNN) and recurrent neural network (RNN) to predict
TFBS. DeepARC uses an encoding method combining one-hot encoding and DNA2Vec.
This method showed promising results in terms of AUC for benchmark datasets; however,
DeepARC lacks efficient encoding policies.

Thus, it can be concluded that despite deep learning being widely applied in the predic-
tion of TFBSs and many aspects of deep learning being well-explored in the context of TFBS
prediction, methods based on transformers remain partially unexplored. In addition, capsule
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networks have already been used in natural language processing (NLP) for text [40,41] and
tweet act classification [42] with competitive results, as well as in bioinformatics [43,44].

Experimental results show that our proposed method performs markedly better than
the existing state-of-the-art. Our experiments allow us to make some observations about
cross-cell line and cross-transcription factor predictions that are of potential biological
interest. In the sections below, we provide an overview of the obtained results and describe
our main contributions and findings.

2. Results

DNABERT-Cap was trained to predict TFBSs in DNA sequences and tested on a
variety of data. The reported results are the average of multiple runs on 500,000 randomly
chosen sequences for the cell lines A549, GM12878, Hep-G2, H1-hESC, and Hela. To show
its effectiveness, we compared the results with those of three baselines as well as with other
state-of-the-art approaches based on the performance metrics described below. Additional
tests were conducted on other cell lines (DnD41, GM12891, GM12892, Huvec, and MCF7)
not used in training to test the generalization capabilities of the proposed model.

2.1. Performance Metrics

The different performance parameters used in this work are Accuracy, Recall, Speci-
ficity, Mathew’s Correlation Coefficient (MCC), and Area Under the Receiver Operating
Characteristic Curve (AUC) [39].

2.2. Performance Comparison with Baselines

To show the efficacy of DNABERT-Cap and better evaluate the role of its different compo-
nents, we compared the results across the following baseline models of increasing complexity:

1. Fine-tuned DNABERT model (Baseline-1): For comparison purposes, the original
DNABERT model was fine-tuned with our dataset, where we have added a classifica-
tion layer on top of DNABERT.

2. DNABERT+CL+BiLSTM+CE (Baseline-2): The capsule layer used to calculate the loss
was removed from this baseline, with the categorical cross-entropy loss used as the
loss function instead.

3. DNABERT+CL+Capsule Layer (Baseline-3): The BiLSTM layer was removed.

The results in terms of accuracy, recall, specificity, MCC, and AUC are reported in
Table 1. As can be observed from Table 1, DNABERT-Cap provides very good results and
outperforms the other baselines. When compared to the fine-tuned DNABERT model,
DNABERT-Cap shows an improvement of around 5% in terms of accuracy for cell line
A549. Similar improvements can be observed for the other metrics and cell lines. Baseline-2
which includes DNABERT with the convolutional and BiLSTM layers but without the
advantage of the capsule layer, also shows competitive results compared to baseline-1 for
all cell lines considered in this work.

Table 1. Summary of the performance of DNABERT-Cap and the selected baselines. The results
indicate that DNABERT with Capsule Network has the best overall performance. Bold indicates the
maximum value in each column.

Model Cell Line Accuracy (%) Recall (%) Specificity (%) MCC AUC

Fine-tuned DNABERT
model (Baseline-1)

A549 79.14 ± 0.407 78.55 ± 2.511 79.72 ± 0.426 0.609 ± 0.015 0.873 ± 0.004

GM12878 78.13 ± 0.226 76.87 ± 2.116 78.43 ± 0.246 0.608 ± 0.004 0.854 ± 0.001

Hep-G2 79.56 ± 0.116 78.20 ± 1.413 79.88 ± 0.118 0.609 ± 0.004 0.876 ± 0.000

H1-hESC 78.11 ± 0.412 77.14 ± 3.126 78.13 ± 0.426 0.603 ± 0.005 0.858 ± 0.001

Hela 78.19 ± 0.215 77.98 ± 1.457 78.56 ± 0.219 0.604 ± 0.006 0.873 ± 0.002

DNABERT+CL+BiLSTM
+CE (Baseline-2)

A549 80.45 ± 0.310 80.63 ± 2.026 80.01 ± 0.315 0.629 ± 0.004 0.890 ± 0.000

GM12878 80.32 ± 0.167 78.73 ± 2.551 80.67 ± 0.171 0.625 ± 0.006 0.877 ± 0.001
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Table 1. Cont.

Model Cell Line Accuracy (%) Recall (%) Specificity (%) MCC AUC

DNABERT+CL+BiLSTM
+CE (Baseline-2)

Hep-G2 81.65 ± 0.488 80.66 ± 2.073 81.37 ± 0.483 0.639 ± 0.009 0.896± 0.004

H1-hESC 80.51 ± 0.334 78.01 ± 2.778 80.59 ± 0.339 0.631 ± 0.004 0.892 ± 0.003

Hela 81.64 ± 0.145 69.02 ± 1.887 81.55 ± 0.146 0.643 ± 0.002 0.905 ± 0.002

DNABERT+CL+Capsule
Layer (Baseline-3)

A549 83.58± 0.331 83.03± 1.734 79.58 ± 0.336 0.681 ± 0.004 0.915 ± 0.001

GM12878 82.65 ± 0.177 77.57 ± 2.374 82.65 ± 0.181 0.659 ± 0.008 0.903± 0.000

Hep-G2 84.76 ± 0.414 79.92 ± 1.483 84.68 ± 0.417 0.698 ± 0.001 0.920 ± 0.001

H1-hESC 82.62 ± 0.357 78.85 ± 2.656 82.59 ± 0.351 0.654 ± 0.003 0.904± 0.001

Hela 83.09 ± 0.126 80.68 ± 1.913 83.00 ± 0.126 0.662 ± 0.002 0.908± 0.002

DNABERT-Cap

A549 84.66 ± 0.302 81.57 ± 1.711 84.65 ± 0.311 0.696 ± 0.004 0.925 ± 0.001

GM12878 83.52 ± 0.173 81.11 ± 2.110 83.52 ± 0.173 0.671 ± 0.003 0.913 ± 0.001

Hep-G2 85.49 ± 0.157 83.43 ± 1.640 85.46 ± 0.161 0.710 ± 0.003 0.930 ± 0.001

H1-hESC 83.43 ± 0.350 78.39 ± 2.652 83.50 ± 0.305 0.674 ± 0.003 0.914 ± 0.001

Hela 83.94 ± 0.112 80.46 ± 1.834 83.89 ± 0.105 0.680 ± 0.002 0.917 ± 0.000

Compared to baseline-2, where the capsule layer is not taken into account, the pro-
posed model shows improvement in terms of accuracy, specificity, MCC, and AUC of
around 4% for A549. However, baseline-3 shows better performance in terms of recall. In
this regard, AUC is a better parameter for determining which baseline has the best perfor-
mance [45]. As can be seen from the results, DNABERT-Cap has improved performance
in terms of AUC. This improved performance is reflected for all the other cell lines as
well. It is worth noting here that the overall improved performance of the proposed model
compared to baseline-3 can be attributed to the addition of the BiLSTM layer. All of our
experiments were performed considering a confidence level of 95%.

2.3. Performance Comparison with State-of-the-Art Predictors

In order to further analyse the performance of DNABERT-Cap, we compared it with
DeepARC [39], DeepTF [35], CNN-Zeng [26], and DeepBind [22] considering the same cell
lines as mentioned previously. Table 2 reports the results of these comparisons considering
the average of the five cell lines. As is evident from the table, the proposed model has
the best predictive performance among all the other state-of-the-art approaches in terms
of accuracy, specificity, MCC, and AUC. With respect to recall, DeepARC shows the best
performance. Compared to DeepARC, DNABERT-Cap has an improved performance
of 1.11%, 0.01%, 2.2%, and 1.10% for accuracy, specificity, MCC, and AUC, respectively.
Figure 1 reports the AUC of each method for the five cell lines. It should be noted that
in [43,44], the authors used capsule networks for the prediction of transcription factor bind-
ing sites. The sequence encoding methods were one-hot encodingand dna2vec, respectively.
Thus, to a certain extent, the results are not directly comparable, as these papers did not
mention the specific cell lines used in their work. However, the average results reported in
these papers are lower than those of DNABERT-Cap.

Table 2. Summary of of DNABERT-CAP performance compared to the state-of-the-art. DNABERT-
Cap had the best overall performance among all of the compared prediction models. Bold indicates
the maximum value in each column.

Model Accuracy (%) Recall (%) Specificity (%) MCC

DNABERT-Cap 84.21 80.99 84.20 0.686

DeepARC 83.10 82.02 84.19 0.664

DeepTF 80.98 77.44 81.36 0.632
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Table 2. Cont.

Model Accuracy (%) Recall (%) Specificity (%) MCC

CNN-Zeng 79.92 72.12 81.96 0.619

DeepBind 79.82 72.64 81.44 0.609

Figure 1. Chart depicting the area under the ROC curve metrics achieved by DNABERT-Cap and the
four selected state-of-the-art predictors, with DNABERT-Cap having the best AUC value.

2.4. Cross-Cell Line Prediction

We additionally considered the generalization capability of DNABERT-Cap across the
different cell lines. We used five additional cell lines (DnD41, GM12891, GM12892, Huvec,
and MCF7) for the purpose of verifying whether models that recognize the binding sites
learned from a given cell line can be used to recognize binding sites in a different cell line
as well. We restricted our analysis to the value of AUC due to its desirable properties. The
overall AUC values across cell lines are reported in Table 3. The general finding from these
results is that cross-cell line prediction works well. While the main diagonal in the first five
columns still appears to dominate the table, the off-diagonal AUCs are very satisfactory;
moreover, when shifting to the five last columns of the table, we find remarkably high
values that remain below 0.9 only briefly for GM12891 and GM12892 and partially for
MCF7. The binding sites in cell line DnD41 appear to be particularly well-recognised from
those appearing in the training cell lines, with the top results being for A549 with 0.956 and
H1-hESC with 0.957.

More focused information can be mined from the analysis of results restricted to a
single transcription factor of specific biological interest. In Table 4, we report the case
of CTCF as an example. Recalling that the binding sites for this factor are among the
most frequent in this analysis, appearing more than 17% of the time on average in both
the training and test datasets, it can be seen from the table that the very good cross-
cell line prediction for DnD41 is confirmed when restricted to only CTCF. A reasonable
interpretation of these results is that CTCF is well represented in all of the training cell
lines and is very prevalent in DnD41 (more than 95%); indeed, the corresponding values
for DnD41 averaged over all TFs are slightly lower, as reported in Table 3.
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Table 3. Summary of AUC for cross-cell line prediction. Bold indicates the maximum value in
each row.

Testing

Cell Lines A549 GM12878 Hep-G2 H1-hESC Hela DnD41 GM12891 GM12892 Huvec MCF7

Tr
ai

ni
ng

A549 0.926 0.860 0.895 0.901 0.908 0.956 0.840 0.865 0.920 0.925

GM12878 0.886 0.914 0.851 0.878 0.878 0.948 0.847 0.881 0.908 0.894

Hep-G2 0.910 0.846 0.932 0.894 0.895 0.946 0.826 0.853 0.901 0.899

H1-hESC 0.899 0.865 0.875 0.917 0.910 0.957 0.847 0.872 0.901 0.889

Hela 0.916 0.865 0.885 0.898 0.917 0.953 0.840 0.860 0.920 0.928

Table 4. Summary of AUC for cross-cell line prediction of CTCF. Bold indicates the maximum value
in each row.

Testing

Cell Lines A549 GM12878 Hep-G2 H1-hESC Hela DnD41 GM12891 GM12892 Huvec MCF7

Tr
ai

ni
ng

A549 0.974 0.965 0.973 0.965 0.967 0.962 0.941 0.943 0.976 0.957

GM12878 0.963 0.960 0.962 0.949 0.953 0.953 0.929 0.932 0.967 0.942

Hep-G2 0.965 0.958 0.970 0.956 0.955 0.951 0.930 0.933 0.969 0.940

H1-hESC 0.972 0.969 0.974 0.965 0.966 0.962 0.940 0.943 0.976 0.955

Hela 0.969 0.963 0.970 0.958 0.959 0.959 0.933 0.936 0.972 0.952

Having ascertained that cross-cell line prediction works reasonably well, we verified
the role of the different TFs by testing whether certain TFs are easier to predict than others,
whether such difference, if present, might depend on the cell line used in the experiments,
and finally, whether (as expected) those TFs that were more frequent in training data would
be easier to recognize.

2.5. Frequency of Transcription Factors in Sampling

We investigated the relationship between the frequency of TFs in the training datasets
and the ability to recognize them. The latter is expressed by the AUC of the ROC curve
associated with the sequences of that TF in a testing cell line dataset. Specific ROC curves
and the related AUC were computed for each cell line and for each TF. It is reasonable to
assume that when a given TF occurs in the training set with consistent frequency, then
it will be possible to better learn how to recognize it, and the model will be better able
to recognize sequences associated with that TF. To test this hypothesis, we computed the
Pearson correlation value and the related p-value between the average frequency in the
training for each TF, averaged on the training datasets corresponding to the five cell lines
used for training, along with the AUC averaged on the ten testing datasets associated with
different cell lines. To provide consistency to this analysis, we discarded TFs that were
scarce in testing (less than 500 positive samples). The results are displayed in the scatter
plot in Figure 2. The highly significant p-value (p < 0.001157) confirms that patterns are
present that depend on specific TFs; indeed, the association between frequency and AUC
is definitely not driven by chance and has correlation value of 0.35, suggesting that while
frequency has a significant influence, it is not the only factor playing a role in recognition.

In the rightmost stripe of the plot, it can be seen that a number of TFs have AUCs
above 95%. While several of these have very high frequency (CTCF with 0.19, Rad21 with
0.07), many with AUCs above 0.9 are supported by a frequency in the training sets that is
only a few decimal points above zero. Notably, the TF with largest AUC is not the one with
the maximum frequency (Rad21, with AUC 96% and frequency 0.07).
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Figure 2. For all the TFs (represented as black dots), the average AUC value (x-axis) is reported as a
function of the average frequency of the TFs in the training dataset (y-axis). Pearson correlation values
(Cor-value 0.35) between the two variables and the corresponding p-value (0.001157) are reported in
the left top corner.

2.6. Transcription Factors Not Appearing in Training

In addition to the behaviour discussed above, there were a large number of TFs that
were recognized very well despite not appearing in the training sets at all. For such TFs,
by restricting our analysis to those with at least 250 samples in the test sets, we obtain the
average AUCs shown in Table 5. In the table, it can be seen that the TFs that appear in
the test sets from cell line A549 and do not appear in any of the training sets exhibit an
average AUC of 0.875, peaking for training set from Hela with an average AUC of 0.894.
Very high values are found for those appearing in the Huvec cell line as well. In general,
the values in the table are quite high, and indicate that genomic properties of the binding
sites are transferred among transcription factors. In this regard, Table 6 reports the top
ten TFs based on AUC that were recognised well during testing despite being absent from
the training dataset. For example, although Znf143 is completely absent in A549, it was
recognised with an average AUC = 0.968 by models trained on GM12878. One of the most
well-recognised TF in this set is SMC3, with an average AUC > 0.95. The complete table is
provided as a Supplementary File. Please note that the blanks in Table 5 indicate that the
test cell lines contained TFs that were present in the training cell lines as well. For example,
DnD41 had no TFs that were absent in GM12878. The diagonals of the five cell lines used
for training are blank as well.

Table 5. Summary of AUC for TFs that were well-recognised despite not being present in the training
set (limited to TFs with more than 250 samples in testing; Bold indicates the maximum value in
each row).

Testing

Cell Lines A549 GM12878 Hep-G2 H1-hESC Hela DnD41 GM12891 GM12892 Huvec MCF7

Tr
ai

ni
ng

A549 - 0.839 0.867 0.865 0.894 0.788 0.813 0.841 0.894 0.869

GM12878 0.857 - 0.800 0.828 0.836 - - - 0.877 0.774

Hepg2 0.876 0.821 - 0.839 0.859 - 0.803 0.824 0.860 0.852

H1-heSC 0.855 0.841 0.841 - 0.859 - 0.826 0.843 0.847 0.835

Hela 0.893 0.841 0.858 0.851 - - 0.832 0.845 0.858 0.793
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Table 6. Top ten TFs, based on AUC, that were well-recognised despite not being present in the
training set. (limited to TFs with more than 250 samples in testing).

Cell Train Cell Test TF Summation of
Positive Test Data Mean AUC

A549 GM12878 Znf143 384 0.968

A549 Hela SMC3 1176 0.966

A549 Hela JunD 886 0.963

A549 Hep-G2 SMC3 584 0.962

A549 Hela c-Fos 299 0.956

H1hesc Hela SMC3 1176 0.955

A549 GM12878 SMC3 584 0.955

A549 MCF7 c-Fos 6801 0.954

H1hesc GM12878 SMC3 584 0.953

Hela A549 FOSL2 1254 0.952

3. Discussion

In this work, we present DNABERT-Cap, a transformer-based capsule network to
predict TFBSs. Our results show that the combination of these two powerful deep learning
methods significantly improves prediction performance. Moreover, we performed ablation
studies in order to report the utility of applying DNABERT with a capsule network for
such prediction. In this regard, the improved performance of the proposed model can be
attributed to the ability of DNABERT embeddings to generate rich bidirectional contextual
representations, thanks to multiple attention heads concurrently focusing on various input
sections. Moreover, the superior ability of the capsule network to retain information about
the location of an object represents an advantage over traditional convolutional networks,
which can lose track of such information due to the pooling layers only extracting the
most important information from the data. The proposed model further benefits from joint
optimisation of DNABERT and capsule layers along with the convolutional and BiLSTM
layers, allowing it to learn important attributes and features of TFBSs. Similar to how spatial
correlation is crucial for correctly identifying objects in images, the ordering of k-mers and
their semantic representations is important for DNA sequences. The proposed model seems
to be able to identify such relationships, allowing it to make better predictions. In future
research work, attempts could be made to further improve the performance of the model
by considering other parameters for feature embedding in addition to DNA sequences.
Moreover, DNABERT-Cap could be tested on other prediction problems in bioinformatics,
such as predicting RNA–protein and DNA–protein binding sites from sequences.

4. Materials and Methods

In this section, data preparation is elaborated, followed by the discussion of the
pipeline of the proposed work.

4.1. Data Preparation

The benchmark dataset from Encyclopedia of DNA Elements (ENCODE) [46] was
used to acquire the TFBS data analysed by the ChIPseq method. These data were used to
train and test the proposed model. Data preprocessing was the same as considered in [26],
where the positive samples with 101 bps were generated in the centre of each ChIP-seq peak
and the negative samples were obtained by recombining the positive sequence conserving
dinucleotide frequencies. The positive and negative samples were then distinguished based
on the presence or absence of TFBSs in a sequence. For experimental purposes, five cell
lines, viz., A549, GM12878, Hep-G2, H1-hESC, and Hela, encompassing 352 datasets from
the TF-690 Chip-Seq dataset, were considered for non-cross-cell line predictions. Based
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on availability of resources, 500,000 sequences for each of the five cell lines were selected
randomly from these datasets. This random selection ensured a fair balance between
positive and negative sequences. Each dataset was divided into 70% training, 20% test,
and 10% validation sets. For cross-cell line predictions, the ten cell lines A549, GM12878,
Hep-G2, H1-hESC, Hela, DnD41, GM12891, GM12892, Huvec, and MCF7 were considered,
encompassing 404 datasets (352 + 52) from the TF-690 dataset. All of our experiments were
conducted on machines with NVIDIA GA100 GPUs.

4.2. DNABERT and Capsule Network

Before delving into the pipeline of the work, a brief discussion of the DNABERT model
and capsule networks is provided.

4.2.1. DNABERT

DNABERT [47] is a pretrained bidirectional encoder representation which captures
the intricacies of DNA sequences based on both the upstream and downstream nucleotide
contexts. A set of sequences divided into k-mer tokens of appropriate sizes is provided
as input to DNABERT. Each sequence is represented as a matrix X , where the tokens are
embedded into numerical vectors. This matrix captures the contextual information of a
sequence by executing a multi-head self-attention mechanism on X :

multiheadX = Concatenation(head1, · · · , headh)WO (1)

where

headi = so f tmax

(
XWQ

i XW
K
i T

√
dk

)
.XWV

i . (2)

Here, allWs are parameters learned during training of the model. Equations (1) and
(2) are performed T times, where T is the number of layers.

4.2.2. Capsule Networks

In order to derive local patterns from a vector sequence, CNNs build convolutional
feature detectors [42]. The most noticeable patterns are then chosen using max-pooling.
However, CNNs may lose many important information during the pooling process, result-
ing in poor performance on problems characterised by positional invariance. In contrast,
approaches that do not take spatial relationships into account perform flawlessly when
making inferences for local patterns; however, they cannot encode the rich structures that
may be present in a sequence. In this regard, capsule networks [48] can help to improve
efficiency when encoding spatial patterns by including knowledge about the relationships
between parts and the whole. Each capsule is a group of neurons, in which the input and
output are both vectors. These groups of neurons work together to recognise specific fea-
tures or patterns. An iterative dynamic routing algorithm [49] helps to determine the most
important features from lower to higher layers. As a result, capsule networks generalise a
particular class instead of memorising every viewpoint variant of the class, thereby becom-
ing invariant to the viewpoint and showing improved performance compared to CNNs.

4.3. Pipeline of this Work

The pipeline of this work is depicted in Figure 3. Initially, the DNA sequences for
each cell line are fed to the DNABERT model in the form of k-mer tokens (k = 6 in this case,
as [47] have reported that 6-mers show the best performance). For each input sequence
of tokens, DNABERT returns an embedding. Let WA ∈ Rd×l be the weight matrix for
each such embedding, where l is the length of a sequence and d is the dimension of each
token representation. Each weight matrix is then passed through a series of layers to
obtain the best possible sequence representation for the classification of such sequences as
Transcription Factor Binding Sites. The subsequent layers are as follows:
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1. Convolutional Layer: The output from DNABERT is provided as an input to the
convolutional layer. This is represented as

αi = Wb ∗ di + b, (3)

where the output feature map αi is produced by a kernel di with bias b by applying
convolution and η such feature maps are then combined to form a η-channel layer, as
follows:

A =
[
α1, α2, · · · , αη

]
. (4)

This layer helps in understanding the importance of a k-mer token in a sequence by
concentrating on the feature map.

2. Bidirectional LSTM Layer: In order to learn semantic dependencies, the feature
vector obtained from the previous layer is passed through a bidirectional Long Short-
Term Memory (BiLSTM) network. The long-term dependencies in a sequence are
captured using the BiLSTM by sequentially encoding the feature maps into hidden
states [42]. In this regard, the η-channel feature vector A is passed through the BiLSTM
as follows: →

h t =
→

LSTM
(
αη , ht−1

)
, (5)

←
h t =

←
LSTM

(
αη , ht+1

)
, (6)

with each feature map mapped to forward and backward hidden states. This helps
to retain the context-sensitive nature of the tokens. The final hidden state matrix is
defined as

HS = [h1, h2, · · · , ht], (7)

where HS ∈ Rt×2dim and dim is the number of hidden state. Thus, BiLSTM is impor-
tant for capturing the context of k-mers in a DNA sequence.

3. Primary Capsule Layer: The primary capsule layer was originally introduced to
handle the drawbacks of conventional CNNs by replacing the scalar outputs with
vector-output capsules, in order to preserve the local order and semantic representa-
tions of tokens. Keeping this context in mind, the features obtained from the previous
layers in the form of vectors are fed into the primary capsule layer. By sliding over the
hidden states HS generated in the previous layer, each kernel di generates a sequence
of capsules capi of dimension dim, thereby creating a channel Ci:

Ci = S(di ∗ HS + b) (8)

where S is the squash function and b represents the capsule’s bias weight parameter.
This layer captures the local ordering of k-mers in a sequence and its corresponding
semantic representations.

4. Dynamic Routing Between Capsules: The primary idea behind dynamic routing [49]
is to iteratively build a nonlinear map, ensuring that a suitable capsule in the next
layer is strongly connected to a lower-level capsule. Moreover, the pooling function of
the traditional convolution layer, which normally removes the location information,
is replaced with a dynamic routing technique, leading to a more robust network. To
ensure that the length of a capsule is within [0, 1], a nonlinear squashing function is
applied, as shown in Equation (9):

vy =
||sy||2

1 + ||sy||
sy

|||sy||2
(9)

ûx|y = Wxjux, (10)

sy = ∑
x

cxyûy|x, (11)
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where vy is the output vector of capsule y, sy is its total input, sy is a weighted sum
over all prediction vectors ûy|x calculated by capsule x and transferred to capsule
y, and ûy|x is calculated by multiplying previous layer capsule output ux by Wxy
(weight matrix). This process helps the capsule network to capture the relationship
between a subpart and the entire sequence, as detailed in Equations (10) and (11). cxy
represents the coupling coefficients calculated by the dynamic routing algorithm; cxy
is computed as a softmax bxy, which represents the log-prior probabilities between
capsules x and y and is given by:

cxy =
exp
(
bxy
)

∑k exp(bxk)
. (12)

The initial coupling coefficients are refined iteratively based on bxy, measuring the
agreement between vy and ûy|x; the agreement can be calculated as axy = vy.ûy|x,
where axy is a scalar product and bxy is updated as follows:

bxy = bxy + ûy|x.vy. (13)

This entire procedure reflects the dynamic routing for all capsules s in layer P and
capsules y in layer P+ 1. In this work, a dynamic routing algorithm helps to determine
the importance and agreement of tokens for a specific task by learning the importance
of k-mer tokens in a sequence.

5. TFBS Capsule Layer: In this layer, the TFBS capsules are responsible for detecting the
TFBS of a given DNA sequence. The sequence vector of the primary capsule is carried
forward to the TFBS capsule layer, which generates one vector for each of the TFBS
class capsules: one for the class which exhibits the presence of TFBS, and another
depicting the absence of the same.

6. Output: The output of the TFBS capsule layer has two class capsules (denoted in
Figure 3 by the two blue circles), generating outputs with two vectors encoding
various properties of features; the lengths are the probabilities of the corresponding
class being present in the input data. In order to improve the separation between the
two class capsules, the separate margin loss [49] Lb is used in this work:

Lb = Gbmax(0, m+ − ||vk||)2 + λ(1− Gb)max(0, m− − ||vb||)2 (14)

where vb is the capsule for class b, Gb = 1 iff class b is the ground truth, m+ = 0.9,
m− = 0.1, and λ is used to tune the weight of an absent class.

Figure 3. Depiction of the pipeline of the methodology of DNABERT-Cap. The first row represents
the main sequences of the components, while the yellow box below shows an exploded view of the
DNABERT sequence. The last column of boxes, in green, shows where the capsule layer is in force
(the two capsules are represented by blue dots in the output layer).
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4.4. Hyperparameters

The pretrained DNABERT [47] model has 12 transformer layers and 768 hidden units,
along with 12 attention heads in each layer. The number of units for both the convolutional
and BiLSTM layers is 64, while the kernel size for the convolutional layer is 2. Furthermore,
a dropout value of 0.3 and a capsule length of 16 are considered along with a batch size
of 64. The dynamic routing algorithm with three iterations provided the optimum results,
and the Adam optimiser [50] was used for all our experiments. All of these parameters
were arrived at after conducting thorough experiments.

5. Conclusions

In this work, we propose DNABERT-Cap, a deep learning mmethod based on DNABERT,
CNN, BiLSTM and capsule networks, for the identification of transcription factor binding
sites in DNA sequences. The proposed model performs very well when compared with
state-of-the-art approaches, showing an accuracy of more than 83% and an AUC of more
than 0.91 for all of the five cell lines considered in this work for non-cross-cell line prediction.
Additionally, the results for cross-cell line prediction show the robustness of the proposed
model, making the model highly useful for verification of TFs across cell lines. As the
results shown in this work provide evidence that such a model is able to capture intrinsic
TFBS patterns, we plan to extend this work by designing specific models able to identify
TFBS patterns for a given TF. The results presented in this paper and in the Supplementary
Materials could be of interest for molecular biology studies, as they can allow researchers
to verify several hypothesis concerning the behaviour of TFs without the need to resort to
in vitro experiments. For example, specific similarities between TFs can be deduced based
on their cross-prediction rate, identifying patterns and substructures that would be missed
otherwise; alternatively, binding sites for factors of different kinds may be located.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25094990/s1.
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